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1. Introduction

Recently there are increasing interests on fractional differential equations due to
their wide applications in viscoelasticity, dynamics of particles, economic and
science et al. For more details we refer to [1] [2].

Many evolution equations can be rewritten as an abstract Cauchy problem,
and then they can be studied in an unified way. For example, a heat equation
with different initial data or boundary conditions can be written as a first order
Cauchy problem, in which the governing operator generates a C;-semigroup,
and then the solution is given by the operation of this semigroup on the initial
data. See for instance [3] [4]. Priiss [5] developed the theory of solution opera-
tors to research some abstract Volterra integral equations and it was Bajlekova
[6] who first use solution operators to discuss the fractional abstract Cauchy
problems. If the coefficient operator of a fractional abstract Cauchy problem ge-
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nerates a (-semigroup, we can invoke an operator described by the
CGy-semigroup and a probability density function to solve this problem, for more
details we refer to [7] [8] [9]. The vector-valued Laplace transform developed in
[3] is an important tool in the theory of fractional differential equations.

There are some papers devoted to the fractional differential equations in many
different respects: the connection between solutions of fractional Cauchy problems
and Cauchy problems of first order [10]; the existence of solution of several
kinds of fractional equations [11] [12]; the Holder regularity for a class of
fractional equations [13] [14]; the maximal LP regularity for fractional order
equations [6]; the boundary regularity for the fractional heat equation [15];
the relation of continuous regularity for fractional order equations with
semi-variations [12]. In this paper we are mainly interested in the Holder
regularity for abstract Cauchy problems of fractional order.

Pazy [4] considered the regularity for the abstract Cauchy problem of first
order:

u'(t)y=Au(t)+ f(t), te[0,T]

10 =x, (1.1)

where A is the infinitesimal generator of an analytic (-semigroup. He showed
that if f e LP[0,T] for some 1< p<oo, then u(t) is Holder continuous with

-1
exponent in [¢,T]; if moreover X e D(A), then u is Holder continuous

with the same exponent in [0,T]. If in addition fis Holder continuous, then

Pazy showed that there are some further regularity of Au(t) and Z—l: Li [16]

gave similar results for fractional differential equations with order « €(1,2).In
this paper we will extend their results to fractional Cauchy problems with order
in (0,1).

Our paper is organized as follows. In Section 2 there are some preliminaries
on fractional derivatives, fractional Cauchy problems and fractional resolvent
families. In Section 3 we give the regularity of the mild solution under the
condition that f e L°([0,T], X). And some further continuity results are given

in Section 4.

2. Preliminaries

Let A be a closed densely defined linear operator on a Banach space X. In this
paper we consider the following equation:
Dfu(t) = Au(t)+ f(t), te(0,T]

u(0) = x, @D

where u and f are X-valued functions, O<a <1, and D is the Caputo
fractional derivative defined by

DI f (1) = [0, , (t—5) f(s)ds,
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in which for « >0,

ta—l

—) t>0
9.(t) =1 T(a) ,

0, t<0

and g,(t) is understood as the Dirac measure o at 0. The convolution of two

functions fand gis defined by
(F*g)=[,Ft-9)g(s)ds = [T (s)g(t-5)ds

when the above integrals exist.

The classical (or strong) solution to (2.1) is defined as:

Definition 2.1. If O<a <1, ueC([0,T], X) is called a solution of (2.1) if

1) ueC([0,T],D(A)).

2) (9, *(U=%))(®) €C([0,T], X).

3) u satisfies (2.1) on [0,T].

By integration (2.1) for a-times, we are able to define a kind of weak solutions.

Definition 2.2. If O0<a <1, ueC([0,T],X) is called a mild solution of
(2.1)if (g, *u)(t)e D(A) forevery te[0,T] and

u(t) =%, + A9, *u)(®) +(g, * £)().

And it is therefore natural to give the following definition of a-resolvent
family for the operator A.

Definition 2.3. A family {S,(t)}., = B(X) is called an a-resolvent family
for the operator A if the following conditions are satisfied:

1) S,()x:R, - X iscontinuous for every Xe X and S,(0)=1;

2) S,(t)D(A)cD(A) and AS_ (t)x=S,(t)Ax forall xe D(A) and t>0;

3) the resolvent equation

S, (X =X+ (g, *S,) () AX

holds for every x e D(A).
If there is an a-times resolvent family S, (t) for the operator A, then the
mild solution of (2.1) is given by the following lemma.
Lemma 2.4. [10] Let A generate an a-times resolvent family S, and let
f € ([0, T]; X). If(2.1) has a mild solution, then it is given by

U(t)=3a(t)xo+%(ga*8a*f)(t), {0,

For the strong solution of (2.1), we have

Lemma 2.5. [10] Let A generate an a-times resolvent family S, and let
X, €D(A), feC([0,7);X). If ac(0,1], then the following statements are
equivalent.

(a) (2.1) has a strong solution on [0,T].

(b) S, *f isdifferentiable on [0,T].

() 9,%3,* DO D(A) for t[0T] and A8, *S,*HO) is
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continuous on [0,T].

If in addition, the a-times resolvent family S, (t) admits an analytic extension
to some sector X, ,={leC:larg(1)|<@+7x/2}, and ||S,(t)] < Me™*" for
all teX,, ,,wewill then denoteitby Ae A“.

If Ae A”, then there exists constants G, @ and 6, such that 1% € p(A)
and

2R, A<~ (.2)
|A-ol
for each lew+ZX,  ,. The a-times resolvent family generated by A can be
given by
1
S, (t)=——| e"A“'R(1*,A)d1, t>0
0= [ (2°, A)

where

[={o+re @) p<r<oc}U{w+pe? | ¢|<7l2+5}

is oriented counter-clockwise. And the corresponding operators P, (t) are
defined by

1o
P (t)=—|e"R(A%,A)dA, t>0.
(0= “R(“.A)

Lemma 2.6. Let 0<a <1 and Ae A”. We have
(1) P,(t)eB(X) forevery t>0 and ||P,(t)||<Ce”(1+t“") for t>0;
(2) forevery xe X, P,(t)xeD(A) and || AP, (t)||<Ce”(1+t™") for t>0;
(3) S.(t)=—A(g,,*S,)t)=AP(t) for t>0, R(P"(t)) = D(A) for any
integer 1>0 and ||APO(t)[|<C e @+t ¢y for t>0,where k=0,1.
Proof (1) By the definition of P, (t) and (2.2),
1 Iﬂv Il—a
P (t)lls——|e*™.——|da
[EAGL ZHL piid
1 J' eRe() | c(i-o |17q +1)
r

<
2 |[A-w|

|dA]
e o L9AL ¢ 1941
2z T [A-w|* T |A-o|

Since

I eRe(lt) | di | < ijerute—rtsiné ﬂ+ j”ewteptcos¢pl—ad¢
el re o !

taking p =1/t , we can obtain that the above integral is bounded by

a-1
Zea}t Loce—rsinz? t adr + e(utta—lj';ecoswd¢ < Cewtta_l.
r

Analogously one can show the estimate

IeRe(/n) |d/1| sCe“".
r [1-o|

It thus follows the estimate for || P, (t) .
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(2) By the identity AR(4%, A)=A"R(1”, A)—1, we have
At a Mra a i M ra a
jre AR(A ,A)dz:jre A“R(A ,A)d/l—jre d/lzj're A“R(A%, A)d A,

since J-Fe/ud/l =0. Moreover,

Al"[dA]
M A*R(A%, A)d 1| < eRe(ﬂ)l—
IIIr ( )dA || Ir I

_ [eonl A1821
T il

< J gRe(an) |dA| +J‘ gRe() lo|ldA|

r r [A-w]|

<Ce”(t™ +1).

By the closedness of the operator A, the assertion of (2) follows.

(3) By the proof of (2) and the closedness of A,

S/ (t)= jreM“Rw, AYdA = jre”ARw, AYdA = Ajre”R(z“, A)dA = AP, (t).

And the second part of (3) can be proved similarly. U

Remark 2.7. Similar results for « €(1,2) were given in [16]. It is obvious
that

P (t)=(9,4*S,)(t)
if 1<a<2 and
S, () =(9, *P)()

if O<a<l.

3. Regularity of the Mild Solutions

In this section we consider the mild solution of (2.1) with 0<a <1. Suppose
that the operator A generates an analytic a-resolvent family, then by Lemma 2.4

and Remark 2.7 the mild solution of (2.1) is given by
u(t) =S, 0% + (R, * £)(1). 3.1)
Theorem 3.1. Let O<a<1l, Ae A%, and f eL’([0,T],X) with p>1/c.
Then for every %,€ X and ¢>0, u eCai%([e,T], X), where u(t) is given
by (3.1). If moreover X, e D(A") such that na 21, then ue Ca%([O,T], X).

1

Proof. Since S (t) is analytic, we only need to show that (P, * f)(t) € Caﬁp .
Let h>0 and te[0,T —h], then
(P, = f)(t+h)—(P, * f)(t)
- j:hpa (t+h-s)f(s)ds— [P, (t—s)f (s)ds
= jt”“Pa (t+h=s)f(s)ds+ [ (P, (t+h-5)—P,(t-5))f (s)ds
=1, +1,.

By Holder’s inequality and Lemma 2.6,
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P Pl
A< 1L (1P, @+ h—s) [P ds) P
N p(a-1) -1
<Cl LIS ** ds) ?
pa-1

=ClIfll,h°*

We remark that the constant Chere and in the sequel may be vary line by line,
but not depending on #and A. Next, we estimate I,.For h>0, te[0,T], first
assume that t>h,

Il ||=|If;(Pa(Hh—S)—Pa(t—S))f(S)dS |
SI;II P (s+h) =P, (S)[I-|l f(t—s)[lds

N p o pd
<[[ AP, (s+M)I[+IIP,(s) )P ds] P - 1| F I,
¢ b P
+[], (1P, (s+h)=P,(s)[D"ds] * -l £ I,
p-1 P p-1
<CJl f I, L], @s" -1)'° ] * +[[ (hs“?)"rds] * }
pa-l t ap1l (a=2)p P
<C| fll,[h P +([th™* 7z Pt dr) P ]
apt @2 pa
<C| fll,h P [1+(z " dr) "]
apt
<Cllfl,h",
since @<—l;if O<t<h,then
p_

11, 11=1[X(P, (s + h) =P, () f (t—s)ds |
<[P, (s+) [+, () DIl f (t—3) | ds

apt
from which it follows also that [|I,[|<C|[f |, h ®
If X, D(A") with na>1, then by [[10], Lemma 4.5] we have that S_(t)X,
is differentiable and thus Lipschitz continuous. O
If we put more conditions on f (t), the regularity of u(t) can be raised.
Proposition 3.2. Let O<a<l, AeA® and fel®(0,T],X) with
1< p<ow. Forevery €>0, we define the function y_(t) by
t—e f t f S
V=] s

1
1-=
If lim_,y (t)=w(t) exists, then for every x,e X, ueC P([¢,T]: X). If
1
1-—
moreover X,=0,then ueC P([0,T]: X).
Proof If f(t) satisfies the assumption, by [[17], Theorem 13.2] there exists a
function F eL"([0,T],X) suchthat f(t)=(g, ,*F)(t). Thus
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(B, £)(®) = (R, * 9., *F)(t) = (S, * F)(®)-
Since S, (t) is analytic and bounded, F(t)eL"([0,T], X). It is easy to see

1
that (S, * F)(t) is Holder continuous with index 1-—. This completes the
p

proof. U

4. Regularity of the Classical Solutions

Motivated by the results in [18] for the C-semigroups, we first give the
following proposition.
Proposition 4.1. Let O0<a <1l and 0< fB<1. Assume Ac A”, x,eD(A)
and f eC”([0,T],X). Then the mild solution of (2.1) is the classical solution.
Proof. By Lemma 2.5 we only need to show that (P, * f)(t) e D(A) for every
te[0,T) and A(P, = f)(t) iscontinuouson [0,T).We decompose (P, * f)(t)

into two parts:
(P, * 1)) =[P, (t-5)f(s)ds
= [P,(t-9)f (O)ds + [P, (t—s)(F (s) - f ()
=1, +1,,
where
I, = [P, (t-s)dsf (t)

=(9,*R)M (1)
=(9, *S,)OF®

belongs to D(A) and is continuous. To prove that |, € D(A), we define the

following functions:
v(®) = [P, (t-)(f (5) - f (t))ds
and
v.(0) =], P, (t-s)(f(s)- f (t))ds

for €>0 small enough. It is clear that v_(t) > Vv(t) as € — 0". Moreover.
P.(t=s)[f(s)- f (O] D(A)

for all 0<s<t—e, it follows from the fact that for a fix te[0,T] the map
s> AP, (t—s)[f(s)— f(t)] isa continuous mapping, we conclude that

A[P (- 9)[f(s) - f(Ods= [ AP, (t-s)[f ()~ T ()]ds.
By our assumption and Lemma 2.6 there exists a constant C >0 such that
I AP, (t=s)[f(s)- f(OII<Clt-s|™

consequently, the function s+ AP, (t—s)[f(s)— f(t)] is integrable. Hence by

the closedness of A we obtain that

V(D) = [P, (t-9)(f(s) -  (t))ds  D(A).
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The continuity of the function t+> A(P, * f)(t) follows directly from the
fact

A(P, = f)(t) = J.;APa (t—s)(f(s)— f(t))ds+S,(t)f(t)— f(t).
This completes the proof. U
We will then give the regularity of such classical solutions.

Lemma 4.2. Let Ac A“ with O<a<l, and feCP([0,T],X) with
S €(0,1) . Define

I, =[P, (t=s)(f ()~ f ())ds.

Then forany t>0, |, e€D(A) and Al,eC”([0,T], X).
Proof For fixed te(0,T],since feC”([0,T],X) we have

| AP, (t—s)(f(s)— f (1)) |<C(t—s)"" e L'(0,t).

By the closedness of A, we obtain |, € D(A). Thus it remains to show that
Al,eC’([0,T],X) . For h>0 and te[0,T—h] we have the following

decomposition:
AL, (t+h) = AL, (1) = [ (AP, (t +h—s5) ~ AP, (t=$))(f(5) - f (1))ds
+[LAP, (t+h=s)(f (1)~ f (t+h))ds
+[ AP, (t+h—s)(f ()~ F(t+h)ds
=h, +h, +h,
Since f eC”([0,T],X) we have
Ihy ||£f;|| AP, (z+h)= AP, (@) |||l f(t—7) - f(t)|ld7
<[] ""AP (s)ds || " dr < C[ ([ s Pds)e  de
< CJ;(%—rlh)rﬂdr :Cﬁ%df
p

L hdr<cCh”.
7+h

—c thhfﬂfldHc N

07+
We can estimate h, as follows:
I, [1<I| AR, (t+h=s)(f (©) - f (t+m)ds |
<||["AP, (2)(f ()~ f (t+h)dz |

=[I[(g,* AR, )(t+h) — (g, * AR, )(MI(f (t) — f (t+h)) ||
=[[[(g, *AS,)(t+h)—(g, * AS,)(MI(f(t) - f(t+h)l
<[|S, (t+h)(f(t)— f(t+h))=S,(h)(f(t)—f(t+h)l
<M || f(t)— f(t+h) [ Mh”.

And it is easy to show that ||h,||[<Mh”. Combining all above we have
Al eC/([0,T]; X). O
The following theorem extends [[16], Theorem 4.4] to the case that 0<a <1.
Theorem 4.3. Let AcA* with O<a<l, feC’([0,T],X) with

DOI: 10.4236/jamp.2018.61030 317 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.61030

C.Y. Li, M. Li

0<pB<1l, X, €D(A), and u is the classical solution of (2.1). The following
assertions hold.

(1) Forevery ¢>0, AU, DfueC’([¢T], X).

(2) If moreover f(0)=0,then Au and D/u are continuouson [0,T].

(3)If x,=f(0)=0,then Au and DueC’([0,T], X).

Proof (1) If u is the classical solution of (2.1) on [0,T], then
u(t) =S, ()%, + (P, * f)(t) . It is only need to prove A(P, * f)(t) € C”([¢,T], X).

We decompose
(P, * £)(t) = [;P, (t=)(f (5)— f ®)ds+ [P, (t—s)f ()ds =1, +1,.
By Lemma 4.2, Al, e C#([0,T],X).Let h>0.If te[e,T —h], then
Al (t+h)— Al (t)
= ["AP, (t+h—s)f (t+h)ds [ AP, (t—5) f (t)ds
= ["AP, (5) f (t + h)ds— [{AP, (5) f (t)ds
= [ AP, (9)(f (t+h)~ f()ds + [ AP, () f ()ds
= A(g,* PO (t+ )~ F(0) + [ AR, (5) f (s
= A(g, *S,)O(F (t+h) - F@) + [ AP, (5) f (s
= (5, - D(f (t+h)— f @)+ [ AP, () f ()ds,
thus we have

IAL(t+h)—AL® [ <CIS, O~ [ +C[ s ds]| f ||.<Ch” +Eh
&

(2) We only need to show that Al, is continuous at t=0. Since f(0)=0
and f(t) iscontinuous,
IALO =11 A9, *P)O FOI<CIIS, - FOl<CI f(®)[ -0
as t—0.
(3) We show that Al, e C#([0,T], X). Indeed, this follows from
| Al (t+h)— AL )|l
<|[ ;AP (t+h—s)(f (t+h) f (t)ds+ [;AP, (t—s) f (t)ds |
<CIIA(G,*P)O 11+ ["AP, (5)(f (1) - f (©))ds |

t+h

<Ch’ + CJ'tHhs’ltﬂds <Ch” + CL s/ ds

=ch’ +C[ (t+s)"*ds<Ch’ + C[ s"“ds < Ch’.

5. Conclusion

In this paper, we proved the Holder regularity of the mild and strong solutions
to the a-order abstract Cauchy problem (2.1) with « €(0,1). Our results are
complemental to the existing results of Pazy [18] for the case o =1 and Li [16]
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for the case that o €(1,2).
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