
Journal of Software Engineering and Applications, 2018, 11, 28-68
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2018.111003 Jan. 30, 2018 28 Journal of Software Engineering and Applications

On the Dependability of Highly Heterogeneous
and Open Distributed Systems

Naftaly H. Minsky

Department of Computer Science, Rutgers University, New Brunswick, NJ, USA

Abstract
This paper introduces an architecture of distributed systems that facilitates the
implementation of a substantial range of dependable system properties, i.e.,
properties that span an entire system, or a set of components dispersed
throughout it. This architecture, called GDS, for governed distributed system,
governs the system by controlling the flow of messages between its actors, in-
dependently of the internals of the interacting actors. This governance is done
via an enforced collection of interaction laws organized into a modular and
conflict free hierarchical ensemble. This ensemble of laws is sensitive to the
history of interaction; and it is enforced in a decentralized manner, and is thus
scalable. The dependable system properties that can be implemented under
GDS can have the following beneficial consequences, among others: a) the
ability to establish regularities over the system, rendering it more coherent,
and easier to reason about; b) the ability to provide a degree of trust among
the disparate actor of the system; and c) the ability to ensure compliance with
interaction protocols that are essential for distributed computing. Consequently,
the GDS architecture can have a significant impact on the following important
system qualities: security, fault tolerance, auditability, and manageability.

Keywords
Open Distributed Systems, Governance, Dependability, System Properties,
Middleware, LGI, Fault Tolerance, Security

1. Introduction

Heterogeneous distributed systems suffer from considerable difficulties in estab-
lishing system properties in a dependable manner. By a “system property”, we
mean a property that spans an entire system S, or a set of actors1 dispersed

1We use the term “actor” for an autonomous process of computation, that may be driven by a soft-
ware component, by a physical device, or by a person operating via some computation interface.

How to cite this paper: Minsky, N.H.
(2018) On the Dependability of Highly
Heterogeneous and Open Distributed Sys-
tems. Journal of Software Engineering and
Applications, 11, 28-68.
https://doi.org/10.4236/jsea.2018.111003

Received: November 29, 2017
Accepted: January 27, 2018
Published: January 30, 2018

Copyright © 2018 by author and
ScientificResearch Publishing Inc.
This work is licensed under the
CreativeCommons Attribution
International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2018.111003
http://www.scirp.org
https://doi.org/10.4236/jsea.2018.111003
http://creativecommons.org/licenses/by/4.0/

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 29 Journal of Software Engineering and Applications

throughout it. Such a property may, for example, be: a) that certain types of
messages sent by any actor of S are logged for audit purposes; b) that if any actor
x of S gets a message “stop” from a system operator, x would stop communicat-
ing with all other actors of S, except for operators; and c) that all members of a
group of actors dispersed throughout S comply with a given interaction proto-
col—see detail of this example below.

And we consider a system property P of a system S to be dependable if it satis-
fies the following, broadly stated, conditions: 1) it is reasonably easy to verify
that P is satisfied by S; and 2) P is stable with respect to changes of the code of
S—that is, it is not likely to be violated by most changes of the code of various
system components, or by the unpredictable behavior of other kind of actors,
like people. The dependability of system properties are essential for important
qualities of a system, such as fault tolerance, security, auditability, and managea-
bility—which are key aspects of the dependability of a system as a whole [1].

The difficulties in establishing dependable system properties is particularly se-
rious in highly heterogeneous systems whose components may be written in dif-
ferent languages, may run on different platforms, and may be designed, con-
structed, and even maintained under different administrative domains. Such a
distributed system is often said to be open2 [2] [3]—because of a lack of effective
constraints on the organization of the system as a whole, and on the internals of
its disparate components. Many of the most critical societal systems and infra-
structures are at least partially open. These include grids, federated organizations
of various kinds, supply chains, and various systems-of-systems. Other systems
tend to become progressively open, as they grow in size and evolve. Moreover,
some systems are designed to be open, with the hope that this would make them
more flexible. The concept of service oriented architecture [4] (SOA) is a prom-
inent example of this trend, which is being adopted by a wide range of complex
distributed systems. The following example illustrates the difficulty in establish-
ing dependable system properties of heterogeneous and open systems.

Consider, for example, a system S that contains a distributed database, con-
sisting of a small number of database servers, which are being used by a large
and heterogeneous set of clients. And suppose that each client can maintain
locks over items on several database servers at a time. It is well known that a ne-
cessary condition for ensuring serializability—an important criterion of correct-
ness of concurrent transactions—is that every client observes the two-phase
locking (2PL) protocol [5], defined as follows:

The (2PL) protocol: Once a client releases one of its locks, it does not acquire
other locks until all its locks are released.

Now, suppose that one does not use a central lock manager for enforcing this
protocol, because it would be a single point of failure and a potential bottleneck.
The problem is, how can such a protocol be implemented dependently.

On the Conventional Approaches for Establishing Dependable System

2The term “open system”, as used here, has nothing to do with the concept of open source.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 30 Journal of Software Engineering and Applications

Properties in a Heterogeneous Distributed System: The seemingly natural
approach for establishing system properties—such as the 2PL protocol—is code
based. For example, to ensure that every potential client of a distributed database
observes the 2PL protocol, each of them is to be programmed to comply with it.
But doing so everywhere in an open system, is laborious, error prone, and hard
to verify—virtually impossible to verify in an open system. And even if this pro-
tocol is established correctly in this manner, it would not be dependable because
it can be violated by an inadvertent or malicious change in any component. Of
course, one can try to avoid this difficulty by providing all potential clients with
a stub designed to interact with the databases according to the 2PL protocol. But
how can one be sure that all clients use this stub, and that none of them modifies
it to gain some advantage? Moreover, the use of such a stub is problematic when
clients are programmed in different languages.

It has been suggested (see [4] for example) that one can rely on strong man-
agement and good software engineering practices to address these kinds of
problems. But while such, mostly human, disciplines are clearly necessary, they
cannot cope reliably with the complexities of a large open system—due to lack of
global knowledge of, and control over, the code of its component parts. We need
a more rigorous and more reliable solution for the problem of dependability of
highly heterogeneous distributed system.

Our Approach: The approach of this paper to the problem in question is
based on the following observation: If a system property of an open system is
based on the code of many of its actors it cannot be dependable without the
knowledge of, and the control over, all this code. But since such knowledge and
control of many actors of an open system is not generally available, we adopt
here a level of abstraction that ignores the internals of the actors—focusing on
the observable, messaging-based, interaction between them. And we provide
means for controlling the interaction between the actors of a system by specify-
ing a law about how messages should flow between its actors, and between them
and the outside world; and by enforcing this law via a suitable middleware.

We call such an enforced policy the fabric of the system, generally denoted
byF, as it can be made to establish important aspects of the underlying structure
of the system so governed3. A system governed by such a fabric is called a go-
verned distributed system, or GDS. As we shall see, the existence of a fabric
enables the dependable implementation of many useful system properties.
Moreover, although the fabric itself is oblivious of the behavior of all the actors
of a given system, it is able to establish dependable system properties that are
contingent on the knowledge of one or few actors (cf. Section 4.3.1).

It should be pointed out that controlling the flow of messages in order to go-
vern a distributed system is far from a new. It is what conventional access con-
trol (AC) mechanisms does, and it is behind the concept of “policy based sys-
tems”, and of other types of system architectures—as discussed briefly in Section

3We employ here one of the dictionary (the American Heritage) definitions of the term “fabric” as
“an underlying structure” of a complex system.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 31 Journal of Software Engineering and Applications

6. But these attempts at the governance of a distributed system, do not satisfy the
design principles of GDS stated in Section 2—which are necessary for the effec-
tive implementation of dependable system properties.

The Structure of this Paper: The rest of this paper is organized as follows:
Section 2 spells out our design principles of the GDS architecture; Section 3 is an
outline of a middleware that facilitates the fulfillment of these principles, and
which serves as a basis for GDS—this middleware, called LGI, has been pub-
lished widely, and is outlined here to make this paper reasonably self-contained;
Section 4 introduces the concept of GDS, and discusses its key properties, in-
cluding the means provided by GDS for establishing system properties dependa-
bly. This section also provides an example of a GDS, which is an outline of an
implemented case study of it; Section 5 discusses the potential impact of GDS on
various aspects of distributed systems—focusing on the fault tolerance at the ap-
plication level of distributed systems, and on their security; Section 6 discusses
related work; Section 7 lists several open problems, raised by the GDS architec-
ture, that need to be addressed for this architecture to attain its full potential;
Section 8 concludes this paper.

Finally, it should be pointed out that this paper provides only a proof of con-
cept for GDS, as its practical effectiveness is yet to be validated by its use for real
complex application—which requires industrial participation.

2. The Design Principles of GDS

We outline here some of the key properties we require a GDS to satisfy; they
pertain to the nature of the fabric of a GDS, and to the middleware used for en-
forcing it. Each of these requirements is followed by its rationale.

R1: The governance of a GDS should be sensitive to the history of inte-
raction—i.e., it should be stateful—and it should enable a degree of proac-
tive control. Statefulness is required, in particular, for establishing interaction
protocols, such as our example 2PL protocol. Proactive control is required for
ensuring a degree of liveness.

R2: The enforcement policies by the fabric of a GDS should be decentra-
lized and strict: Enforcement should be decentralized for the following reasons:
a) for scalability, which cannot be achieved with a centralized—even if repli-
cated—reference monitors, under highly stateful control (as shown in [6]); and
b) for preventing the enforcement mechanism itself from becoming a single
point of failure, and a central target for attacks.

And the enforcement of policies should be strict for the sake of dependability.
By strict enforcement we mean, for example, that messages prohibited by the fa-
bric should be blocked. (Note, however, that a policy established by the fabric
may itself be lax in various respects. For example, the fabric may allow some
undesirable messages to be transferred, requiring only that they would be logged
for future disposition—such a lax provisions of a fabric should itself be strictly
enforced.)

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 32 Journal of Software Engineering and Applications

R3: The fabric of a GDS should be modular: Modularity of the fabric is re-
quired because a complex distributed system, such as one that supports a fede-
rated enterprise or a grid, cannot be governed effectively via a singleton mono-
lithic policy. Rather, its governance is likely to require a whole ensemble of
semi-independent policies, which we call laws. For example, consider a system
that is partitioned into several semi-independent divisions, belonging to differ-
ent administrative domains. Such a system, as a whole, needs to be governed by
a global law. But each of its divisions is likely to be governed by its own law,
while conforming to the global law of the system at large. Moreover, a set of ac-
tors dispersed throughout such a system, possibly crosscutting through several
of its divisions, may have to interact with each other subject to some coordina-
tion law. There may be many such crosscutting laws in the fabric of a system,
and all of them must conform to its global law. Furthermore, the various laws
that collectively govern a given system may be defined by different stakeholders,
with little or no coordination which each other—and these stakeholders may
themselves belong to different administrative domains.

By modularity of the fabric F that consists of such a collection of laws we
mean, in particular, that F should be free from inconsistencies between the laws
it consist of. This would facilitate the incremental construction of the fabric by
different stakeholder, and would make the fabric simpler, and easier to reason
about.

R4: The evolution of the fabric of a GDS should be controllable: This is
required because a haphazard change of the fabric might have a damaging effect
on the system it governs. So, we need the ability to regulate who can change the
fabric, in which manner, and under which circumstances.

3. On the Middleware Used by the GDS Architecture

The GDS architecture requires a suitable middleware for formulating the policies
of the fabric and for enforcing them. We have chosen for this purpose a mid-
dleware called law governed interaction (LGI), mostly because it satisfies re-
quirements R1 and R2 above, and it helps in satisfying requirements R3 and R4.
We outline here the structure of this middleware and some of its key properties,
to make this paper reasonably self contained. This section can be skipped by a
reader who is familiar with LGI.

Although LGI is broadly related to the concept of system-centric access con-
trol (AC)—exemplified by RBAC [7], Ponder [8] and XACML [9]—it is very
different from it both structurally and functionally. Due to the unusual nature of
LGI, its outline here may not be sufficient to convince the reader of the veracity
of our claims about it. But LGI has been published widely and some of these
publications are cited in due course. The manual of LGI may also be useful in
this respect. In fact, what is discussed in this section is a basic version of LGI that
has been designed for systems that are simple enough to be governed by a single
law. A major enhancement of this middleware that has been developed for com-

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 33 Journal of Software Engineering and Applications

plex systems is described in Section 4.
The rest of this section is organized as follows: Section 3.1 describe the gist of

the LGI middleware; Section 3.2 describes the concept of LGI laws, which is re-
lated to, but very different from, the concept of policy under AC; Section 3.3 in-
troduce an example of an LGI law; Section 3.4 discusses the expressive power of
LGI; Section 3.5, outlines the concept of conformance hierarchy of laws, which
facilitates the modular organization of the fabric of a GDS, as stipulated by re-
quirement R3 in Section 2; and Section 3.6 discusses the trustworthiness of LGI,
and its performance.

3.1. The Gist of LGI

As pointed out above, we are dealing here with systems that are simple enough
to be governed by a single monolithic law. Such a law is denoted by , and the
system governed by it is called an -community, or simply a community. Now,
although the purpose of LGI is to govern the exchange of messages between the
disparate member of a given -community according to its law , it does not do
so directly. Rather, LGI controls the interactive activities of each actor c of an
-community C, subject to law . This control, over any given actor c, is strictly
local, in that it is independent of the coincidental activities and state of any other
actor.

This localization of control—which, as argued in sway does not reduce the
expressive power of LGI—is what enables its enforcement to be decentralized.
Broadly speaking, law enforcement is done as follows: For an actor c to belong to
an -community C it must interact with other members of C via a private con-
troller, denoted by cT  , which is trusted—for reasons to be discussed later—to
mediate the interactive activities of c, subject to law . cT  runs on a generic
controller designed to interpret and enforce any well formed law loaded into it.

cT  can maintain a state (sometime called control state) that represents some
function, determined by law , of the history of the interaction of c with the rest
of the system. The formation of this state is regulated by law , and the ruling of
the law for an interactive event that occurs at cT  can take its local state into
account. (Note that there is no limit on the size of the state of a controller, which
is not a finite state machine.)

The pair , cc T  is called an -agent, or simply and agent, which is said to
be animated by the actor c. (We often denote an agent such as above by the
name c of its actor, expecting the potential ambiguity to be resolved by the con-
text.) Figure 1 depicts the manner in which two such agents exchange a mes-
sage. (An agent is depicted here by a dashed oval that includes an actor c and its
controller, which generally reside away from its the actor that animates it.) Note
the dual nature of control exhibited here: the transfer of a message is first me-
diated by the sender’s controller, and then by the controller of the receiv-
er—both of which operating under the same law, but they are likely to have dif-
ferent states due to their different history of interaction.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 34 Journal of Software Engineering and Applications

Figure 1.Interaction between a pair of LGI-agents, mediated by a pair of controllersunder
possibly different laws.

A key property of LGI-based communication is that a pair of -agents can rec-

ognize each other as such. And since laws are strictly enforced under LGI, it fol-
lows that the members of an -community can trust each other to observe the
same law. (Note that this property will be generalized under GDS, which enables
agents operating under different laws to interoperate, as we show in Section
4.3.6.)

3.2. On the nature of LGI’s Laws

The function of a law  under LGI is to decide what should be done in response
to the occurrence of certain events at any -agent x. This decision is called the
ruling of the law for the event e that triggered it. More specifically, a law  that
governs an agent x is defined in terms of the three elements E, Sx, and O outlined
below (see [10]).

1) The set E of regulated events: This is the set of events that may occur at any
agent x, and whose disposition is subject to the law under which x operates. E
contains the following three types of events, among others: a) the arrived event,
which represents the arrival, at the controller of x, of a message intended for its
actor; b) the sent event, which represents the arrival, at the controller of x, of a
message sent to anybody by its actor; and c) the adopted event, which signals the
moment of creation of the agent in question, by its actor adopting a controller
with a given law.

2) The control-state Sx of agent x: The control-state (or simply “state”) Sx of an
agent x, is maintained by its controller. This state is initially empty, but it can
change dynamically in response to the various events that occur at x, subject to
the law under which this agent operates.

3) The set O of control operations: These are the operations that can be in-
cluded in the rulings of the law at any agent x.

We are now in a position to give a more formal definition of the concept of
law, as follows:

*: x xE S S O× → ×

In other words, for any given (e, Sx) pair, the law mandates a new state (which
may imply an arbitrary state change), as well as a (possibly empty) sequence of
control operations that are to be carried out atomically in response to the occur-
rence of event e in the presence of state Sx.

Discussion: Several aspects of this concept of law are worth pointing out here.
1) Note the interplay between the fixed law, and the dynamically changing

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 35 Journal of Software Engineering and Applications

state of a given agent. On one hand, the ruling of the law may depend on the
current state of the agent, on the other hand the evolution of the state is regu-
lated by the law—although it is driven by the various event that occur at that agent.

2) Besides changing the state of the operating agent, the law can cause some
messages sent by its actor to be changed, rerouted, or blocked; and it can initiate
messages proactively. Moreover, the law can respond to various exceptions that
may occur at a given agent.

3) Note that this abstract definition of the concept of law does not specify a
language for writing laws (which we call a law-language). This is for several rea-
sons. First, despite the pragmatic importance of choosing an appropriate
law-language, this choice has no impact on the semantics of LGI, as long as the
chosen language is sufficiently powerful to specify all possible mappings of the
form defined above. Second, specifying in this paper the details of law-language
would complicate it, without shading much light on the subject matter. In fact,
the implemented LGI mechanism employs three different law-languages, which
are based on: a) the logic-programming language Prolog; b) Java; and c) Java-
Script—and another, safer, law-language is under consideration.

3.3. An Example of an LGI Law

The purpose of this section is to provide a taste of the nature of LGI laws. We do
this by introducing in details a simple law that establishes a somewhat contrived
coordination protocol, which illustrates some key characteristics of LGI. This
protocol, which we call ping-pong protocol, may be viewed as representing po-
lite conversation, as will become apparent below. For another example the read-
er is referred to [11], which introduces the 2PL law that implements the 2PL
protocol described in Section 1.

The ping-pong protocol is defined as follows: Consider a group G of actors
that interact with each other subject to this protocol. Members of this group can
exchange two kinds of messages: ping messages, used for posing questions, or
requests; and pong messages, used as a reply to previously received ping mes-
sages. Such exchange is subject to the following constraint: once a member x of
G sends a ping message to another member y ofG, x would not be able to send
other pings to y until it gets a reply from y in the form of a pong messages. And
y can send only one pong message to x for every ping it gets from it. (The sense
in which such exchange may be considered polite is fairly self evident.)

Figure 2 displays a law PP that establishes this protocol over the group G of
actors that chose to operate under it. This law is written in the Prolog-based
law-language, which can be understood, roughly, as a set of event-condition-action
(ECA) rules. Since some readers may not be familiar with Prolog, and with this
law-language, we provide the following explanation for this law.

First, under this law the ping and pong messages are represented by ping(M)
and pong(M), respectively, where M is an arbitrary text. Also, this law uses two
kinds of terms in the control-state (CS) of every agent xin G, to facilitate the
control over its interaction with other agents: a) the term pinged to (y) is

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 36 Journal of Software Engineering and Applications

Figure 2.The ping-pong law PP.

intended to mean that x pinged y, and did not yet get a pong as a reply to it; and
(b) the term pinged form (y) is intended to mean that x got a ping from y, and
did not yet reply to it by a pong. We can now explain the effect of each of the
four rules of law PP, as follows.

By Rule R1 of this law, any agent x in G can send a ping to any y in G, pro-
vided that x does not have a term pinged to (y) in its CS. And the sending of a
ping to y would add the term v pinged to (y) to the CS x. When this ping arrives
at its destination y it would, by Rule R2, add the term pinged form (x) to the CS
of y, and the ping itself would be delivered to the actor ofy.

Now, by Rule R3, any agent x can send a pong to any y, provided that it does
have a term pinged form (y) in its CS. If this is the case, then this term would be
removed from its CS, and the pong would be forwarded. When this pong arrives
at its destination y it would, by Rule R4, remove the term pinged to (x) to the CS
of y, allowing y to send to x another ping, and the pong would be delivered to
the actor of y.

It should also be pointed out that an actor communication subject to law PP
can communicate only with actors that also communicate under the same law.
This is implicit in the structure of the law displayed in Figure 2, which is appar-
ent for anybody familiar with this law-language.

3.4. On the Expressive Power of the Local LGI Laws, and on Their
Global Sway

One may suspect that the decentralization of control under LGI, and its strictly
local laws, involves a reduction of its expressive power. But this is not the case, in
the following sense: Consider a centralized control mechanism (CCM) that me-
diated all the interaction between a given group of actors inG, thus having a
global view of the interaction between all the actors of the system. Suppose also
that CCM is stateful, in the sense that it can maintain an arbitrary function of
the entire history of the interaction between all the members of G. It turns out
that any policy that can be established by CCM can also be established under a
local LGI law. This has been shown in [12] (Section 4), simply by simulating any
given CCM-based policy, via a local LGI law.

Of course, this is a theoretical construction, which is not intended for practical
use. But, as we shall see in paragraph 2 below, similar constructions can be used

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 37 Journal of Software Engineering and Applications

for the implementation of global aggregate properties which are sometimes re-
quired in a given system.

On the Global Sway of Local LGI laws: We distinguish between two kinds of
global system properties, which we call regularities, and aggregate properties.
We define them below, and show how they can be established over a distributed
community.

1) By the term regularity we mean here compliance with a fixed principle4.
Formally, a regularity of a given -community C can be expressed as a univer-
sally quantified formula of the form ()x CP x∀ ∈ , where P(x) is a local property
of agent x of C—that is, P(x) is defined over the local state of x, along with an
event that occurred at it at a given moment in time. Such regularities are the di-
rect consequences of LGI, due to the fact that all members of an L-community
comply with the same law . An example of such regularity is the compliance
with the Ping-Pong protocol by all members of the PP-community.

2) By aggregate property we mean a property that depends on the state and
behavior of all members of the community in question, or on a substantial part
of its membership. As an example, consider an -community C whose members
should be able to issue purchase orders for any amount of money, provided that
the following aggregate property Q is satisfied: The total amount of money thus
paid by members of this community does not exceed the limit U. Obviously, this
property cannot be established directly by local constraints on the purchases of
each member of C. But this aggregate property can be established indirectly by a
strictly local LGI law, as follows.

Instead, of allowing every member of community C to issue a purchase order,
our law  would provide the power to do so to one actor—call it BO (for budget
office)—which is to do so on behalf of the other actors of C upon their request.
This can be done in the following way. Let law  of C have two different modes
of operations, depending upon the operating agent, as follows. First, when  re-
sides in a controller associated with any member c of C except BO,  operates as
follows: whenever c sends a purchase order to some vendorv, the law causes this
message to be rerouted to BO. Second, if  resides in a controller associated with
BO, it operates as follows: it forwards any purchase order it gets to its intended
destination, but only if the total amount of money spent resulting from this
purchase would not exceed U. (Basically, this is the way that most enterprises
operate.)

Note that law  described above is strictly local. It is true that implementing
our aggregate property require some centralization in BO, and some overhead.
But this is involved just with purchase orders. And as long as such orders con-
stitute a small fraction of the total volume of interactions among members of C,
such partial centralization is not likely to degrade substantially the efficiency and
the scalability of the community in question. There are, of course, other proper-
ties that require aggregation—such as the maintenance of unique naming, which

4See the American Heritage Dictionary.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 38 Journal of Software Engineering and Applications

we have implemented in [13]. But our experience with LGI suggests that the im-
plementation of most useful aggregate properties have only a marginal effect on
the efficiently and scalability of a community.

3.5. The Organization of Laws into a Conformance Hierarchy

LGI enables the organization of a set of laws that collectively governs a single
system, into a coherent ensemble called a conformance hierarchy. We denote
here such a hierarchy of laws by the symbol F, because it is used in this paper to
represent the fabric of a GDS (cf. Section 1). F is a tree of laws rooted by a law
called R, in which every law, except of R itself, conforms transitively to its su-
perior law, in a sense to be described below. Moreover the conformance relation
between laws in F is inherent in the manner in which F is constructed, requiring
no extra validation. For a formal definition of such hierarchy of laws, and a detailed
example of its use, see [6]; here we provide just an informal introduction of this
concept.

The Nature of Conformance of LGI-Laws: Several access control mechan-
isms [9] [14] defined conformance between policies basically as follows: policy
P′ conforms to policy P if and only if P′ is more restrictive than P, or equal to
it. But this would not do for LGI-laws, for several reasons, the most important of
which is the following. The ruling of an LGI-law is not confined to a decision
whether to approve or reject an action by an actor; it can also require some other
actions to be carried out in response to an event, such as changing the sender’s
state in a specified manner. And it is generally not meaningful to ask if one such
action is more or less restrictive than another. So, instead of using a uniform de-
finition of conformance, based on restrictiveness, LGI lets each law define what
it means for its subordinates to conform to it. This is done, broadly, as follows.

A law  that belongs to a conformance hierarchy F has two parts, called the
ground part and the meta part. The ground part of a law  imposes constraints
on the interactive behavior of the actors operating directly under this law—it has
the structure defined Section 3.2. The meta part of  circumscribes the extent to
which laws subordinate to it are allowed to deviate from its ground part. In par-
ticular, this allows a law, anywhere in this hierarchy, to make any of its provi-
sions irreversible by any of its subordinate laws, by not permitting any deviation
from it.

One application of such conformance is setting out defaults. For example, the
root law R may prohibit all interaction between actors, while enabling subordi-
nate laws to permit such interaction, perhaps under certain conditions. Alterna-
tively, law R may permit all interaction, while enabling subordinate laws to
prohibit selected interactions.

This very flexible concept of conformance is somewhat analogous to the
manner in which the federal law of the US circumscribes the freedom of state
laws to deviate from it.

The Formation of a Conformance Hierarchy of Laws: A conformance hie-
rarchy F is formed incrementally via a recursive process described informally

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 39 Journal of Software Engineering and Applications

below. First one creates the root law R of F. Second, given a law  already in F,
one defines a law ′ , subordinate to , by means of a law-like text called delta,
denoted by (), ′∆   , which specifies the intended differences between ′
and . Now, law ′ is derived from law  and (), ′∆   , essentially by dy-
namic consultation during the interpretation of ′ , as described broadly below.

Consider the special case involving the root law R, and its subordinate law s
derived from R by the delta (),R s′∆   . And consider an agent x operating
under law s. Now, when an event e occurs at an agentx, it is first submitted to
law R for evaluation. Law R may consult the delta (),R s′∆   of s before de-
ciding on its ruling—although it may also render its own ruling, not involving
the delta. If consulted, the delta will do its own evaluation of this event, and will
return its advice about the ruling in question to law R. R, in turn, would rend-
er its final ruling about how to respond to evente, taking the advice of the delta
into account—but not necessarily accepting it, because this advice might contra-
dict the meta part of R. In this way, the dynamically derived law s naturally
conforms to its superior law R, requiring no further verification.

A notable property of this organization of laws is that interacting agents op-
erating under laws in a common hierarchy can identify the position of each oth-
er’s laws within this hierarchy. This can be done because every law carries the
sequence of hashes of all the laws in the path from itself to the root R.

3.6. On the Implementation of Controllers, and on Their
Performance

We mention here briefly two different ways for controllers to be implemented.
One way is to have a trustworthy organization, called controller service (CoS),
whose business it is to rent the use of genuine controllers to its customers. Such
controllers would authenticity themselves by digital certificate signed by a certi-
fication authority of the CoS. The CoS would maintain a collection of servers
each of which will host a number (usually in the hundreds) of independent con-
trollers. Such a CoS could provide its controllers to arbitrary clients, or be dedi-
cated to a single organization, as will be the case in this paper (cf. Section 4.1).

There are other ways for implementing trusted controllers. For example actors
operating via their smart phones may have their private controllers built into
their phones. We have done that, experimentally, in [15], and one can make
such controller quite secure using a TPM-like technology, which on Android,
may be TrustZone [16]. Also, if one has a secure co-processor [17] attached to
one’s host, one can implement a controller on it.

Regarding performance: A comprehensive study of the overhead incurred by
LGI control had been published in [12]. Broadly speaking, this overhead turns
out to be relatively small, often smaller than the overhead incurred by control
mechanisms such as XACML—beside being scalable. Moreover, this overhead is
quite negligible for communication over WAN. The average contribution to this
overhead by the computation in a controller was found—in circa 2000—to be
around 50 microseconds. It is considerably lower with the present hardware.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 40 Journal of Software Engineering and Applications

4. The Concept of Governed Distributed System (GDS)

We start in Section 4.1 with a definition of the concept of GDS. Then we proceed
as follows: Section 4.2 illustrates this concept via an outlines of an implemented
example; and Section 4.3 introduces the main key aspects of GDS.5

4.1. The Definition of GDS

We define a GDS, denoted here byS, as a four-tuple

, , , ,Ac F Ag T

where Ac is a set of actors that belong to S—in a sense to be clarified later; F,
called the fabric of S, is a conformance hierarchy of LGI-laws that collectively
governs the flow of messages in S, while being oblivious of the internals of the
communicating actors; Ag is a set of LGI-agents formed by actors in Ac operat-
ing under laws in F; and T is a controller-service (CoS) which is assumed to be
maintained by the organization that manages S, and can be viewed as the trusted
computing base (TCB) [18] of S. In other words, T provides the set of
LGI-controllers that enforce the laws in F. We elaborate on these elements of
GDS, and on its overall architecture, in the following numbered paragraphs. We
then discuss the process of the construction of a GDS.

1) The set Ac of actors: This set consists of all the actors that communicate
subject to laws of the fabric F of S. We make here several comments about Ac.
First, although most of the actors in Ac are likely to be software components,
some of them may be people operating via their smart-phones, or such; and
some may be physical devices, like sensors and actuators. GDS treats all such
actors uniformly.

Second, a given member c of Ac may not belong exclusively to S, because we
generally cannot rule out the possibility that c may also operate as part of anoth-
er system, which may or may not be a GDS. This is because we adopt a level of
abstraction that ignores the internals of actors, which can be communicating in
arbitrary manner. From the viewpoint of a given system S, such communication
by its actors is called rogue communication, and the consequences of such
communication to the concept of GDS are discussed in Section 4.3.8. (Note: The
term “rogue” means here unprincipled, and not bad or dishonest; indeed, as we
shall see later, rogue communication is sometimes beneficial.)

And third, this architecture is silent on the membership of Ac, except that Ac
is assumed to contain one distinguished actor with a specified role. It is called
the fabric server (or, F-server for short), and its role is to maintain the fabric F of
this system. For more about the F-server see paragraph 3 below.

2) The fabric F: We make here two comments about F: First, due to the con-
formance nature of the hierarchical law ensemble F, its root law R has domi-
nion over all the laws in it. This dominion is absolute for any provision of R de-

5Note that we are using the term GDS in two related but different senses: a) as an architectural con-
cept, like in “GDS is particularly useful for open systems”; and as a system that satisfies this archi-
tecture, like in “a GDS Sserves a university grid...”.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 41 Journal of Software Engineering and Applications

fined as irreversible. Other provisions of R may be modified by subordinate
laws, subject to constraints imposed by R on deviations from it. In a sense,
then, law R governs, directly or indirectly, the entire fabric F, and thus, the en-
tire system S.

Second, although the laws in the fabric of a GDS are oblivious of the internals
of the actors operating under them, the designers of these laws may not be so
oblivious. A law designer may have some knowledge about the functionality of
certain actors, or make various assumptions about them, and thus design his law
accordingly. For example, the root law of our Acme example Section 4.2 is based
on some assumptions about a specific certification authority, and about the types
of certificates it signs.

3) The Reason and Consequences of Having the Entire Fabric F Main-
tained in a Single F-Server: The main reason, besides convenience, for main-
taining all the laws of the fabric F of a given GDS S in the F-server of S—which is
itself an actor of S—is for enabling effective control over the evolution of F, as
discussed in Section 4.3.3. But the central maintenance of F seems to raise the
following concerns: a) will this centralization reduce the scalability of GDS? b)
will the F-server be a single point of failure of a GDS? and c) will it make a GDS
more vulnerable to attacks? Fortunately, the answer to all these questions is neg-
ative, as we argue below.

First, the centralization of V has a negligible effect on the scalability of a GDS,
because the F-server does not participate in the dynamic control over commu-
nications—this is done by the controllers, operating subject to their local laws,
acquired from the F-server. The F-server is just a library of the laws in F, from
which individual actors acquire the laws under which they are to operate—and
this constitute a relatively infrequent access to the F-server.

Second, the fabric is likely to be modified relatively infrequently, which
enables the F-service to be easily replicated, and thus not be a single point of
failure. And third, the replicated F-service provides a good defense against at-
tacks. Because if we have at least three replicas, then an attack on one of them
can be discovered by frequent comparison of the one-way hashes of the various
replicas, replacing the compromised replica with a correct one.

4) The set Ag of F-agents: Let us first clarify some notations: An F-agent x is
an actor c that communicates subject to some law  in F. More formally, an
F-agents is a pair (cf. Section 3.1) , cc T  —namely, an actor c paired with the
controller it adopted, under some lawin F. And the messages sent by F-agents
are called F-messages. But if we want to be more specific about the law  under
which an agent operate we call it an -agent and its messages we call -messages.

Note that a single actor can animate several different F-agents, via different
controllers, operating subject to the same or different laws. This may be the case,
for example, when a single server provides several different services, possibly
subject to different laws. Therefore, it is the F-agents that are the loci of control
by the fabric of GDS, not the actors themselves, whose internals are not visible to
F. Also, a law can determine which actors may operate under it, in particular, by

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 42 Journal of Software Engineering and Applications

requiring actors to authenticate themselves in some way.
5) On the overall structure of a GDS: It is clear that a GDS-based system S

generally consists of several, perhaps many, communities each operating under
one of the laws of its fabricF. Different such communities may overlap, in the
sense that a single actor can animate agents operating under different laws—as
we have seen in (4) above—and thus belonging to different communities. Also,
as we shall see in Section 4.3.6, agents belonging to different communities may
be able to interoperate, if they are allowed to do so by the fabric.

A schematic depiction of a GDS is portrayed by Figure 3. The actors in Ac are
depicted within the dotted rectangle by irregular shaded figures, representing
their presumed heterogeneity, and the fact that the fabric F is oblivious to their
internals. The controllers belonging to T are depicted by rectangles, inside the
dotted oval that represents the CoS that maintains them; and note that these
controllers will be operating subject to various laws in F. Finally, the dark irre-
gular shapes on top of this figure depict actors, anywhere over the Internet, that
do not operate under laws in F, and thus do not belong to the system in ques-
tion; but F-agents may interact with them, if this is permitted by their laws.

The Construction of a GDS
We describe here the construction of a brand new GDS, which is quite
straightforward. We do not address in this paper the more complex issue of the
complete conversion of a legacy system into a GDS. However, an incremental
conversion can be carried out by means of the grafting of some aspects of GDS
into an otherwise conventional system—which is discussed here as well.

The Construction of a GDS from Scratch: The construction of a new system
Sas a GDS can be carried out in two consecutive steps: 1) the design and con-
struction of the foundation of S; and 2) the incremental construction of the rest
of it. The foundation of S consists of two distinct parts: a) the root law R of the
fabric F of S; and b) a set of actors, which are required for the definition of R.
One of these is the F-server, which maintains the fabric of the system; and there
may be other actors that may have to be included in the foundation.

Once the foundation of S is in place, the rest of it can be constructed incre-
mentally, via steps of two kinds: a) adding a law to F, subordinate to an existing
law in it; and b) having an actor adopt one of the existing laws in F, thus forming
a new F-agent—we do not discuss here the programming of the actors them-
selves. These two types of steps can be carried out by different stakeholders in
various orders, and perhaps concurrently. And recall that although each actor
selects the law in F—or several such laws—to operate under, a law may impose
constraints on the type of actors that may operate under it. In particular, law R
of Acme—our example-system—requires an actor that attempt to adopt it to
authenticate itself via a certificate signed by AcmeCA.

Note that the adoption of a given law in F by a given actor is a voluntary
act—it is not enforced by GDS architecture, nor is it enforceable. Yet, an actor

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 43 Journal of Software Engineering and Applications

Figure 3. A schematic depiction of a GDS.

may be virtually compelled to operate under a certain law in F if it needs some
services provided only under this law. For instance, if the databases of our 2PL
example in intro are written to accept only queries and updates sent under law
2PL, than anybody who wants to access this database would have to adopt this law.

Grafting Some Aspects of GDS into an Otherwise Conventional Distri-
buted System: One may not want to subject an entire distributed system to
GDS-type of governance; but just to incorporate some aspects of it into an oth-
erwise conventional system. In particular, to ensure that the members of a group
G of actors comply with a given protocol defined by a law , when involved in a
certain activity, one can have the members of G adopt this law, and operate sub-
ject to it when participating in this activity. This would create, what we have
called in Section 3 -community. For instance, the database servers and their
clients of the example in Section 1 would adopt law 2PL. There may be many
such governed communities in a given system, whose laws form a kind of frag-
mented fabric, which may be organized into several conformance hierarchies
that does not govern the entire system.

4.2. An Example of a GDS—Based on an Implemented Case Study

As a concrete view of a GDS, and particularly of its fabric, we provide here a

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 44 Journal of Software Engineering and Applications

simplified outline of a case study we have implemented. This case study simu-
lated a federated enterprise called Acme consisting of two semi-independent di-
visions D1 and D2, maintained under different administrative domains—along
with a federation division D0, maintained by the management of the federation
at large. D0 includes, in particular, the distinguished F-server, and a certification
authority called AcmeCA.

The fabric Fof Acme is a three level conformance hierarchy of laws, depicted
in Figure 4. The first level of this hierarchy—introduced in Section
4.2.1—consists of the root law R. The second level contains the laws of the three
divisions of the system, introduced in Section 4.2.2; as well as some crosscutting
laws that govern groups of actors whose members may belong to several divi-
sions. The placement in F of such crosscutting laws is discussed inin Section
4.3.7. The third level, introduced inin Section 4.2.3, is a collection of laws under
which various individual actor may operate.

All these laws are described here informally, and they reflect only part of the
laws used in our case study. Note that all but the root law are represented by
their deltas6, which specify the differences between the law in question and its
superior law. To see how such laws are actually written see [6] where a fairly so-
phisticated hierarchical ensemble of laws is introduced in detail. Here are some
comments about our informal description of F.

We employ the following convention about the meta part of any given law 
in the hierarchy: a) if  has a rule that addresses a certain aspect of interactive
activity of an actor subject to it—such as the sending of a certain type of mes-
sages—then this rule is irreversible, i.e., it cannot be deviated from by subordi-
nate laws of , unless such deviation is explicitly permitted by the meta part of 
(such permissions are denoted by bracketed texts in bold italics); and b) if  is
silent about certain aspect of interaction, then subordinate laws have the free-
dom of legislation about it. (This does not reflect the entire richness of the con-
cept of conformance, but it will do for this example.)

4.2.1. The Root Law
As has already been pointed out, the root law R is the global law of the system,
in the sense that all its provisions are shared by all the laws in F—modulo mod-
ification by subordinate laws, if such are permitted by R. The main role of R is
to establish broad system regularities and defaults. The following is the set of
rules that thus govern Acme, which should be viewed as a small sample of rules
that can be established by such a law. We elaborate on these rules, and motivate
them, in the discussion that follows them.

1) Authentication of actors: To adopt an LGI-controller under this law, thus
forming an F-agent, an actor c needs to authenticate itself via a certificate signed
by AcmeCA , which we assume to identify the following aspects of c: its unique
name, with respect to the Acme system; its role in the system; and the division to

6The concepts of delta, and of the meta part of a law (mentioned below) have been introduced in
Section 3.5.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 45 Journal of Software Engineering and Applications

Figure 4.A basic hierarchical law-ensemble for the acme system.

which it belongs. This authenticated attributes of actors is stored in the state of
their adopted controllers. [Subordinate laws may add conditions to this
rule,and may require additional operations to be carried out upon adoption,
but they cannot weaken this rule.]

2) Sender identification: Every message sent is to be concatenated with the
previously authenticated unique name, role, and division of its sender, with re-
spect to the Acme system.

3) Constraints over the interaction between F-agents: The following two
provisions are made by this rule: a) all inter-division interactions are prohibited,
[unless permitted by the corresponding subordinate division laws]; and b)
all intra-division interactions are permitted, [unless prohibited by the subor-
dinate division law in question];

4) Establishing an Audit trail of inter-division interactions: Every in-
ter-division message would be logged in a specified logging service, upon its ar-
rival.

5) Providing system operators with the power to control the system: An
F-agent that receives a message stop (pattern) sent by an operator—i.e., by an
agent, probably a person, that has a role of an operator—would lose the ability to
send or receive F-messages of the specified pattern; and if the pattern is “all”,
then it would lose the power to send and receive all F-messages.

Discussion: The following is an elaboration on these rules, which provides
some clarification and motivation for them.

R-auth provides Acme with a degree of control over which actors can operate
as F-agents. This provision is irreversible, governing all F-agents, although it can
be tightened by subordinate laws, as it is by law D1, below. Also, note that
maintaining the certified attributes of each actor in the state of its controller fa-
cilitates the enforcement of other rules of this law, such as Rules 2 and 3.

Rule 2 provides the receiver of a message with an official identifier of its send-
er. The identifier in question is more informative and more trustworthy than
identifying the sender by its IP address. This is because an IP address can be
spoofed; and even if not spoofed, it does not carry much meaning to the receiver.
Note that keeping this identifier in the state of every F-agent can be useful in
many ways. In particular it is used here for enforcing the constraints of Rule 3.

The closest thing to this measure in the literature is a single sign on (SSO)
mechanism [19]. But, while enabling identification, SSO does not ensure that it
always happens. Moreover, SSO is a centralized mechanism, with all the disad-

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 46 Journal of Software Engineering and Applications

vantages of centralization.
Rule 3 establishes two different types of access control provisions: Provision a)

prohibits all inter-division interaction, as a default, allowing subordinate divi-
sion laws to permit any such interactions, as described in Section 4.2.2. (Note the
unconventional nature of this type of conformance, where the subordinate divi-
sion laws can be more permissive than their superior law.) Provision b) is ana-
logous to a), with the opposite effect.

Rule 4 ensures dependable logging of all inter-division messages. Note that
this rule can be stated here despite the fact that Rule 3 of the same law prohibits
all inter-division messages—but if such an interaction would be permitted by the
subordinate division laws, it would be subject to this rule. This is just an example
of the ability of the fabric to establish dependable monitoring, and facilitate the
audit, of message flow.

Rule 5 enables system operators to prohibit any given F-agent from sending
messages that fit a specified pattern. Such prohibition with the patter “all” would
effectively remove the F-agent in question from a system by stopping all its
communication. This is just an example of how one can endow some F-agents
with a real power to control from a far what other F-agents can do.

4.2.2. Division Laws
A division law, say law 1D of division D1, is to be derived from the root law R
via a delta ()1,R D∆   . One can reasonably assume that the writer of this delta
has some idea of the intended structure of this division, and on the intended role
and function of certain of its F-agents. This delta can, then, be used to impose
this structure. For example, the delta of law 1D makes the following three
types of provisions.

1) Constraint on the Composition of D1: Given that Rule 1 of law R permits
its subordinate laws to add conditions on their adoption, this delta requires that
actors adopting law 1D would be authenticated as belonging to division D1.

2) Imposing Constraints over Intra-Division Interaction: Recall that all in-
tra-division interactions have been permitted by R, as a default, allowing subor-
dinates laws to impose arbitrary prohibitions on such interactions. So, this delta
can impose any desired prohibition on the interactions between F-agents be-
longing to D1.

3) Enabling Selected Inter-Division Interactions: Recall that inter-division in-
teractions are prohibited by law R, as a default, allowing subordinates laws to
permit them. Note, however, that for an interaction between two divisions, say
D1 and D2, to be enabled, it must be permitted by both 1D and 2D —this is
due to the local nature of our laws. For example, to permit a message from an
F-agent x1 in D1 to an F-agent x2 in D2, law 1D needs to permit x1 to send a
message to x2, and 2D needs to permit x2 to receive this message. Of course,
such a permission may be formulated so it applies to whole sets of interaction
types; thus, the laws of the two divisions can have rules resulting in enabling

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 47 Journal of Software Engineering and Applications

certain types of messages to be exchanged between a certain sets of pairs of
F-agents belonging to the two divisions.

4.2.3. Laws of Individual Agents
An actor c belonging to a certain division, may operate directly under the law of
that division. But there are sometimes reasons for c to operate under its own law
c—subordinate to its division. Some such reasons are discussed below.

Suppose that an actor c is a web server, and that it makes certain promises to
its clients about the services it provides. But such promises are not very credible
if they are just stated—on the website of c say—unless c is highly reputed. This is
particularly true in an open system, where the code of the service is not known
to its clients, and where this code can be changed without the client’s knowledge.
This inherent lack of trust is a serious and well known difficulty with services
over the Internet. However, promises that can be formulated in terms of message
exchange can be rendered trustworthy and dependable by formulating them as a
law, and then providing one’s services via a controller that enforces this law. The
clients of such a service can trust these law-based promises due to the existence
of L-trust (cf. Section 4.3.5), which has the following consequences: a) the prom-
ise can be verified by studying the law—which is likely to be much smaller and
simpler than the server’s code; and b) the law cannot be changed without the
client’s knowledge.

There are many examples of important promises that can be rendered trust-
worthy in this way, including such things as money back guarantees, the so
called service level agreements (SLAs), confidentiality, etc. And, as pointed out
before, a single actor may form different F-agents operating under laws that
make different types of such promises. Below we elaborate on one type of such
promises.

Server’s Promise Made during a Conversation: The interaction between a
server and its clients may involve a sequence of messages exchanged, according
to some predefined protocol—such interaction is known as conversation [20].
During such a conversation, the server may make various promises to the client.
For such promises to be dependable, they need to be enforced. For example,
suppose that our server is a travel agent that provides for the following kind of
conversation: A client x may request to reserve the right to buy a certain ticket at
a particular price p, within a grace period t. If the server agrees, it should sell that
ticket to x, if x pays for it within period t—which means, in particular, that the
server should not sell that ticket to anybody else within this time period. (Note
that an LGI law that enforces such a promise, in a different context, has been
described in [21].)

4.3. Key Aspects of GDS

We discuss in this section several key aspects of the GDS architecture, as follows:
1) the means provided by GDS for establishing system properties dependably; 2)
freedom from inconsistencies between the laws of a fabric; 3) regulating the

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 48 Journal of Software Engineering and Applications

evolution of the fabrics of a GDS; 4) perspective on the strict enforcement of the
laws; 5) law-based trust: a behavioral-trust modality induced by GDS; 6) flexible
interoperability; 7) the handling of crosscutting laws; 8) rogue communication,
and its limited effect on a GDS.

4.3.1. The Means Provided by GDS for Establishing System Properties
Dependably

The means provided by the GDS architecture for implementing dependable sys-
tem properties is to establish them via the fabric of the system. We call such a
property fabric-based, or an F-property; and we distinguish between perfect
F-properties and contingent ones, as stated below. After making this distinction
we discuss the sense in which such system properties can be considered de-
pendable.

Perfect and Contingent F-properties: A perfect F-property is one that is es-
tablished entirely by the fabric, making no assumptions about the behavior of
any of the actor in Ac. The root law of our Acme case study (cf. Section 4.2.1)
establishes several such properties. One of them, due to Rule 4, establishes the
logging of all inter-division messages. Another example of a perfect F-property is
the compliance with the 2PL protocol by all the clients of the databases that op-
erate under law 2PL.

A contingent F-property is one established by F, under the assumption that
one, or relatively few, actors satisfy a specified condition. One example of a con-
tingent F-property—established by Rule 2 in law R of Acme—is the identifica-
tion of the sender of any message, via its correct name with respect to Acme.
This property is satisfied only under the assumption that the certification au-
thority AcmeCA provides all members of Ac with their correct names in the
certificates it signs for them. Another example of a contingent F-property is that
the process of database-use by the 2PL-community is serializable. For this prop-
erty to be satisfied it is not sufficient for the clients of the database to operate
according to the 2PL protocol—which is a perfect F-property, as pointed out
above—one also needs to ensure that the few individual databases in question
satisfy the following conditions: a) that they serve only clients that operate sub-
ject to law 2PL; and b) that they deal correctly with requests to lock and unlock
database items.

On the Dependability of F-Properties: We have defined in intro the depen-
dability of a system property in terms of the ease of its verification, and in terms
of its stability. A perfect F-property satisfies this definition in the following
manner7:

1) Ease of verification: It is generally easier to verify a system property P if it is
a perfect F-property, than if it is implemented by the code of all or many system
actors. This is because F is likely to be orders of magnitude smaller than the code
of all system actors; and because of the lack of central knowledge of the code of
all actors.

7We admit that the following arguments about the dependability of F-properties are somewhat soft
perhaps necessarily so, because the very concept of dependability is soft.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 49 Journal of Software Engineering and Applications

2) Stability: Since F is oblivious of the code of the system, it follows that a per-
fect F-property P is invariant under changes of this code. Moreover, although an
F-property can be changed by changing F itself, the evolution of F can be regu-
lated (cf. Section 4.3.3). So one would be able to depend on P not to change ha-
phazardly during the evolutionary lifetime of the system. Moreover we expect
the evolution of F to be relatively slow.

These modes of dependability, justified above for perfect F-properties, can be
viewed as being approximately satisfied for contingent F-properties—and the
less one assumes about the code of actors, the better approximation it is. Hence-
forth we will refer, somewhat loosely, to F-properties as dependable, whether
they are perfect or contingent.

4.3.2. Freedom from Inconsistencies between the Laws of a Fabric
A system governed by a collection of laws, or policies, may suffer from inconsis-
tencies, particularly if these laws are formulated by different stakeholders. In-
deed, many access control mechanisms are plagued by the policy inconsistency
problem [9] [22]. The conventional remedy to this problem is to apply various
conflict resolution techniques for resolving such inconsistencies. But as has been
shown in [23], these techniques are generally cumbersome, not very effective,
and often lead to unexpected and undesirable results.

Fortunately, the fabric of a GDS is inherently free of inconsistencies. Indeed, a
given law  in a hierarchy F cannot be inconsistent with its superior laws, be-
cause it is forced by its construction, to conform to them. And two different laws
in F that do not reside on the same path from the root law, govern the interactive
activities of different agents; so they cannot, by definition, be inconsistent. This
inherent freedom from inconsistencies facilitates the construction and evolution
of the fabric of a GDS, and simplifies the reasoning about it.

Of course, consistency does not mean correctness. A fabric, and any of its
laws, can be wrong in a sense that it does not do what its writer, or writers, in-
tended. Dealing with the correctness problem—by reasoning about the fabric, or
by testing it—is beyond the scope of this paper. But, the fabric is expected to be
orders of magnitude smaller than the system it governs, so that informal rea-
soning about it may be sufficient.

4.3.3. Regulating the Evolution of the Fabrics of a GDS
Given the sway held by the fabric over the behavior of the system governed by it,
it is critically important to be able to regulate the process of evolution of the fa-
bric, in order to prevent careless and malicious changes to it. In particular, it can
be useful to control who can change which law of the fabricF, what kind of
changes can one make, and under which circumstances. For example, one may
want to require the consensus of several stakeholders for carrying certain
changes. Moreover, if several changes of F are to be made independently by dif-
ferent stakeholders then it may be necessary to establish a coordination protocol
between them.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 50 Journal of Software Engineering and Applications

This type of regulation can be done in the following way. As stated in Section
4.1, the fabric F of a given GDS is maintained in the F-server, which is itself an
actor of the system in question, and thus must operate subject to some law in
F—let this law be called FS. Now, since changes of F must be carried out by
means of messages sent to the F-server, and since these messages are governed
by F—directly by its own law FS—it follows that F can regulate its own evolu-
tion.

This self regulatory nature of the fabric is an essential property of the GDS
architecture. And it does not contradict the fundamental unpredictability of the
long term evolution of software systems. Because the law that regulate the evolu-
tion of the fabric can be designed so that it can itself be changed, presumably by
authorized stakeholders.

4.3.4. Perspective on the Strict Enforcement of Laws
Laws are strictly enforced by the LGI middleware, rather than having violations
of a law reported, with the expectation that a proper sanction for them would be
applied at some time in the future—as it is done, in particular by most mul-
ti-agent systems, such as OMNI [24]. This is because strict enforcement is essen-
tial for dependability. For example, if a message is considered harmful to its re-
cipient it should be blocked, rather than reported for future disposition—after
the harm was done. As another example, if the 2PL is not enforced strictly, then
the serializability property may be violated, and database clients may well enter
into a deadlock.

However, such report & sanction approach to law enforcement is sometime
necessary. In particular, because it is not always possible to determine locally the
legality or illegality of a single message, or the harm that a single message can
cause. For this, one may need to take into account past and future messages sent
by possibly several agents. This situation requires suspicious messages to be re-
ported, analyzed in the context of other information, and possibly responded to
via a relatively suitable sanction—even if this is done long after the offending
event happened. This is generally how most social laws are being enforced.

Fortunately such report & sanction approach to law enforcement can be easily
facilitated under GDS, with its strict enforcement of laws. This can be done
simply by writing lax laws, but enforcing them strictly. For example, instead of
blocking a potentially harmful message, or changing it in any way, a law can be
written to let this message pass, but to log it in some logging service. The strict
enforcement of such a lax provision would ensure that the logging is done, but
the disposition of such a log cannot be determined by the fabric alone.

4.3.5. Law-Based Trust: A Behavioral-Trust Modality Induced by GDS
There is, generally, little basis for trusting one’s interlocutor over the Internet to
behave in any particular manner—except for the relatively few actors with which
one is familiar, or which have high level of reputation. This is largely the case
also for the disparate actors that belong to an open distributed system. But a
GDS provides for a general and useful mode of such a trust—not between the

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 51 Journal of Software Engineering and Applications

actors themselves, but between the F-agents animated by such actors. This mode
of trust—called law-based trust, or L-trust for short—is defined as follows:

Definition 1 (L-trust) The members of a pair of communicating F-agents can
justifiably trust the observable—i.e., interactive—behavior of their interlocutor
to comply with the laws under which it operates, even if the actors that animate
these agents have no trust in each other.

Moreover, each of these agents can identify the law under which its interlocu-
tor operates, as well as the position of this law in the hierarchical structure of the
fabric.

This trust rests on the following properties of GDS: a) as part of their hand-
shake, the controllers of the interacting agents exchange the certificates signed
by the trusted CoS, which authenticate them as bona fide LGI controllers; b) the
controllers also exchange the sequence of one-way hashes that identify the laws
under which they operate, and the position of this law in the hierarchical struc-
ture of F; c) the law enforcement by controllers is strict.

Note that this mode of trust is fundamental to the GDS architecture as it faci-
litates some of its basic features—such as flexible interoperability, as discussed
below.

4.3.6. Flexible Interoperability
As pointed out in Section 4.1 (cf, paragraph 6), a GDS generally consists of sev-
eral communities operating under different laws, and some members of different
communities may need to interoperate, i.e., communicate with each other, de-
spite their different laws. We first discuss here how such interoperation is car-
ried out, comparing it to the manner in which interoperation is done under
access control. We will then comment about interoperation between the
F-agents of a given GDS, and actors outside of this system.

Interoperation between F-Agents Operating Under Different Laws: To put
interoperation in context, we start by reviewing how it is handled under conven-
tional access control (AC). This issue has been addressed frequently in the AC
literature [25]; generally using the composition approach, which can be de-
scribed as follows: Consider two parties operating under policies P1 and P2, re-
spectively. To enable them to interoperate without violating their respective pol-
icies, one composes these policies into a single policy P12, which is consistent
with both P1 and P2. The composition P12 is then to be fed into an appropriate
reference monitor, which would mediate the interaction between the two parties.
Unfortunately, composition of policies has several serious drawbacks (cf, [25]):
a) manual composition is laborious, and error prone; b) automatic composition
is computationally hard, and c) composition is often impossible because P1 and
P2 may actually be inconsistent. Moreover, as we have shown in [6], composi-
tion-based interoperation makes it very hard to establish multi-policy systems,
and it renders changes of their policies extremely inflexible.

Under GDS, on the other hand, interoperation does not require composition
of laws, and it is simpler and much more flexible. To see this, consider two

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 52 Journal of Software Engineering and Applications

F-agents x1 and x2, operating under laws 1 and 2, respectively. Due to the lo-
cality of LGI-laws, and the resulting dual mediation for every pairwise interac-
tion via two different controllers (as shown in Figure 1), there is no need to
compose 1 and 2 into a single law in order to enable x1 and x2 to interoperate.
Rather, each of this law may permit a degree of interoperation with the other.
They may, for example, allow the exchange of only certain types of messages,
under specified circumstances. Of course, each of these laws may need to know
the nature of the law that its interlocutor operates under. This is enabled by
L-trust. For example, consider two organizations, say CIA and FBI, each operat-
ing under its own law. But each of these laws can specify the type of interopera-
tion it permits with the other.

Moreover, since the two interacting laws belong to the same conformance
hierarchy F, it follows that they both conform to their lowest common ancestor
law in F; and, of course, all the laws in F conform to the root law R. If this
commonality between 1 and 2 is sufficient for them to interoperate then they
can do it seamlessly.

Interoperation between an F-Agent of a Given GDS, and its Outside: The
law  under which an F-agent x operates can permit it to communicate with any
actor z over the Internet; although  may impose some condition on such
communication. In particular,  may require z to authenticate itself in a certain
manner. Note that Figure 3 depicts interaction between an F-agent b and an ac-
tor u that does not belong to the GDS in question.

4.3.7. The Handling of Crosscutting Laws
The hierarchical structure of the fabric of a GDS has many advantages, but it
seems to rule out crosscutting laws, which are very important in many complex
applications. To explain what we mean by “crosscutting laws”, and the problem
they pose, consider a group G of actors that constitute a proper subset of the ac-
tors of Acme, and is dispersed throughout this system. For example, suppose
that some members of G belong to division D1 of Acme, while other belong to
division D2. Now suppose that members of G need to interact with each other
subject to some law C—we use C here for “crosscutting.” A concrete example of
a crosscutting law is 2PL, i.e., the law that established the 2PL protocol.

The problem is that there seems to be no place for defining this law as part of
the hierarchical fabric F of Acme. It cannot be incorporated into the root law R
of F, because C is not supposed to govern the entire system. It cannot be de-
fined as subordinate to either law D1 or law D2 because group G crosscuts
through both of them.

Fortunately, there is a simple resolution of this problem, which utilizes the
ability of any actor to operate, simultaneously, under several different
laws—provided that these laws agree to be adopted by the actor in question. In
particular, law C can be defined as subordinate directly to the root law R, just
as we have placed law 2PL in Figure 4. And if a member of group G wished to
operate subject to law C, it can do so even if it operates under D1, say—again,

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 53 Journal of Software Engineering and Applications

if law C accepts it.
Note that our crosscutting laws are analogous to aspects under aspect oriented

programming (AOP) [26]. Like aspects, our crosscutting laws deal with, what is
called, under AOP, “crosscutting concerns”. Although AOP has been designed
for non-distributed systems, it has been used occasionally for distributed system
as well [27]. But it is not very dependable there, particularly not for highly hete-
rogeneous systems, for obvious reasons.

4.3.8. Rogue Communication, and Its Limited Effect on a GDS
While the fabric of a GDS has complete control over the interactive activities of
its F-agents—i.e., of the messages sent and received by them—it does not, gener-
ally, control all the flow of messages in the system at hand. The reason for this is
that except in some circumstances (discussed below) the actors, whose internals
are not controlled by the fabric, can engage freely in “direct communication”
(via TCP/IP, say). In the context of a GDS, we call such communication rogue,
because it is not bound by the fabric of this system. Rogue communication may
be between actors that belong to the Ac, or between them and actors outside of
the GDS in question; Figure 3 depicts rogue communication by the dotted ar-
row from actor b of S to the external actor u.

Rogue communication by actors of a GDS is sometimes necessary, for exam-
ple when an actor that operates as part of a GDS, also provides services to others
over the Internet, in a manner not subject to any laws in F. But the possible exis-
tence of rogue communication limits—although in a minor extent, as we shall
see—the control that a fabric has over a GDS. Suppose, for example, that F
blocks all communication with a certain website w. This means that no F-agent
can communicate with w. But the code of an actor that animates an F-agent can
do so by rogue messaging, and thus can reveal some information that should not
be shared with w. This is, of course, a general problem, not specific to GDS or to
LGI. For example the access control imposed by the reference monitor of the
XACML mechanism [9] over the actors of an enterprise, does not really deter-
mine who can access whom, because actors can simply bypass this reference
monitor.

Yet, F-properties are not made any less dependable by rogue communication;
and as we shall demonstrate in Section 5 there is a wide range of F-properties
that can be established under GDS, regardless of any rogue communication that
may exist in the system—the 2PL protocol is a case in point.

Elimination of Rogue Communication: Sometimes one may want to elimi-
nate rogue communication altogether. This is possible when the system in ques-
tion is confined within an Intranet, or within a set of Intranets managed under a
single administrative domain. Under these conditions one can force all actors in
Ac—and the computers that host them—to communicate only as F-agents. This
can be done by controlling the network, or networks, in which these host oper-
ate. For example, such control has been exercised via the firewalls attached to
individual hosts, for the use of LGI to control the usage of distributed file sys-

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 54 Journal of Software Engineering and Applications

tems [28]. A more systematic way for doing so should be possible under Soft-
ware? Defined Networking (SDN) [29].

5. The Impact of GDS on the Dependability of Distributed Systems

The impact that the GDS architecture is expected to have on distributed systems,
and particularly on highly heterogeneous and open systems, is due to its ability
to establish dependable system properties. As explained in Section 4.3.1, such
properties can be established via the fabric of a given system—they are called
F-properties, and they can be either perfect, depending only on the structure of
the fabric itself; or contingent on the knowledge of the behaviour of a few actors.

There is a wide range of F-properties, which can be established under GDS,
contributing to important qualities of a system, including: coherence, auditabili-
ty, manageability, fault tolerance and security. We will start by illustrating briefly
how the first three of these qualities can be established, using examples from the
root law of the fabric of our Acme system described in Section 4.2.1. This is fol-
lowed by a more detailed discussion of the last two qualities, namely fault toler-
ance and security.

Coherence: In a sense, any regularity of a system, i.e., any property satisfied
everywhere in it, contributes to the coherence of the system and helps in rea-
soning about it. One example of such a regularity is provided by Rule 1, which
ensures that every actor x operating under fabric F authenticated itself in a speci-
fied manner. Also, L-trust—the trust modality provided under GDS—contributes
to coherence as it provides a degree of trust between the various agents of a
GDS.

Auditability: An example of auditability is provided by Rule 4, which estab-
lishes a dependable audit trail for inter-division interaction. This suggests the
potential for establishing a broad range of audit policies—but only regarding the
flow of messages in a system.

Manageability: An example of manageability is provided by Rule 5 which
empowers designated operators to control the interactive behavior of every sys-
tem agent. This, and the ability to monitor selected messages by rules such as
Rule 4, suggest how distributed systems can be managed (i.e., monitored and
controlled) at their application level. This, in an analogy to the manner in which
local networks are managed under SNMP, which cannot be applied to the appli-
cation level of systems.

5.1. Software Fault Tolerance (SFT)

Back in 1975 Brian Randell argued [30] that the traditional fault tolerance tech-
niques, designed, for what he called “hardware failures”, are not sufficient for
handling the many ways in which an application may fail—which are mostly due
to software failures, at the application level of a system. This paper gave rise to
what has come to be known as “software fault-tolerance”, or SFT. Considerable
research effort has been devoted to SFT, mostly, but not exclusively, for local

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 55 Journal of Software Engineering and Applications

(non-distributed) systems. See [31] for a survey. According to this research,
SFT-measures are to be established by incorporating failure-handling code
(henceforth “SFT-code”) into the code of the original software; which may have
to be done, systematically, in many parts of the system. Also, means have been
developed for doing so in distributed systems, including Argus [32] and Arjuna
[33].

Unfortunately, such code-based SFT technique are not available, or at least
not dependable, for open distributed systems, due to the lack of overall know-
ledge of, and control over, the code of the various system actors, some of which
may be humans. This leaves open distributed systems quite vulnerable to their
software failures.

Fortunately, as we demonstrate in this section, many useful SFT-measures can
be established, dependently, via F-properties. Moreover, besides being necessary
for open systems, such fabric-based SFT-measures can be preferable to conven-
tional code-based SFT-techniques for distributed systems in general. This, for
two main reasons: First, fabric-based SFT-measures would be more dependable
than measures based entirely on the code, as they are invariant under changes of
the code—or of most of it, in the case of contingent F-properties. Second, enact-
ing such measures would not complicate the code because the fabric is com-
pletely separate from it.

Of course, not all conventional SFT-measures—which can be established by
inserting suitable code into the various actors—can be implemented via the fa-
bric of a GDS. For example, a fabric cannot ensure orderly checkpointing by se-
lected components—an important basis for many conventional FT-measures.
However the use of GDS may encourage the development of more modular dis-
tributed systems, which may simplify the insertion of suitable SFT code.

We describe below a sample from the range of SFT-measures that can be es-
tablished via F-properties. Some of the measure discussed here are very simple,
others are more complex; some of them deal with fairly specific situations, oth-
ers are more broad spectrum. Also, all the SFT-type measures discussed here
have been implemented, and some were published, as cited below. This sample is
organized into the following complementary types: 1) prevention of failures; 2)
detection of failures, and containment of failing actors; 3) recovery from failures.
And note that we assume here that the LGI-controller used for enforcing the fa-
bric of the system do not fail. Our approach for tolerating the failures of con-
trollers is beyond the scope of this paper, and will be published separately.

5.1.1. Preventing Failures
Failures can sometimes be prevented by imposing a structure on a given system
that helps in avoiding situations that may lead to certain types of failures. Strictly
enforced access control—which blocks messages that can damage their receiv-
er—is one well known type of such failure prevention in distributed systems.
Here we discuss two example of such prevention, both of which are beyond the
scope of conventional access control. One involves disciplines that prevent coor-

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 56 Journal of Software Engineering and Applications

dination failures. And the other involves the regulation of system operators.
1) Preventing Coordination failures: Consider a group G of distributed ac-

tors who need to coordinate their activities, subject to a given protocolP. Such a
protocol may be required for an effective collaboration of the members of G to-
wards a common goal, or for their safe competition over some resources. There
is a host of such protocols devised for various purposes such as leader election,
mutual exclusion, the 2PL protocol (cf. Section 1), and many others. Such a
coordination may fail due to the failure of any member of G to follow the re-
quired protocol P. (In an analogy, consider what may happen if a car, approach-
ing an intersection between roads does not stop on a red light.)

The distributed systems literature, which designed many such protocols (see
[34], in particular) often assumes that all participant in a given coordination ac-
tivity abide voluntarily by the protocol designed for it. But such an assumption is
mostly unwarranted in open systems. Under GDS, however, if a protocol P can
be formulated in terms of message passing, it can often be established firmly as
an F-property of the system. This is done by expressing protocol P via a law P
of the fabric, which is to be employed by all members of group G for their coor-
dination activity. This is possible because LGI-laws are sensitive to the history of
interaction, and because they are proactive—that is, they can force some actions
to be carried out, via a mechanism of enforced obligation, thus ensuring a degree
of liveness. This is the way protocol 2PL can be established by law 2PL, as shown
in [11].

2) Preventing Failures Caused by Operator’s Errors: A careful study [35] of
failures of large systems reported that a large percentage of such failures is cause
by operator’s errors. One way for reducing the probability of occurrence of such
errors is to regulate the intervention of operators in the workings of a system,
which can be done by means of its fabric. For example, a fabric can impose con-
straints on what any given operator can do, and on the order that certain inter-
ventions can be carried out. Also, the fabric can impose some coordination pro-
tocol between several operators that manage a single large system. As an exam-
ple, the fabric can ensure that certain intervention in the system requires the ap-
proval of two or three operators. This can be done under GDS because the oper-
ators can be defined as actors of the system they are to manage. And both their
power to intervene in the working of the system, and the constraints on that
power, can be defined by the fabric of that system.

5.1.2. Detection of Failures, and Containment of Failing Actors
We start with some fairly broad spectrum techniques that are immediate under
GDS. And then describe a simple technique for facilitating the detection of halt-
ing failures.

1) An Immediate and Broad Spectrum Technique for Detection and Con-
tainment of Failures: Faulty messages—those that violate normative commu-
nication as defined by the fabric F—can be blocked by F. This would protect
system actors from receiving faulty, and perhaps damaging, messages. But the

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 57 Journal of Software Engineering and Applications

sender x of a faulty message may, or may not, be dangerous in any other sense.
To help in identifying dangerous actors that need to be removed from the sys-
tem, the fabric may be written to log all suspicious messages. Such a log can be
analyzed, and if x is determined by this analysis to be dangerous in some sense, it
can be prevented from sending or receiving F-messages, and thus be effectively
isolated from the system. Such isolation can be done by some manager, who ob-
tained its power to do so from the fabric, in a manner exemplified by Rule 5 in
Section 4.2.1.

2) Facilitating the Detection of Halting Failures, by Forced Heartbeat: We
deal here with a situation where an actor—which may be a host, or some process
running on one—halts prematurely. A well known way to detect such a failure of
a given actor x, is to have x send heartbeat messages in a specified frequency to a
designated monitor m. This would enable the monitor to conclude that x
failed—i.e. died or has been disconnected by a break in the network—if m did
not receive heartbeat messages from it for a while. The problem is how can the
monitor m distinguish between a dead actor, and one who just fails to send
heartbeat messages to it due to some bug.

This problem can be addressed, in many circumstances by establishing a de-
pendable heartbeat discipline, for any given set G of F-agents. This can be done
by having members of G operate subject to a law designed to send heartbeats in
the required frequency, as long as the controller of an F-agent feels that its actor
is alive, which it does under LGI.

5.1.3. Recovery from Failures
For a recovery mechanism to be truly useful it should exhibit degree of generali-
ty. That is, it should be able to handle a wide range Rof failures, by a possibly
heterogeneous set Q of actors. As argued by the author in [36], such a wide
spectrum recovery mechanism require the imposition of suitable regularities
over a given system, which would enable: a) the sensing of the behavior of all
members of Q; and b) exerting a degree of control over the failing actors in Q,
such as is necessary for the recovery of from all failures of type R. It is, of course,
hard to establish such regularities over the code of highly heterogeneous distri-
buted system. But some regularities over the flow of messages, which can be
helpful for recovery, can be established via the fabric of a GDS. For example, as
already pointed out, the power of an operator of the Acme system—provided by
Rule 5 in Section 4.2.1—to block the ability of an arbitrary F-agent to commu-
nicate, is useful for many types of recoveries. We discuss here three additional
examples of fabric-based regularities that can facilitate recovery from failures.

1) Recovery from Coordination Failures: Not all coordination failure can be
prevented by the technique discussed in Section 5.1.1. Therefore, we have im-
plemented [37] the concept coordinated atomic actions (CAA) [38], for hetero-
geneous and open distributed systems. CAA has been introduced by Randell for
local (not distributed) systems, as a means for recovery of a broad class of coor-

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 58 Journal of Software Engineering and Applications

dination failures. This influential [39] concept can be described, broadly, as fol-
lows: To engage in a given coordination activity, its participants “enter” a suita-
ble CAA, which is a kind of virtual box that can control the activities of actors in
it. The host CAA ensures the ACID property8 for this activity, and provides ei-
ther forward or backward recovery, if the activity fails. The original CAA me-
chanism has been extended to monolithic distributed systems [40]—where one
can ensure that all participants entering a given CAA adhere to its constraints,
by programming them accordingly. But ours is the first implementation of this
concept for highly heterogeneous and even open distributed systems.

2) Ensuring Fail-Stop Type of failures by F-agents: Fail-stop type of failure
is a failure where a processor halts, and never resumes its operations [41]. Such
failures are easiest to recover from. For example, a failed processor can be safely
replaced with an equivalent one, when one can be sure that the failed processor
will not resume its operations. And, as pointed out in [42], the well known state
machine approach to fault tolerance is more efficient and easier to carry out
when a failure is fail-stop. To facilitate fault tolerance, Schlichting and Schneider
[43] devised a fairly elaborate axiomatic program verification technique for im-
plementing processors that, with high probability, behave like fail-stop proces-
sors. But this technique has two limitations, from our viewpoint. First, it de-
pends on the code of the processor in question, and is, therefore, not applicable
to open systems. And second, this technique applies to processors, and not to
application-level processes, many of which can run on a single processor.

Fortunately, under GDS, we can easily force an apparent failure of any F-agent
to be a fail-stop failure; simply by blocking its ability to communicate, once it is
declared as a failed agent. This can be done in the following way, for example:
Suppose that the root law R of the GDS in question contains a rule such as Rule
5 of the Acme system, described in Section 4.2.1. This rule empowers operators
to block the ability of any agent to communicate, and thus removing it, effec-
tively from the system. Now anybody who decides that a given F-agent failed,
can send a request to an operator to remove it, in this sense, from the system.

It should be pointed out that a similar assurance of fail-stop failures can
probably be provided under SNMP, for the processors managed by it—although
we do not know if this was ever done under SNMP. Anyway, SNMP cannot deal
with the application-level concept of processes.

3) Collaborative Reconfiguration: Recovery from failures often involves re-
configuration of a system—which is also being used for system management in
general. Most current approaches to reconfiguration (see [44], for example) em-
ploy central manager, which is assumed to have sufficient knowledge of the sys-
tem, as well as sufficient power over it to carry out its task. But these conditions
are hard to satisfy, particularly in open systems. Indeed, for this reason and oth-
ers, there is a growing realization that reconfiguration often require collabora-
tion between distributed actors [45] [46] [47], rather than being managed cen-

8ACID stands for: Atomicity, Consistency, Isolation, Durability.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 59 Journal of Software Engineering and Applications

trally. And it is clear that collaborative reconfigurations requires its participants
to operate subject to a certain common protocol. Such a protocol can often be
established as an F-property.

For example, we have developed [48] a collaborative reconfiguration mechan-
ism for a token-ring protocol—which can, in particular, remove an agent from
the ring, or add a new agent to it, without having to stop the operation of the
ring, and without losing or duplicating the token.

5.2. Security

Dependable system properties are indispensable for the security of distributed
systems. Indeed, if there is a useful security measure to be employed, it is gener-
ally crucial for it to be employed all over the system—that is, it needs to be a
system property. And it is not useful security unless it is dependable. Some sim-
ple examples of such security enhancing properties is provided by the root law of
the Acme system. One such property is established by R-auth, which states that
every actor, operating under any law in F, authenticates itself in a specified
manner. Another example, established by Rule 2, provides the receiver of every
message with a trustworthy and meaningful identifier of its sender. The relev-
ance of these two simple F-properties to security is self evident. Below we will
describe briefly two, more intricate, examples of how security can be enhanced
under GDS.

5.2.1. Intrusion Detection and Prevention
The GDS architecture provides means for complementing the conventional
anomaly based intrusion detection [49] (IDS), with a specification-based IDS
that can detect intrusions on the fly, and can block some of them before they can
cause any damage to the system. This is doable under GDS because an important
part of the fabric is the specification of what are normative messages, with in-
structions to either block a message that deviates from the norm, or reports it for
future disposition, or both. Moreover, the fabric can enable the removal of the
sender of an illegal message form the system (cf. Rule 5 in Section 4.2.1).

But it should be stressed that such specification-based IDS is not a replace-
ment for the anomaly-based approach, but it is an effective complement for it,
particularly for exposing and blocking Trojan horses that attack the system from
inside.

It should also be pointed out the related work of Inverardi et al. [50] which,
like GDS, monitors the flow of message in a system in a decentralized manner,
blocking the non-normative ones. However, their mechanism has several serious
disadvantages. Chief among them is that its specification of normative message
flow, which is defined by a state machine, suffers from state explosion when the
number of components grows. Consequently, this mechanism is unscalable in
terms of its overhead and complexity—as was admitted by the authors of this
paper—and is very inflexible with respect to changes of what is normative,
which generally requires the construction of new state machine.

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 60 Journal of Software Engineering and Applications

5.2.2. The Case of Distributed Hash Table (DHT)
A DHT is a decentralized lookup service used, in particular, in a variety of P2P
applications such as file sharing. Unfortunately, DHT is very vulnerable to fail-
ures because its individual components are operated by the participants of the
mostly heterogeneous and open P2P application in question—and they cannot
all be trusted to comply with the underlying coordination protocol of the DHT.
Some of the resulting vulnerabilities of DHT where discussed in [51], along with
proposal for changes to the current DHT protocols to make them more secure.
But changing the protocols is often not sufficient as long as one cannot trust the
compliance with them.

However, the DHT protocol can be established more securely by the fabric
used to govern that P2P application in question. We have done so in [52] for one
of the protocols used by various versions of DHT—other such protocols can be
established by the fabric in a similar manner.

6. Related Work

In a sense, this work is related to reflection techniques in non-distributed sys-
tems, such as aspect oriented programming (AOP) [53] and others. But here we
review only works papers that attempt to govern distributed systems, in some
sense. We will discuss several types of such works, more or less in the increasing
order of their relevance to this paper.

1) Code-sensitive Governance of Distributed Systems: There is a host of
governance mechanisms that have some dependency on the internals of the
components of the system being governed. Some of them, like [54], require all
system components to be written in a given language, and to employ a common
programming discipline. Other efforts, like [26], apply AOP techniques to dis-
tributed systems by assuming that all system components use AOP in a coordi-
nated manner.

2) Governance Based on Access Control (AC): There are many real appli-
cations and research papers, such as [55], that control the flow of messages in a
system, via some kind of access control (AC) mechanism, such as XACML [9];
or RBAC [56] and its various generalizations, such as ABAC [57], and UCON
[58]. This is done—just as under GDS—without any assumptions about the code
of the interacting components. Some of these works identify their subject matter
by phrases such as “policy based framework”, “policy based systems”; and some,
like xESB [59], are design specifically for open SOA-based systems.

But none of these efforts satisfy the key requirements of GDS, as spelled out in
Section 2, because of some inherent limitations of the conventional AC tech-
niques they are based on—limitation that were discussed in [60]. Specifically,
conventional AC is not fully stateful, it is not decentralized, and it does not pro-
vides the means for creating a modular and conflict free analog of our fabric—as
discussed in Section 4.3.2. And none of the AC mechanisms, or of the system
based on them, even addresses the issue of evolution of their equivalent of our

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 61 Journal of Software Engineering and Applications

fabrics, and they certainly do not try to control such evolution. A rare exception,
regarding decentralization, is the use of distributed firewalls for regulating the
flow of messages between an enterprise and the rest of the Internet [22]. But the
expressive power of firewall policies is relatively weak, and there is no effective
analog of our conformance hierarchy for governing the set of firewalls that pro-
tects an enterprise.

It should be pointed out, however, that there are some—not entirely success-
ful—attempts made for addressing some of these limitations. First, two AC me-
chanisms [61] [62] are sensitive to the history of interaction, but they are centra-
lized, thus not really scalable, as shown in [60]. Second, [14] [55] organize their
policies into something akin to our conformance hierarchy of laws—which is the
basis of the modularity of our fabric. But they differ from ours conformance
hierarchy in several ways, in particular: a) the conformance provided by these
papers is not inherent to the structure of the hierarchy, but needs to be verified,
mostly manually; and b) like other AC mechanisms, they are not conflict free.

3) Norms-based multi agent systems: Much of the literature on multi-agents
systems (MAS) [2], and particularly on the type of MAS designed to support
electronic institutions [63], recognizes the need for such systems to be governed
by laws—called norms in this context. Many of these systems do not enforce
their norms, but expect them to be observed voluntarily by their members, ar-
guing that social systems—which constitute models for some of this work—do
not, and cannot, enforce all their norms. However, some MAS projects, such as
[24] [63] [64], do recognize the importance of enforcing norms. But they do so
not by preventing violation of stated norms, but by detecting such violations af-
ter they occurred, reporting them and executing suitable sanctions for them. As
we have explained in Section 4.3.4 strict enforcement of laws is essential for de-
pendability, which is why it is employed under GDS, and it enables report &
sanction treatment of violations with suitable formulation of the laws.

We are familiar with only one MAS project—AMELI [65]—that enforces its
norms by preventing their violation. AMELI regulates the activity of its agents
via a governor, in some analogy to the controllers of LGI—perhaps, without
knowledge of the much earlier publication of LGI. But unlike our controllers, the
governors are stateless, and there is no concept of a set of such governors oper-
ating under a common norm, forming a community. AMELI has also a concept
of a scene—somewhat analogous to our community—but the norm of a scene is
enforced centrally via a scene-manager.

4) Some assorted related works: Several related paper that do not fit into the
classification above are worth mentioning. First, our concept of fabric may be
viewed as a concrete realization of the concept of environments of multi-agent
systems, introduced in [66]. But while conceptually close to our approach, this
paper does not present a specific realization of their proposal. Second, an exten-
sive project on “law-governed systems”, led by Carlos Lucena [67] has many si-
milarities to our work on LGI—which inspired it—and to some of its applica-
tions, like this paper. However, this project does not satisfy some of the re-

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 62 Journal of Software Engineering and Applications

quirements of GDS because it uses non-local laws, which are enforced mostly in
centralized manner, as compared to our local laws, with their decentralized en-
forcement. We should also mention two papers that contribute to dependability
indirectly, doing so in very different manner than this paper. One of them [68]
provides “accountability” to open distributed systems, namely the ability to
detect faulty nodes, after they have failed. The second [69], provides a mechan-
ism for debugging distributed system.

7. Future Research

The GDS architecture presented in this paper raises some open issues that need
to be addressed for this architecture to attain its full potential. Three of these is-
sues are outlined below:

1) Converting a Legacy System into a GDS: Although the construction of a
GDS from scratch, as described in Section 4.1.1 is straightforward, the conver-
sion of a legacy system into a GDS is much more complex—and it would facili-
tate wide adoption of this architecture by the industry. The grafting some aspects
of GDS into an otherwise conventional system, discussed in Section 4.1.1, can be
used for carrying out such conversion incrementally. But this is probably not the
best way for converting a system as a whole, in one swoop.

2) Issues concerning the evolution of the fabric of a GDS: We have already
provided for the control of the evolution of the fabric of a GDS, as discussed in
Section 4.3.3. But there are additional issues involved with such evolution, which
have not been resolved yet. These include the following, in particular: 1) How to
carry out a change in a law  of F, given the possible dependency of  on
another law ′ —dependency that may be due to ‘being a subordinate to , or
due to an existing interoperation between actors subject to with actors operating
under ′ . And 2) how to change the fabric of a GDS while the system contin-
ues to operate. We have solved this problem for a community governed by a sin-
gle law [70], but doing so for a multi-law fabric presents a new challenge.

8. Conclusions

This paper introduces an architecture of distributed systems that facilitates the
implementation of a range of dependable system properties, i.e., properties that
span an entire system, or a set of components dispersed throughout it. This ar-
chitecture, called GDS for governed distribute system, governs the system by
controlling the flow of messages between its actors, independently of the internal
of the interacting actors. This governance is done via an enforced collection of
interaction laws organized into a modular and conflict free conformance hie-
rarchy, called the fabric of the system. The fabric is sensitive to the history of in-
teraction; and it is enforced in a decentralized manner, and thus scalable and
more secure than a centralized enforcement.

The dependable system properties that can be implemented under GDS can
have the following beneficial consequences: a) the ability to establish regularities
over the system, rendering it more coherent, and easier to reason about; b) the

https://doi.org/10.4236/jsea.2018.111003

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 63 Journal of Software Engineering and Applications

ability to provide a degree of trust among the disparate actors of the system; and
c) the ability to ensure compliance with coordination protocols that are essential
for distributed computing. Consequently, GDS can have a significant impact on
the following important system qualities: coherence, auditability, manageability,
fault tolerance and security.

Finally, it is worth pointing out that this is a work in progress, in two respects.
First, although the implemented case study of GDS, outlined in Section 4.2, con-
stitutes a proof of concept of this architecture, the real usefulness and effective-
ness of this architecture in practice needs to be validated by applying it to a real
large scale distributed systems. Second, the GDS architecture, as introduced in
this paper, raises some interesting open issues that need to be addressed, for it to
attain its full potential.

Acknowledgements

I greatly benefited from many interesting discussions about this topic with Ya-
ron Minsky and Yair Minsky.

References
[1] Avižienis, A., Laprie, J.-C. and Randell, B. (2004) Dependability and Its Threats: A

Taxonomy. In: Jacquart, R., Eds., Building the Information Society, IFIP Interna-
tional Federation for Information Processing, Vol. 156, Springer, Boston, MA,
91-120. https://doi.org/10.1007/978-1-4020-8157-6_13

[2] Artikis, A., Sergot, M. and Pitt, J. (2006) Specifying Norm-Governed Computational
Societies. Technical Report, Imperial College of Science Technology and Medicine,
London.

[3] Bidan, C. and Issarny, V. (1998) Dealing with Multi-Policy Security in Large Open
Distributed Systems. In: Quisquater, J.J., Deswarte, Y., Meadows, C. and Gollmann,
D., Eds., Computer Security—ESORICS 98, ESORICS 1998, Lecture Notes in
Computer Science, Vol. 1485, Springer, Berlin, Heidelberg, 51-66.
https://doi.org/10.1007/BFb0055855

[4] Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F. and Kramer, B.J. (2006)
Service-Oriented Computing: A Research Roadmap. In: Cubera, F., Ed., Service
Oriented Computing (SOC), Number 05462 in Dagstuhl Seminar Proceedings, In-
ternationales Begegnungs.

[5] Tanenbaum,A., Van Renesse, R., Staveren, H., Sharp, G.J., Mullender, S.J. and Ros-
sum, G. (1990) Experiences with the Amoeba Distributed System. Communications
of the ACM, 33, 46-63. https://doi.org/10.1145/96267.96281

[6] Ao, X.H. and Minsky, N.H. (2003) Flexible Regulation of Distributed Coalitions. In:
Snekkenes, E. and Gollmann, D., Eds., Computer Security—ESORICS 2003, Lecture
Notes in Computer Science, Vol. 2808, Springer, Berlin, Heidelberg, 39-60.
https://doi.org/10.1007/978-3-540-39650-5_3

[7] Sandhu, R.S., Ferraiolo, D. and Kuhn, R. (2000) The NIST Model for Role-Based
Access Control: Towards a Unified Standard. Proceedings of ACM Workshop on
Role-Based Access Control, ACM.

[8] Damianou, N., Dulay, N., Lupu, E. and Sloman, M. (2001) The Ponder Policy Speci-
fication Language. Proc. of Policy Worshop, Bristol.

https://doi.org/10.4236/jsea.2018.111003
https://doi.org/10.1007/978-1-4020-8157-6_13
https://doi.org/10.1007/BFb0055855
https://doi.org/10.1145/96267.96281
https://doi.org/10.1007/978-3-540-39650-5_3

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 64 Journal of Software Engineering and Applications

[9] Haeberlen, A., Kouznetsov, P. and Druschel, P. (2007) Peer Review: Practical Ac-
countability for Distributed Systems. Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, Stevenson, Washington, 14-17 Octo-
ber 2007, 175-188. https://doi.org/10.1145/1323293.1294279

[10] Minsky, N.H. (2006) Law Governed Interaction (LGI): A Distributed Coordination
and Control Mechanism (An Introduction, and a Reference Manual). Rutgers.
http://www.moses.rutgers.edu/

[11] Ao, X., Minsky, N., Nguyen, T. and Ungureanu, V. (2000) Law-Governed Com-
munities Over the Internet. Proc. of Fourth International Conference on Coordina-
tion Models and Languages, Limassol, Cyprus, LNCS 1906, 133-147.

[12] Minsky, N.H., Ungureanu, V., Wang, W. and Zhang, J. (1996) Building Reconfigu-
ration Primitives into the Law of a System. Proc. of the Third International Confe-
rence on Configurable Distributed Systems (ICCDS’96).

[13] Zhang, W.X., Serban, C. and Minsky, N.H. (2007) Establishing Global Properties of
Multi-Agent Systems via Local Laws. In: Weyns, D., Parunak, H.V.D. and Michel,
F., Eds., Environments for Multi-Agent Systems III, E4MAS 2006, Lecture Notes in
Computer Science, Vol. 4389, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-71103-2_10

[14] Belokosztolszki, A. and Moody, K. (2002) Meta-Policies for Distributed Role-Based
Access Control Systems. Proceedings of Third International Workshop on Policies
for Distributed Systems and Networks, Monterey, CA, 5-7 June 2002, 106-115.
https://doi.org/10.1109/POLICY.2002.1011298

[15] Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Josep, A. and Ameli, L. (2004) An
Agent-Based Middleware for Electronic Institutions. Proceedings of the Third In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, Vo-
lume 1, IEEE Computer Society, 236-243.

[16] Lazouski, A., Martinelli, F. and Mori, P. (2008) A Survey of Usage Control in
Computer Security. Istituto di Informática e Telemática, CNR.

[17] Smith, S.W. and Austel, V. (1998) Trusting Trusted Hardware: Towards a Formal
Model for Programmable Secure Coprocessors. 3rd USENIX Workshop on Elec-
tronic Commerce.

[18] Rushby, J.M. (1981) Design and Verification of Secure Systems. Proceedings of the
Eighth ACM Symposium on Operating Systems Principles, Pacific Grove, CA,
14-16 December 1981, 12-21. https://doi.org/10.1145/800216.806586

[19] Inverardi, P. and Mostarda, L. (2005) A Distributed Intrusion Detection Approach
for Secure Software Architecture. In: Morrison, R. and Oquendo, F., Eds., Software
Architecture, EWSA 2005, Lecture Notes in Computer Science, Vol. 3527, Springer,
Berlin, Heidelberg, 168-184. https://doi.org/10.1007/11494713_12

[20] Casati, F., Shan, E., Dayal, U. and Shan, M. (2003) Business-Oriented Management
of Web Services. Communications of the ACM, 46, 55-60.
https://doi.org/10.1145/944217.944238

[21] Serban, C., Chen, Y., Zhang, W. and Minsky, N. (2008) The Concept of Decentra-
lized and Secure Electronic Marketplace. The Journal of Electronic Commerce Re-
search, 8, 79-101. ttps://doi.org/10.1007/s10660-008-9014-0

[22] Jajodia, S., Samarati, P., Sapino, M.L. and Subrahmanian, V.S. (2001) Flexible Sup-
port for Multiple Access Control Policies. ACM Transactions on Database Systems,
26, 214-260. https://doi.org/10.1145/383891.383894

[23] Chadha, R. (2006) A Cautionary Note about Policy Conflict Resolution. Military

https://doi.org/10.4236/jsea.2018.111003
https://doi.org/10.1145/1323293.1294279
http://www.moses.rutgers.edu/
https://doi.org/10.1007/978-3-540-71103-2_10
https://doi.org/10.1109/POLICY.2002.1011298
https://doi.org/10.1145/800216.806586
https://doi.org/10.1007/11494713_12
https://doi.org/10.1145/944217.944238
https://doi.org/10.1007/s10660-008-9014-0
https://doi.org/10.1145/383891.383894

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 65 Journal of Software Engineering and Applications

Communications Conference, MILCOM 2006, IEEE, Washington, DC, 23-25 Oc-
tober 2006, 1-8. https://doi.org/10.1109/MILCOM.2006.302500

[24] Vázquez-Salceda, J., Dignum, V. and Dignum, F. (2005) Organizing Multiagent
Systems. Autonomous Agents and Multi-Agent Systems, 11, 307-360.
https://doi.org/10.1007/s10458-005-1673-9

[25] Mendonca, M., Obraczka, K. and Turletti, T. (2012) The Case for Software-Defined
Networking in Heterogeneous Networked Environments. Proceedings of the 2012
ACM conference on CoNEXT Student Workshop, Nice, 10-10 December 2012,
59-60. https://doi.org/10.1145/2413247.2413283

[26] Krishnan, M. (2015) Survey on Security Risks in Android OS and an Introduction
to Samsung KNOX. International Journal of Computer Science and Information
Technologies, 6.

[27] Subotic, S., Bishop, J. and Gruner, S. (2006) Aspect-Oriented Programming for a
Distributed Framework: Reviewed Article. South African Computer Journal, 5,
81-89.

[28] Phan, T., He, Z.J. and Nguyen, T.D. (2006) Policies over Standard Client-Server In-
teractions. Journal of Computers, 1.

[29] Minsky, N.H. (2003) On Conditions for Self-Healing in Distributed Software Sys-
tems. Proceedings of the International Autonomic Computing Workshop Seattle
Washington.

[30] Randell, B. (1975) System Structure for Software Fault Tolerance. IEEE Transac-
tions on Software Engineering, 220-232.

[31] Gheorghe, G., Neuhaus, S. and Crispo, B. (2010) xESB: An Enterprise Service Bus
for Access and Usage Control Policy Enforcement. In: Nishigaki, M., Jøsang, A.,
Murayama, Y. and Marsh, S., Eds., Trust Management IV. IFIPTM 2010, IFIP Ad-
vances in Information and Communication Technology, Vol. 321, Springer, Berlin,
Heidelberg, 63-78. https://doi.org/10.1007/978-3-642-13446-3_5

[32] Liu, X.Z., Guo, Z.Y., Wang, X., Chen, F.B., Lian, X.C., Tang, J., Wu, M., Kaashoek,
M.F. and Zhang, Z. (2008) D3S: De-Bugging Deployed Distributed Systems. NSDI,
423-437.

[33] Shrivastava, S.K. (1995) Lessons Learned from Building and Using the Arjuna Dis-
tributed Programming System. In: Birman, K.P., Mattern, F. and Schiper, A., Eds.,
Theory and Practice in Distributed Systems, Lecture Notes in Computer Science,
Vol. 938, Springer, Berlin, Heidelberg, 17-32.
https://doi.org/10.1007/3-540-60042-6_2

[34] McDaniel, P. and Prakash, A. (2002) Methods and Limitations of Security Policy
Reconciliation. Proc. of the IEEE Symp on Security and Privacy.

[35] Bianchini, R., Martin, R.P., Nagaraja, K., Nguyen, T.D. and Oliveira, F. (2005) Hu-
man-Aware Computer System Design. Proceedings of the 10th Workshop on Hot
Topics in Operating Systems (HotOS).

[36] Minsky, N.H. (2012) Decentralized Governance of Distributed Systems via Interac-
tion Control. In: Artikis, A., Craven, R., Kesim Çiçekli, N., Sadighi, B. and Stathis,
K., Eds., Logic Programs, Norms and Action, Lecture Notes in Computer Science,
Vol. 7360, Springer, Berlin, Heidelberg, 374-400.
https://doi.org/10.1007/978-3-642-29414-3_20

[37] Wang, Z. and Minsky, N. (2014) Fault Tolerance in Heterogeneous Distributed
Systems. Proc. of the 9th IEEE International Workshop on Trusted Collaboration.
https://doi.org/10.4108/icst.collaboratecom.2014.257585

https://doi.org/10.4236/jsea.2018.111003
https://doi.org/10.1109/MILCOM.2006.302500
https://doi.org/10.1007/s10458-005-1673-9
https://doi.org/10.1145/2413247.2413283
https://doi.org/10.1007/978-3-642-13446-3_5
https://doi.org/10.1007/3-540-60042-6_2
https://doi.org/10.1007/978-3-642-29414-3_20
https://doi.org/10.4108/icst.collaboratecom.2014.257585

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 66 Journal of Software Engineering and Applications

[38] Xu, J., Randell, B., Romanovsky, A., Rubira, C.M.F., Stroud, R.J. and Wu, Z.X.
(1995) Fault Tolerance in Concurrent Object-Oriented Software through Coordi-
nated Error Recovery. Twenty-Fifth International Symposium on Fault-Tolerant
Computing, 1995, FTCS-25, Digest of Papers, IEEE, 499-508.

[39] Pereira, D.P. and de Melo, A.C.V. (2010) Formalization of an Architectural Model
for Exception Handling Coordination Based on CA Action Concepts. Science of
Computer Programming, 75, 333-349. https://doi.org/10.1016/j.scico.2009.12.006

[40] Xu, J., Romanovsky, A. and Randell, B. (1998) Coordinated Exception Handling in
Distributed Object Systems: From Model to System Implementation. Proceedings of
18th International Conference on Distributed Computing Systems, IEEE, Amster-
dam, 29-29 May 1998, 12-21. https://doi.org/10.1109/ICDCS.1998.679465

[41] Schneider, F.B. (1984) Byzantine Generals in Action: Implementing Fail-Stop Pro-
cessors. ACM Transactions on Computer Systems (TOCS), 2, 145-154.
https://doi.org/10.1145/190.357399

[42] Schneider, F.B. (1990) Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: A Tutorial. ACM Computing Surveys (CSUR), 22, 299-319.
https://doi.org/10.1145/98163.98167

[43] Schlichting, R.D and Schneider, F.B. (1983) Fail-Stop Processors: An Approach to
Designing Fault-Tolerant Computing Systems. ACM Transactions on Computer
Systems (TOCS), 1, 222-238. https://doi.org/10.1145/357369.357371

[44] Zhang, J., Cheng, B.H.C., Yang, Z.X. and McKinley, P.K. (2005) Enabling Safe Dy-
namic Component-Based Software Adaptation. In: de Lemos, R., Gacek, C. and
Romanovsky, A., Eds., Architecting Dependable Systems III, Lecture Notes in
Computer Science, Vol. 3549, Springer, Berlin, Heidelberg, 194-211.
https://doi.org/10.1007/11556169_9

[45] Papadopoulos, G.A. and Arbab, F. (2001) Configuration and Dynamic Reconfigura-
tion of Components Using the Coordination Paradigm. Future Generation Com-
puter Systems, 17, 1023-1038. https://doi.org/10.1016/S0167-739X(01)00043-7

[46] Zarras, A., Fredj, M., Georgantas, N. and Issarny, V. (2006) Engineering Reconfi-
gurable Distributed Software Systems: Issues Arising for Pervasive Computing. In:
Butler, M., et al., Eds., Fault-Tolerant Systems in LNCS, Springer-Verlag, 364-386.

[47] Weyns, D., Malek, S. and Andersson, J. (2010) On Decentralized Self-Adaptation:
Lessons from the Trenches and Challenges for the Future. Proceedings of the 2010
ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems,
Cape Town, South Africa, 3-4 May 2010, 84-93.
https://doi.org/10.1145/1808984.1808994

[48] de Oliveira, M., Golçalves, E. and Purvis, M. (2014) Institutional Environments: A
Framework for the Development of Open Multiagent Systems. In: Bazzan, A. and
Pichara, K., Eds., Advances in Artificial Intelligence-IBERAMIA 2014, Lecture
Notes in Computer Science, Vol. 8864, Springer, Cham, 560-571.
https://doi.org/10.1007/978-3-319-12027-0_45

[49] Stillerman, M., Marceau, C. and Stillman, M. (1999) Intrusion Detection for Distri-
buted Applications. Communications of the ACM, 42, 62-69.
https://doi.org/10.1145/306549.306577

[50] Sotiris I., Keromytis, A.D., Bellovin, S.M. and Smith, J.M. (2000) Implementing a
Distributed Firewall. ACM Conference on Computer and Communications Securi-
ty, 190-199.

[51] Urdaneta, G., Pierre, G. and Van Steen, M. (2011) A Survey of DHT Security Tech-

https://doi.org/10.4236/jsea.2018.111003
https://doi.org/10.1016/j.scico.2009.12.006
https://doi.org/10.1109/ICDCS.1998.679465
https://doi.org/10.1145/190.357399
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/357369.357371
https://doi.org/10.1007/11556169_9
https://doi.org/10.1016/S0167-739X(01)00043-7
https://doi.org/10.1145/1808984.1808994
https://doi.org/10.1007/978-3-319-12027-0_45
https://doi.org/10.1145/306549.306577

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 67 Journal of Software Engineering and Applications

niques. ACM Computing Surveys (CSUR), 43.

[52] Wang, Z. and Minsky, N.H. (2015) Towards Secure Distributed Hash Table. 11th
EAI International Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing.

[53] Kiczales, G. and Mezini, M. (2005) Aspect-Oriented Programming and Modular
Reasoning. Proc. Int. Conf. Software Engineering (ICSE), 49-58.

[54] Rowanhill, J.C., Varner, P.E. and Knight, J.C. (2004) Efficient Hierarchic Manage-
ment for Reconfiguration of Networked Information Systems. 2004 International
Conference on Dependable Systems and Networks, IEEE, Florence, 28 June-1 July
2004, 517-526. https://doi.org/10.1109/DSN.2004.1311921

[55] Liskov, B. (1988) Distributed Programming in Argus. Communications of the
ACM, 31, 300-312. https://doi.org/10.1145/42392.42399

[56] Osborn, S., Sandhu, R. and Munawer, Q. (2000) Configuring Role-Based Access
Control to Enforce Mandatory and Discretionary Access Control Policies. ACM
Transactions on Information and System Security, 3, 85-106.
https://doi.org/10.1145/354876.354878

[57] Yuan, E. and Tong, J. Attributed Based Access Control (ABAC) for Web Services.
Proceedings of 2005 IEEE International Conference on Web Services, ICWS 2005,
IEEE.

[58] Lee, D., Ahn, S. and Kim, M. (2011) A Study on Hierarchical Policy Model for
Managing Heterogeneous Security Systems. In: Murgante, B., Gervasi, O., Iglesias,
A., Taniar, D. and Apduhan, B.O., Eds., Computational Science and Its Applica-
tions-ICCSA 2011, Lecture Notes in Computer Science, Vol. 6785, Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-21898-9_19

[59] Godic, S. and Moses, T. (2005) OASIS Extensible Access Control. Markup Language
(XACML), Version 2. Technical report, Oasis.

[60] Minsky, N.H. and Ungureanu, V. (2000) Law-Governed Interaction: A Coordina-
tion and Control Mechanism for Heterogeneous Distributed Systems. ACM Trans-
actions on Software Engineering and Methodology, 9, 273-305.
https://doi.org/10.1145/352591.352592

[61] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. (2001)
Getting Started with ASPECTJ. Communications of the ACM, 44, 59-65.
https://doi.org/10.1145/383845.383858

[62] Ribeiro, C. and Ferreira, P. (2007) A Policy-Oriented Language for Expressing Se-
curity Specifications. International Journal of Network Security, 5.

[63] Dudheria, R., Trappe, W. and Minsky, N. (2010) Coordination and Control in Mo-
bile Ubiquitous Computing Applications Using Law Governed Interaction. Proc. of
the Fourth International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM), Florence, 247-256.

[64] Criado, N., Argente, E., Garrido, A., Gimeno, J.A., Igual, F., Botti, V., Noriega, P.
and Giret, A. (2011) Norm Enforceability in Electronic Institutions? Coordination,
Organizations, Institutions, and Norms in Agent Systems VI, Springer, 250-267.
https://doi.org/10.1007/978-3-642-21268-0_14

[65] Florio, V.D. and Blondia, C. (2008) A Survey of Linguistic Structures for Applica-
tion-Level Fault Tolerance. ACM Computing Surveys, 40, 1-27.

[66] Weyns, D., Omicini, A. and Odell, J. (2007) Environment as a First Class Abstrac-
tion in Multiagent Systems. Journal on Autonomous Agents and Multiagent Sys-
tems, 14.

https://doi.org/10.4236/jsea.2018.111003
https://doi.org/10.1109/DSN.2004.1311921
https://doi.org/10.1145/42392.42399
https://doi.org/10.1145/354876.354878
https://doi.org/10.1007/978-3-642-21898-9_19
https://doi.org/10.1145/352591.352592
https://doi.org/10.1145/383845.383858
https://doi.org/10.1007/978-3-642-21268-0_14

N. H. Minsky

DOI: 10.4236/jsea.2018.111003 68 Journal of Software Engineering and Applications

[67] Paes, R., Lucena, C., Carvalho, G. and Cowan, D. (2009) An Event-Driven High
Level Model for the Specification of Laws in open multi-agent systems. Journal of
Systems and Software, 82, 629-642. https://doi.org/10.1016/j.jss.2008.08.033

[68] Hu, J., Sun, Q.Z. and Chen, H.P. (2010) Application of Single Sign-On (SSO) in
Digital Campus. 2010 3rd IEEE International Conference on Broadband Network
and Multimedia Technology (IC-BNMT), IEEE, 725-727.

[69] Lynch, N.A. (1996) Distributed Algorithms. Morgan Kaufmann, San Francisco.

[70] Serban, C. and Minsky, N. (2009) In Vivo Evolution of Policies that Govern a Dis-
tributed System. Proc. of the IEEE International Symposium on Policies for Distri-
buted Systems and Networks, London.

https://doi.org/10.4236/jsea.2018.111003
https://doi.org/10.1016/j.jss.2008.08.033

	On the Dependability of Highly Heterogeneous and Open Distributed Systems
	Abstract
	Keywords
	1. Introduction
	2. The Design Principles of GDS
	3. On the Middleware Used by the GDS Architecture
	3.1. The Gist of LGI
	3.2. On the nature of LGI’s Laws
	3.3. An Example of an LGI Law
	3.4. On the Expressive Power of the Local LGI Laws, and on Their Global Sway
	3.5. The Organization of Laws into a Conformance Hierarchy
	3.6. On the Implementation of Controllers, and on Their Performance

	4. The Concept of Governed Distributed System (GDS)
	4.1. The Definition of GDS
	The Construction of a GDS

	4.2. An Example of a GDS—Based on an Implemented Case Study
	4.2.1. The Root Law
	4.2.2. Division Laws
	4.2.3. Laws of Individual Agents

	4.3. Key Aspects of GDS
	4.3.1. The Means Provided by GDS for Establishing System Properties Dependably
	4.3.2. Freedom from Inconsistencies between the Laws of a Fabric
	4.3.3. Regulating the Evolution of the Fabrics of a GDS
	4.3.4. Perspective on the Strict Enforcement of Laws
	4.3.5. Law-Based Trust: A Behavioral-Trust Modality Induced by GDS
	4.3.6. Flexible Interoperability
	4.3.7. The Handling of Crosscutting Laws
	4.3.8. Rogue Communication, and Its Limited Effect on a GDS

	5. The Impact of GDS on the Dependability of Distributed Systems
	5.1. Software Fault Tolerance (SFT)
	5.1.1. Preventing Failures
	5.1.2. Detection of Failures, and Containment of Failing Actors
	5.1.3. Recovery from Failures

	5.2. Security
	5.2.1. Intrusion Detection and Prevention
	5.2.2. The Case of Distributed Hash Table (DHT)

	6. Related Work
	7. Future Research
	8. Conclusions
	Acknowledgements
	References

