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Abstract 
The capital asset pricing model (CAPM) is a commonly used regression mod-
el in finance to model stock returns. Bayesian methods have been developed 
for the CAPM to account for market fluctuations within the industry. How-
ever, a Bayesian model checking procedure is needed to assess the CAPM in 
terms of the usual regression model assumptions of independence, homo-
geneity of variance, and normality. This paper develops Bayesian residuals 
and Bayesian p-values to check these model assumptions as well as to suggest 
model extensions to the CAPM. 
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1. Introduction 

Asset pricing models are used to model the excess return of individual stocks 
which is defined as the difference between the stock return and that for the 
whole market. Many pricing models have been developed in the finance litera-
ture. One of the most popular models is the multifactor Capital Asset Pricing 
Model (CAPM) [1]. This model is based upon a linear regression of the excess 
return with three explanatory variables representing the market-wide factors: the 
market premium, the return of a portfolio of small stocks in excess of the return 
on a portfolio of large stocks, and the return of a portfolio of stocks with high ra-
tios of book value to market value in excess of the return of a portfolio of stocks 
with low book-to-market ratios. Bayesian methods have been applied to the 
CAPM to incorporate both information concerning market fluctuations within 
the industry and the uncertainty of the decision maker about the accuracy of the 
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model [2]. Model accuracy is reflected in the regression coefficient for the inter-
cept which represents the mispricing in the CAPM. The decision maker can in-
corporate uncertainty about model accuracy through the prior variance of this 
intercept term. 

However, Bayesian inference is model dependent as it is also based upon the 
set of specific assumptions associated with the CAPM. A violation of the under-
lying assumptions can have special implications in financial applications. For 
example, if stock returns have serial correlation across time, the serial depen-
dence is a violation of the random walk hypothesis [3]. Likewise, if the returns 
do not have constant variance, the change in pattern may require a conditional 
heteroscedastic model to model the stock volatility [4]. Returns also may not 
follow a normal distribution. Empirical studies have shown that the returns 
tend to be skewed to the right and there is a need to also model those “rare” 
events. 

Thus, it is important to be able to check and evaluate regression models, such 
as the CAPM, within the Bayesian context. A Bayesian model checking tech-
nique based upon the posterior predictive distribution was used to show that the 
CAPM could be inconsistent with the long-horizon returns of initial public of-
ferings [5]. Specifically, various percentiles computed from both the observed 
returns and replicated returns simulated from the posterior predictive distribu-
tion were compared, and substantial differences between the two sets of percen-
tiles were used as evidence to question the validity of the chosen model for the 
long-horizon return data. However, knowing the validity of a proposed model is 
not the end of the analysis. Additional diagnostic checks can provide strategies 
for model expansion or modification if the current model is deemed inadequate. 
Thus, the purpose of this research is to develop a Bayesian diagnostic metho-
dology suitable for the CAPM that can reveal violations of the model assump-
tions. This methodology consists of residual diagnostics and tail area probability 
calculations to quantity the violation. The diagnostic methods are performed on 
stock return data to illustrate how to assess the CAPM assumptions and how to 
identify suitable adjustments to the CAPM that accommodate violations of the 
assumptions. The proposed techniques would also be useful for assessment of 
the model assumptions for other regression models or even for the general linear 
model. 

This paper is organized as follows. Section 2 introduces the CAPM and re-
views the Bayesian methods that have been used to perform model fitting and 
posterior inference. Section 3 develops Bayesian diagnostic approaches and dis-
cusses computational strategies. Section 4 applies the methodology to modeling 
a series of monthly returns of a stock from a pharmaceutical company. Section 5 
provides concluding remarks.  

2. Bayesian Analysis of the CAPM 
2.1. The CAPM 

Financial studies typically use returns, instead of prices, of assets for two reasons. 
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First, for average investors, return of an asset is a complete and scale-free sum-
mary of the investment opportunity. Second, return series are easier to handle, 
and have more attractive statistical properties [6]. The monthly return at time t 
is calculated using the definition of one-period simple return, which is the per-
centage of change between the close prices of two neighboring months of t and 

1t −  [4]. That is, 

( )( )1 1100t t t tr p p p− −= × −                        (1) 

where r and p denote the return and price of a stock. 

 
The CAPM quantifies the insight that riskier assets should offer higher ex-

pected returns to the investors [1]. The model is given by 

, 1, ,t t ty t Tε′= + =x �β .                       (2) 

In Equation (2), ty  denotes the excess return of the stock, which is the dif-
ference between the stock return, as calculated in Equation (1), and that of the 
market portfolio. The vector of predictors is , ,1 SMB HMLt m t f t t tr r′  = − x  
which is a collection of three market-wide macroeconomic risk factors defined 
as follows. The term m fr r−  stands for the difference between the market return 
and the risk-free return, and is also called the market premium. The predictor 
SMB is called “small minus big”, which is the return of a portfolio of small stocks 
in excess of the return on a portfolio of large stocks. The predictor HML denotes 
“high minus low”, and is the return of a portfolio of stocks with high ratios of 
book value to market value in excess of the return of a portfolio of stocks with 
low book-to-market ratios. The subscript t indexes the values at time t, and T is 
the total number of observations. The regression coefficient vector, denoted by 
β , represents the impact of market premium, SMB, and HML on stock perfor-
mance. 

A matrix form of the CAPM is given by 

( )2, ~ , TN σ= +y X Iβ ε ε 0 ,                    (3) 

where y  is a T × 1 vector of returns, X  is a T × 4 matrix containing all factor 
information, and ε  is the vector of regression errors which is assumed to be 
independent and normally distributed with common variance 2σ . 

2.2. A Bayesian Approach 

A Bayesian approach can be used to incorporate market information through 
prior distributions [2]. These priors are based upon a normal-inverted-gamma 
distribution that is typical for regression parameters: 

( )( )2 2 0
0 2

0 0

2| ~ , , ~ IG ,
2

N
s

υ
σ σ σ

υ
 
 
 

Vβ β .              (4) 

The hyperparameters β , 0υ  and 0s  are determined by setting the expecta-
tion and variance of the prior distribution equal to the first and second moments 
of the regression parameter estimates from all stocks in the same industry. The 
priors are the same as those in the conjugate case, except for the formation of 
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covariance matrix ( )0 σV , which is 

( ) ( ) ( ) [ ]

( ) [ ]

2

11 12 13 142

0

*
12 13 14

  

  

V V V V
EE

V V V
E

σ σ
σσ

σ
σ
σ

    
         =  
   ′      

V

V

.       (5) 

Let V  be the 4 4×  covariance matrix obtained by computing the sample 
covariance matrix of β  from all stocks in the industry. Then 12 13 14, ,V V V  stand 
for the corresponding elements in the matrix V , while *V  is the 3 3×  sub-
matrix of V corresponding to the covariance matrix of β  associated with the 
three factors. The terms ( )2E σ  and ( )E σ  are the averages of all estimates of 

2σ  and σ  in the industry. Hence, 2σ  is the only unknown parameter in 
( )0 σV . This special construction is applied to represent an empirical finding in 

finance that the variability of all terms associated with the intercept is typically 
in line with the magnitude of the variance of the error. 

2.3. Bayesian Computation 

The prior specification in Equations (4) and (5) is not the conjugate specification 
for the regression model ([7], Section 3.2). Under the conjugate prior, 2σ  can 
be factored out of the covariance matrix, unlike in Equation (5) where only those 
terms related to the intercept are associated with 2σ . Thus, a brief discussion is 
provided of the Markov chain Monte Carlo (MCMC) technique used to obtain 
the posterior estimates of β  and 2σ . 

Two of the typical MCMC procedures, the Metropolis-Hastings (M-H) algo-
rithm [8] and the Gibbs sampler [9] are used in this study. The purpose of the 
M-H algorithm is to generate a sequence of samples from a distribution ( )f ⋅  
that is difficult to directly sample. An alternative is to take candidate draws from 
a proposal density ( )q ⋅  that is easy to sample, and these draws are then ac-
cepted with a suitable acceptance probability in such a way that the result is a 
Markov chain converging to the target distribution ( )f ⋅ . Let ( )jθ  denote the 
jth element of the parameter vector. The Markov chain ( ){ }jθ  is formed as Al-
gorithm 1. 

Algorithm 1: 
1) Given ( )1jθ − , draw ( )jθ  from a proposal distribution ( ) ( )( )1|j jq θ θ − . 
2) Accept the candidate ( )jθ  with probability 

( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

1
1

1 1

|
, min 1,

|

j j j
j j

j j j

f q

f q

θ θ θ
α θ θ

θ θ θ

−

−

− −

 
 =  
  

. 

Otherwise, reject and let ( ) ( )1j jθ θ −= . 
Gibbs sampling is a special case of the M-H algorithm. It is applicable when 

the full conditional distributions are known for each model parameter. The 
Markov chain is updated one component at a time by drawing from the full 
conditional distributions given the values of the remaining components. Con-
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sider the case where the parameter has p components. The updating is achieved 
as stated in Algorithm 2. 

Algorithm 2: 
Given ( ) ( ) ( )( )1 1 1

1 , ,j j j
pθ θ− − −= �θ , obtain ( )

1
jθ  from ( ) ( )( )1 1

1 1 2| , ,j j
pf θ θ θ− −� , ob-

tain ( )
2

jθ  from ( ) ( ) ( )( )1 1
2 2 1 3| , , ,j j j

pf θ θ θ θ− −� , �  , obtain ( )j
pθ  from  

( ) ( ) ( )( )1 2 1| , , ,j j j
p p pf θ θ θ θ −� . 
If θ  denotes the vector of all model parameters under CAPM, then it equals 

2 β σ ′   . A hybrid algorithm is recommended to obtain the posterior draws [2]. 
Based on Equations (3) and (4), the joint posterior distribution can be derived as 

( )

( ) ( ) ( ) ( ) ( )

0

2
2 2

1
2 2

0 0 02

1 1, | exp
2

1 ˆ ˆˆ

v Tf

v s T

σ
σσ

σ σ
σ

+ +

−

∝ −


 ′ ′ ′× + + − − + − −      

y

V X X

β

β β β β β β β β
 (6) 

where ( ) 1ˆ −′ ′= X X X yβ  and ( ) ( )2 ˆ ˆσ̂ ′= − −y X y Xβ β . Note that Equation (6) 
can also be treated as an expression for the conditional posterior distribution 
( )2| ,f σyβ  or ( )2 | ,f σ y β  when 2σ  or β  is known. Therefore, 2σ  is 

updated by the M-H procedure in Algorithm 1. The proposal distribution ( )q ⋅  
is set to be the conditional posterior distribution for 2σ  that arises when β  
and 2σ  are made independent in the normal-inverted-gamma prior. For a 
given β , the target ( )f ⋅  is the conditional distribution ( )2 | ,f σ y β , which 
is proportional to the right-hand side of Equation (6). Given 2σ  from the last 
step, β  is updated using the conditional distribution ( )2| ,f σyβ  via Gibbs 
sampling in Algorithm 2. This approach will be called the “hybrid” algorithm 
since the parameters are updated using the different MCMC procedures de-
scribed in Algorithm 1 and Algorithm 2.

 

3. Bayesian Model Diagnostic Checking 

In the frequentist setting, model diagnostic checking is an integral part of data 
analysis. Bayesian methods, however, have been criticized as being strong for in-
ference under an assumed model, but weak for the development and assessment 
of models [10]. The purpose of model diagnostics is to assess the assumptions of 
a posited model and to identify troublesome features of the model. Bayesian 
analysis typically conditions on the whole probability model making it crucial to 
check whether or not the posited model fails to provide a reasonable summary of 
the data. 

3.1. Bayesian Residuals 

Many of the diagnostics in the frequentist setting utilize residuals to check mod-
el assumptions. Residuals are generally represented as the observed value of the 
response minus the fitted value of the response. From the Bayesian perspective, 
there is not an agreed upon candidate for a fitted value. As a result, there are 
many possible Bayesian residuals [11]. A few Bayesian residuals are defined be-
low. 
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For Bayesians, the predicted value has a distribution called the posterior pre-
dictive distribution [12]. Let repy  denote the value of the response that could 
have been observed under the values of the parameter θ  and with the collec-
tion of explanatory variables X . The subscript arises from the fact that it is the 
data that “could appear if the experiment that produced y  today were repli-
cated tomorrow with the same model” [13]. The posterior predictive distribution, 

( )post rep |f y y , is given by 

( ) ( ) ( )post rep rep| | | df f f= ∫y y y yθ θ θ ,               (7) 

where ( )|f yθ  is the density function of the posterior distribution and 

( )rep |f y θ  is the density function of the sampling distribution evaluated at 

repy . The Bayesian residual vector mentioned by [14] is defined as 

( )Bayes rep |E= −e y y y .                      (8) 

Equation (8) reflects the difference between the observed value and the pre-
dicted value, but here the predicted value corresponds to the expectation of the 
posterior predictive distribution in Equation (7). The residuals in Equation (8) 
can be standardized by dividing each value by the square root of the variance of 
the posterior predictive distribution for that corresponding observation. 

Numerically, the residuals can be calculated using a value of repy  that is 
generated from Equation (3) where values of β  and 2σ  are taken from a 
draw of the M-H and/or Gibbs algorithms ([12], p. 76). These values are gener-
ated for all draws and the value of ( )rep |E y y  is taken to be the mean of all 

repy . The Bayesian residuals can then be obtained according to Equation (8). 
Other residuals can be calculated using draws from the posterior distribution. 

Let ( )jβ  denote the jth draw for β . The observed residuals can be computed as  
( ) ( )
obs

j j= −e y Xβ .                          (9) 

Alternatively, the realized residuals can be computed from the jth draw from 
the posterior predictive distribution, say ( )

rep
jy . In this case, 

( ) ( ) ( )
rep rep

j j j= −e y Xβ .                        (10) 

The residuals in Equations (9) and (10) can be standardized by dividing by the 
square root of ( )2 jσ  where ( )2 jσ  denotes the jth draw for 2σ . The standar-
dized values of from Equations (9) and (10) represent a form of observed and 
realized measures of discrepancy [13]. Averages of Equations (9) and (10) across 
the posterior draws produce a single set of residuals, denoted obse  and repe , 
respectively. These averages approximate expectations of Equations (9) and (10) 
with respect to the posterior distribution. The values of obse  correspond to 
those in Equation (8) since repy  is sampled from a normal distribution with 
mean ( )jXβ  at the jth draw. The values of ( )

rep
je  at the jth draw can also be ob-

tained by sampling independently from a normal distribution with mean 0 and 
variance ( )2 jσ . 

3.2. Bayesian P-Values 

Another standard frequentist approach for model checking is the computation 
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of a tail-area probability to quantify inconsistency between the data and the 
proposed model. A test statistic ( )D y  based upon the classical residuals is 
chosen to investigate a certain discrepancy from the model assumption. Without 
loss of generality, assume large values of D indicates incompatibility with the 
model. The classical p-value is 

( ) ( )( )classical repPr |p D D= ≥y y θ .                   (11) 

The unknown parameter θ  is handled by substituting some estimate θ̂ . A 
p-value close to zero indicates a lack of fit in the direction of ( )D y  under the 
current model. The probability function, denoted by Pr in Equation (11), is cal-
culated with respect to the sampling distribution of y  that generates repy . 
However, the classical p-value ignores the uncertainty in the estimation of θ , 
and is not suitable in the Bayesian setting where θ  is not assumed to be fixed. 
Several Bayesian p-values have been developed and their difference lies in the 
reference distribution used for the tail area computation. 

The posterior predictive p-value (ppp) accounts for the distribution of θ  
using the posterior predictive distribution in Equation (7) [13] [15]. The ppp is 
defined as 

( ) ( )( ) ( )post repPr | | dp D D f= ≥∫ y y yθ θ θ .             (12) 

It can be generalized by replacing ( )D y  with a parameter-dependent test 
statistic ( ),D y θ  [13] [15]. Equation (12) shows that ppost is the expected value 
of the classical p-value in Equation (11) with respect to the posterior distribution. 
This p-value is calculated from the MCMC algorithm using the following steps:  

Algorithm 3: 
1) For given draw jθ  from the posterior distribution, obtain rep

jy  from 
( )| jf y θ . 
2) Compute ( )rep ,j jD y θ  and ( ), jD y θ . The former quantity is called the 

“realized discrepancy”, and the latter is called the “observed discrepancy”. 
3) Repeat step 1 and step 2 a large number of times. The posterior predictive 

p-value is estimated by the proportion of times in which  
( ) ( )rep , ,j j jD D>y θ y θ . 
A criticism of the posterior predictive p-value is the double use of data since 

observations are first used to produce the posterior distribution, and then used 
again to compute the tail area probability. This results in a conservative p-value 
where the distribution of the ppp is more concentrated around ½ as has been 
demonstrated for both small samples [16] and large samples [17]. 

The partial posterior predictive p-value (partial-ppp) was created to combine 
the advantages of the prior and posterior predictive p-values [16] [18]. The par-
tial-ppp is 

( ) ( )( ) ( )*
partial repPr , , dp D D f= ≥∫ y yθ θ θ θ ,             (13) 

( ) ( ) ( ) ( ) ( )
( )

* |
| ,

|
f f

f f D f
f D

∝ ∝
y

y
θ θ

θ θ θ
θ

.              (14) 
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Equation (13) is similar to Equation (12) except that the posterior predictive 
probability density function is replaced by ( )*f θ . The reference distribution  
for the probability in Equation (14) is ( ) ( ) ( )* *| df D f f= ∫ y θ θ θ . As indi-  

cated by the numerator of the right-hand side of Equation (14), the partial-ppp 
is still based upon the posterior distribution of θ . However, it avoids the 
double use of data by conditioning on the test statistic, so the contribution of D 
to the posterior is removed before θ  is eliminated by integration [18]. Intui-
tively, the act of conditioning on D has the effect of splitting the information 
contained in the data set into two parts where the first part computes D and the 
remaining information in the second part forms the distribution ( )*π θ . A si-
mulation study found that the partial-ppp is asymptotically uniform [17]. 

The partial-ppp can be calculated using Algorithm 3 with a modification of 
step 1. When drawing jθ , it should be taken from ( )*f D  which is the post-
erior distribution of parameters conditioning on the test statistic D. Generating 

( )*f D  can be done in two ways [16] [18]. The first method is to construct a 
Metropolis chain based upon draws from the full posterior distribution  
( )|f yθ . Using it as the proposal density, the simulation moves from a current  

draw ( )1j−θ  to a new draw ( )jθ  with probability corresponding to the mini-  

mum of ( ) ( )( ) ( ) ( )( ){ }11, | |j jf D f D−y yθ θ . When ( )( )|f D y θ  is highly va-  

riable in θ , the posterior distribution ( )|f yθ  may not be a good probing 
distribution for ( )*f θ  [16]. In that case, the second method is preferred. This 
procedure is as follows: 

Algorithm 4: 
1) Given ( )1j−θ , draw ( )jθ  from the posterior distribution. Draw u from the  

Uniform(0,1) distribution. The candidate draw is 
( ) ( ) ( )*

MLE cMLE
ˆ ˆj j u= + −θ θ θ θ . 

2) Replace the current ( ) ( ) ( )*
MLE cMLE

ˆ ˆj j u= + −θ θ θ θ  with ( )* jθ  with proba-
bility 

( ) ( )( )
( ) ( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

* 1 * 1 * 1

* * 1 * 1

| | |
min 1,

| | |

j j j j j

j j j j j

f D f f

f D f f

π π

π π

− − −

− −

 
 
 
  

y y y

y y y

θ θ θ θ θ

θ θ θ θ θ
. 

The quantities MLEθ̂  and cMLEθ̂  are the maximum likelihood estimator 
(MLE) and the conditional MLE, respectively. The MLE is defined as  

( )MLE
ˆ arg max |f= yθ θ  and the conditional MLE is defined as  

( ) ( )cMLE
ˆ arg max | |f f= y tθ θ θ  [16]. The modification in step 1 of Algorithm 

4 moves the draws from the posterior distribution by adding a portion of the 
difference between the two estimates, MLE cMLE

ˆ ˆ−θ θ . This quantity is meant to 
push simulations lying around MLEs, which are regions of low probability if the 
model is incompatible with the data, to regions with high probability according 
to the distribution of ( )*π θ  [19]. 

The evaluation of both acceptance probabilities demands that ( ) ( )( )| jf D y θ  
is available in closed form at each draw. A shortcut to this approach is to choose 
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a test statistic that is a pivotal quantity where the distribution of ( ),D y θ  does 
not depend on the parameter θ . If ( ),D y θ  is a pivotal quantity, then  

( )0,D =y θ θ  and ( )( ), jD =y θ θ  are identically distributed where 0θ  is the 
true data-generating value of the parameter and ( )jθ  denotes a parameter vec-
tor drawn from the posterior [20]. With this property, the trouble of evaluating 

( ) ( )( )| jf D y θ  at each posterior draw is circumvented as ( )( ), jD y θ  has the 
same known distribution as ( ),D y θ  under the proposed model. 

As for the choice of the discrepancy statistic D, any test statistic can be formed 
as the check function. The general guideline is that it “formalizes questions that 
any competent statistician would raise having been presented with the supposed 
form of the model and the data” [21]. Specific choices for the CAPM will be 
presented in Section 4.2. The discrepancy statistic calculated at the jth draw is a 
function computed using the observed residuals, ( )( )obs ,

jD e θ , and the realized 
residuals, ( )( )rep ,jD e θ . 

4. Example from the Pharmaceutical Industry 

In this section, the CAPM is fit to the series of excess returns for stock Serono, 
S.A. (ticker symbol SRA) using the Bayesian approach described in Section 2.2. 
Diagnostic checks are performed to check for potential problems with the model 
assumptions. The series consist of 52 monthly observations between September 
2000 and December 2004. The firm is a pharmaceutical company specializing in 
drug production and medical research. Thus, information from the pharma-
ceutical industry, represented by all the 30 pharmaceutical companies listed in 
the New York Stock Exchange, is used to form the prior distributions. 

4.1. Fit of the CAPM 

The hybrid algorithm described in Section 2.3 is used to generate simulations 
from the posterior distributions. After discarding the initial 500 draws for the 
burn-in, 10,000 draws are used for posterior inference. The posterior estimates 
(mean and standard deviation) of the model parameters are given in Table 1. 

The Deviance Information Criteria (DIC) is commonly used for Bayesian 
model selection. The DIC is formed as the posterior mean of the deviance, which 
is -2 times the loglikelihood, along with a penalty for the effective number of pa-
rameters ([12], Section 6.7). A second measure is the expected squared error loss 
(ESSE) given by 

( )2
,

1

T

t t obs
t

E y y
=

 −  
∑ ,                       (15) 

 
Table 1. Posterior estimates of the CAPM for the SRA data. 

parameter beta [1] beta [2] beta [3] beta [4] sigma 2 

mean 0.1938 1.286 0.1823 0.5904 67.3 

std deviation 0.6059 0.2388 0.3285 0.3096 13.23 
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where the expectation is respect to the posterior predictive distribution [22]. The 
quantity in Equation (15) corresponds to the posterior mean of the error sum of 
squares and does not include a penalty for model complexity. For the CAPM 
model fit result of this particular stock, the DIC is 366.6 and the ESSE is 
3102.73. 

4.2. Evaluation of Fit of the CAPM 

Figure 1 shows a plot of standardized Bayesian residuals in Equation (8) against 
the posterior mean values for each of the 52 monthly time points. This figure 
does not suggest any obvious departures from the homogeneity of variances as-
sumption. However, it does show a few residuals with extreme negative values. 
Figure 2 shows a plot of the residuals versus time as well as a plot of the auto-
correlation function (ACF). In particular, the ACF plot in Figure 2 suggests the 
model errors may contain autocorrelation of order 1 since the ACF exceeds this 
threshold at lag 1. Figure 3 contains a histogram and normal quantile-quantile 
(QQ) plot of the standardized residuals. Both plots also highlight the extreme 
negative residual values. These small residual values are the only ones that tend 
to substantially deviate from the requisite line. 

The three p-values in Section 3.2 can be used to quantify the degree to which 
model fit deviates from the required model assumptions. The classical p-value is 
computed by plugging in the posterior mean of the parameters as an estimate of 
θ  in Equation (11). The ppp is calculated using Algorithm 3. The partial-ppp is 
calculated based upon Algorithm 4 as all test statistics are expected to be highly 
variable across the posterior draws. 

A number of pivotal quantities could be used as measures of discrepancy 

( ),D e θ  from the model assumptions. To quantify violations of independent 
errors, the Portmanteau test on the residuals is used. The associated Ljung-Box 
test statistic follows a Chi-squared distribution ([23], p. 541). To assess possible 
violation of the homogeneity of variance assumption, the Breusch-Pagan La 
grange multiplier test statistic is applied to the residuals. The test statistic is 
known to follow a Chi-squared distribution ([23], p. 510). To assess the assump-
tion of normality, the Wilk-Shapiro test is applied to the residuals. With a 

 

 
(a)                                                          (b) 

Figure 1. Plot of standardized Bayesian residuals versus fitted values for the CAPM with usual errors (a) and autocorrelated nor-
mal errors (b). 
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(a)                                                           (b) 

Figure 2. Time series plot and ACF plot of Bayesian residuals for the CAPM. 
 

 
(a)                                                          (b) 

Figure 3. Histogram and normal Q-Q plot of Bayesian residuals for the CAPM. 
 
normalizing transformation, the test statistic follows a standard normal distribu-
tion [24]. 

The p-values presented in Table 2 confirm that there is no evidence against 
the homogeneity of variance assumption. There is some evidence against the 
normality assumption, though the ppp and partial-ppp show the evidence is not 
strong. The lack of normality is likely attributable to the two smallest residual 
values. The classical p-values and the partial-ppp show evidence against the as-
sumption that the model errors are independent. The ppp appears to be a bit 
more conservative for this test. The Portmanteau test is used to detect that there 
is evidence that the model errors have lag 1 autocorrelation. 

4.3. Fit of the CAPM with Autocorrelated Errors 

The evaluation of the model fit in Section 4.2 revealed some evidence of a dis-
crepancy from the assumption of independent model errors. The approach of 
[25] can be used to incorporate autocorrelation into the CAPM. This approach 
will be used in this subsection to model first-order autocorrelation (AR(1)). 
Thus, the model in Equation (2) is now represented as 

t t ty ε′= +x β , with 1t t taε φε −= + , and ( )2~ 0,ta N σ .       (16) 

It is convenient to reparameterize the model in Equation (16) using the Prais- 
Winsten transformation [26]. Under this reparameterization, 

* *
t t ty a′= +x β , with *

1t t ty y yφ −= − , and *
1t t tφ −= −x x x .      (17) 

The model errors ta  for this transformed model should satisfy the usual as-
sumptions listed in Equation (16) for 2, ,t T= � . This model can be written in 
the same form as Equation (3), but with *y  in place of y  and *X  in place of 
X . 

The exact same prior distributions on β  and 2σ  are used. The additional 
autoregressive coefficient φ  has a non-informative Jeffrey prior in which  
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Table 2. P-Values for the fit of the CAPM to the SRA data. 

check classical ppp partial-ppp 

Lag 1 Corr. 0.0364 0.0791 0.0460 

Equal Var 0.8915 0.8216 0.8791 

Normality 0.0623 0.1049 0.0953 

 
( ) ( ) 1 22~ 1f φ φ

−
− . Thus, the parameter vector θ  is now 2  σ φ ′  β . The 

posterior simulation is performed using the hybrid algorithm involving both the 
M-H procedure and Gibbs sampling as follows. The updating of β  and φ  is 
conducted via the Gibbs sampler in Algorithm 2 using the full conditionals from 
[25]. The updating of 2σ  is conducted via the M-H procedure described in 
Algorithm 1. 

After discarding the initial 500 draws for burn-in, 10,000 draws are used to 
obtain the posterior estimates. These estimates are given in Table 3. The new 
model has a DIC of 364.6 and squared error loss of 3075.09. Based upon these 
goodness-of-fit measures alone, the Prais-Winstern reparameterization of the 
CAPM would be preferred. The next section provides diagnostic checks on this 
proposed model. 

4.4. Evaluation of Fit of the CAPM with Autocorrelated Errors 

The residuals in Equations (9) and (10) can also be used for the CAPM with au-
tocorrelated errors given in Equation (16). These residuals are based upon *y  
and *X  defined in Section 4.3. Figure 1 shows the plot of the corresponding 
standardized Bayesian residuals against the posterior mean values for each of the 
52 monthly time points based upon the CAPM with autocorrelated errors. This 
figure does not suggest any obvious departures from the homogeneity of va-
riances assumption. However, there are again a few residuals with extreme nega-
tive values. Figure 4 shows a plot of the residuals versus time as well as a plot of 
the autocorrelation function (ACF). The plot of the residuals against time in 
Figure 4 looks similar to Figure 2. However, the ACF plot in Figure 4 no longer 
suggests the presence of autocorrelation of any order. Figure 5 contains a histo-
gram and a normal quantile-quantile plot of the residuals. Both plots show the 
extreme negative residual values. The distribution of the model errors may have 
tails that are too heavy for the normal assumption to hold. 

The p-values for the fit of the CAPM with autocorrelated errors are presented 
in Table 4. The p-values again confirm that there is no evidence against the ho-
mogeneity of variance assumption. The p-values show no evidence of autocor-
relation. Thus, the modification in Equation (16) to account for the autocorrela-
tion suitably addresses previously identified violations of the independence as-
sumption. However, there is evidence against the normality assumption. This 
evidence is not as strong using the more conservative ppp. 
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Table 3. Posterior estimates of the CAPM with autocorrelated normal errors for the SRA data. 

parameter beta [1] beta [2] beta [3] beta [4] phi sigma 2 

mean 0.07877 1.328 0.1990 0.4630 −0.3232 63.21 

std deviation 0.5587 0.2212 0.3312 0.2874 0.1553 12.47 

 
Table 4. P-Values for the fit of the CAPM with autocorrelated normal errors to the SRA data. 

check classical ppp partial-ppp 

Lag 1 Corr. 0.6397 0.5080 0.4073 

Equal Var 0.4337 0.4352 0.2108 

Normality 0.0142 0.0750 0.0471 

 

 
(a)                                                           (b) 

Figure 4. Time series plot and ACF plot of Bayesian residuals for the CAPM with corrrelated normal errors. 

 

 
(a)                                                           (b) 

Figure 5. Histogram and normal Q-Q plot of Bayesian residuals for the CAPM with corrrelated normal errors. 

4.5. Fit of the CAPM with Autocorrelated t Errors 

In order to address the problem of heavy tails in the fit of the CAPM with auto-
regressive normal errors, one approach is to use the t-distribution to model the 
likelihood. A modification of Equation (17) to accommodate the t-distribution is 
given by 

* *
t t ty a′= +x β , with ( )2~ 0,t dfa T σ .               (18) 

The proper degrees of freedom (df) for the t-distribution can be determined 
using an exploratory method assuming the non-informative prior density 

( )1 ~ Uniform 0,1df . This form of prior is recommended over the more obvious 
choice of ( )~ Uniform 1,df ∞  because the latter essentially has all its mass near 
df = ∞  ([27], p. 193). For the SRA data, the posterior distribution of df  cen-
ters around the value of 10 which is taken to be the value for the degrees of free-
dom. 

As mentioned in ([12], p. 303), the t likelihood with degrees of freedom df  
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for each ta  can be represented as 

( )| ~ 0,t t ta h N h  and ( )2~ IG ,th df σ ,             (19) 

where the variables th  are auxiliary variables that cannot be directly observed. 
There is no direct way to compute th , but it is straightforward to obtain the 
conditional posterior distribution ([12], p 303) as 

( )
2

22 * *

1 2| , , , ~ IG ,
2t

t t

dfh
df y

σ φ
σ

 + 
  ⋅ + − 

y
x

β
β

.           (20) 

The posterior simulation can be performed using a hybrid algorithm involv-
ing both the M-H procedure and Gibbs sampling. The updating of β , φ , th  
is done via the Gibbs sampler in Algorithm 2. The updating of 2σ  is achieved 
via the M-H procedure described in Algorithm 1. All prior distributions remain 
the same for this model. The software program WinBUGS is used to obtain 
10000 posterior draws after the 500 burn-in draws. Estimates under this model 
are given in Table 5. For the goodness-of-fit measures, DIC is 364.7 and the 
squared error loss is 3087.24. According to these criteria, the performance of this 
model is better than the CAPM in Section 4.1 and similar to the CAPM with au-
tocorrelated normal errors in Section 4.3. 

4.6. Evaluation of Fit of the CAPM with Autocorrelated t Errors 

According to Equation (18), the model errors should have a t-distribution. Note 
that this corresponds to the marginal distribution of ta  across the values of th  
in Equation (19). Given values of th , the conditional distribution of |t ta h  is 
normal. Thus, for each draw from the posterior distribution, observed residuals 
are calculated using Equation (9). Values of th  are also drawn according to 
Equation (20). Then the observed residuals are standardized by dividing by th  
as opposed to a function of σ  based upon the t-distribution in Equation (18). 
The histogram and normal quantile-quantile plot of these standardized residuals 
are shown in Figure 6. The normal quantile-quantile plot shows some of the 
same deviations from the requisite line in the tails as that observed in Figure 5. 
However, the scaling from the t-distribution has substantially reduced the mag-
nitude of these deviations at the tails. As a result, these residuals are closer to the 
reference line required for the normality assumption. 

The p-values are provided in Table 6. The p-values for the test of normality 
show no evidence against the normality assumption. The p-values also show no 
evidence against the homogeneity of variance assumption or the independence 
assumption. 

5. Conclusions 

This paper reviews Bayesian methodology for diagnostic checking. These me-
thods have been developed here for specifically assessing the assumptions of the 
CAPM as well as for suggesting meaningful model expansions. These approaches 
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Table 5. Posterior estimates of the CAPM with autocorrelated t errors for the SRA data. 

parameter beta [1] beta [2] beta [3] beta [4] phi sigma 2 

mean 0.1708 1.336 0.1875 0.5036 −0.2830 54.55 

std deviation 0.5320 0.2243 0.3507 0.2944 0.1577 11.68 

 
Table 6. P-Values for the fit of the CAPM with autocorrelated t errors to the SRA data. 

check classical ppp partial-ppp 

Lag 1 Corr. 0.5698 0.4908 0.1288 

Equal Var 0.5523 0.4992 0.3982 

Normality 0.5161 0.4373 0.3820 

 

 
(a)                                                          (b) 

Figure 6. Histogram and normal Q-Q plot of Bayesian residuals for the CAPM with corrrelated t errors. 

 
include the use of (standardized) observed residuals and (standardized) realized 
residuals as discrepancy statistics. The Bayesian residuals can be plotted to vi-
sualize possible violations of the model assumptions. Posterior probabilities can 
be used to quantify the amount of discrepancy. Specific assessments in this study 
included checks of autocorrelated errors, heterogeneous variances, and non- 
normality. Such Bayesian diagnostic approaches would be suitable for other li-
near regression models and for general linear models that have correlated ob-
servations. 

These approaches for evaluating the model fit are demonstrated in Section 4 
for a series of return data from a particular stock in the pharmaceutical industry. 
Serial correlation is detected in the fit of the CAPM. From Table 3, the incorpo-
ration of the first-order autocorrelation has a strong effect on the posterior esti-
mate of the intercept and reduces the posterior variances associated with the es-
timates. The posterior estimate of −0.32 indicates a relatively strong autocorrela-
tion. According to DIC and squared error loss, this model seems to provide a 
good fit. However, the Bayesian residuals indicate that for many observations 
there is large discrepancy between the data and the model fit. There are enough 
of these large discrepancy values for both residual plots and p-values to indicate 
problems with the normality assumption. If the objective is to have a suitable 
model for all stock returns, then the t likelihood can be used to model the ex-
treme observations by increasing the model variability. The posterior estimates 
in Table 5 are roughly in between those in Table 1 and those in Table 3. 
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