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Abstract 
This paper considers conservation and balance laws and the constitutive theo-
ries for non-classical viscous fluent continua without memory, in which in-
ternal rotation rates due to the velocity gradient tensor are incorporated in the 
thermodynamic framework. The constitutive theories for the deviatoric part 
of the symmetric Cauchy stress tensor and the Cauchy moment tensor are de-
rived based on integrity. The constitutive theories for the Cauchy moment 
tensor are considered when the balance of moments of moments 1) is not a 
balance law and 2) is a balance law. The constitutive theory for heat vector 
based on integrity is also considered. Restrictions on the material coefficients 
in the constitutive theories for the stress tensor, moment tensor, and heat 
vector are established using the conditions resulting from the entropy inequa-
lity, keeping in mind that the constitutive theories derived here based on inte-
grity are in fact nonlinear constitutive theories. It is shown that in the case of 
the simplest linear constitutive theory for stress tensor used predominantly 
for compressible viscous fluids, Stokes’ hypothesis or Stokes’ assumption has 
no thermodynamic basis, hence may be viewed incorrect. Thermodynamically 
consistent derivations of the restrictions on various material coefficients are 
presented for non-classical as well as classical theories that are applicable to 
nonlinear constitutive theories, which are inevitable if the constitutive theo-
ries are derived based on integrity. 
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1. Introduction, Literature Review, and Scope of Work 

In fluent continua, velocities are observable quantities and the deformation 
physics is completely contained in the velocities ( v ) and the velocity gradient 
tensor ( L ). Thus, the velocities and the velocity gradient tensor in their entirety 
must form the basis for the thermodynamic framework that describes the beha-
vior of fluent continua. The velocity gradient tensor can be decomposed into 
symmetric ( D ) and antisymmetric tensors (W ). The symmetric part represents 
strain rates and the antisymmetric part contains rotation rates. Alternatively, the 
polar decomposition of L  yields right or left stretch rate tensors ( t

rS  or t
lS ) 

and the rotation rate tensor ( t R ). The tensors D , t
rS , and t

lS  contain the 
same physics in different forms related to strain rates. Likewise, W  contains 
rotation rates whereas t R  is a rotation rate matrix. The same physics of rota-
tion rates is contained in both but in different forms. The classical continuum 
theories for fluent continua are derived using only v  and D ; W  or t R  are 
not considered at all in the derivation of the conservation and balance laws and 
the constitutive theories. 

We note that W  contains rotation rates that are completely defined by the 
antisymmetric part of the velocity gradient tensor. We refer to these as internal 
rotation rates (as these arise due to L ), and the associated continuum theory as 
non-classical continuum theory with internal rotation rates or simply 
non-classical internal polar continuum theory. Recent papers by Surana, et al. 
[1]-[10] contain details of the derivations of such non-classical continuum theo-
ries and associated constitutive theories for solid and fluent continua. Prior to 
these works, there have been many published works under the title couple stress 
theories [11]-[19], particularly in context with solid continua that contain 
somewhat similar derivations, but use completely different motivation and ra-
tionale. Some concepts similar to those used in References [1]-[10] can also be 
traced in various different forms in the works of Eringen [20]-[28] related to 
micro-theories of various types. 

In the present work, we consider non-classical continuum theories for fluent 
continua in which both D  and W , that is, L  in its entirety, are incorpo-
rated in deriving the conservation and balance laws and the constitutive theories 
for thermoviscous compressible fluids without memory. Constitutive theories 
are derived using the conditions resulting from entropy inequality and the re-
presentation theorem (or theory of generators and invariants). Such constitutive 
theories, when based on integrity, are nonlinear in most instances. The investi-
gation presented in this paper establishes necessary restrictions on the material 
coefficients in the constitutive theories that ensure that the resulting constitutive 
theories satisfy the conditions resulting from the entropy inequality. The work 
presented in this paper is compared and contrasted with the published works. 

In the thermodynamic framework for the non-classical continuum theory 
used here, we have additional physics of rotation rates due to W  which, when 
resisted, result in conjugate moments that lead to Cauchy moment tensor 
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(through Cauchy principle). This physics is absent in the classical continuum 
theory for fluent continua. Thus, it is natural to ask “are the conservation and 
balance laws of classical continuum theories sufficient when this new physics of 
rotation rates is present to ensure equilibrium of the deforming matter?’’ Surana, 
et al. [1]-[10] [29] [30] and Yang, et al. [31] have shown that in the case of 
non-classical solid and fluent continua, an additional balance law is required, the 
balance of moments of moments to ensure equilibrium of the deforming matter. 
The constitutive theories for the moment tensor are affected by the absence or 
the presence of this balance law. In the work presented here, we examine the 
constitutive theories in the presence as well as absence of this balance law for es-
tablishing restrictions on the material coefficients. 

2. Notations and Definitions of Bases 

The notations used in this paper conform to Reference [32] but are different 
than conventional notations in continuum mechanics writings. These new nota-
tions are used to provide more clarity and transparency. x , A , V , ∂A , V∂  
refer to material point coordinates (in a fixed Cartesian frame), area, volume, 
boundary of A , and surface bounding V , all in the reference or undeformed 
configuration, whereas x , A , V , ∂A , V∂  are their counterparts in the 
current configuration. ( ),Q Q t= x  and ( ),Q Q t= x  are Lagrangian and Eu-
lerian descriptions of a quantity Q  at a material point x  in the reference 
configuration with its corresponding location x  in the current configuration. 

A tetrahedron in the undeformed configuration (volume V ) with its oblique 
plane constituting a part of surface V∂  bounding V  deforms and rotates in 
the current configuration. Equilibrium considerations associated with conserva-
tion and balance laws require measurement of stress, strain rates, etc. associated 
with the deformed tetrahedron. Two obvious choices are covariant and contra-
variant bases. If the edges of the tetrahedron in the undeformed configuration 
represent material lines, then upon finite deformation the material lines will be-
come curvilinear. The tangent vectors to these deformed lines at a material point 
(a point from which the material lines emanate) forming the edges of the de-
formed tetrahedron are covariant base vectors ( ig ). The vectors orthogonal to 
the faces of the deformed tetrahedron (formed by the covariant base vectors) are 
called contravariant base vectors ( ig ). ig  and ig  form nonorthogonal cova-
riant and contravariant bases that are reciprocal to each other. Since the cova-
riant base vectors are tangent to the deformed material lines, the convected time 
derivative of the covariant strain tensor is a physical measure of the strain rate 
tensor. Likewise the contravariant directions normal to the faces of the tetrahe-
dron is a natural way to define stress tensor. Thus, we define ( )0σ  as contrava-
riant Cauchy stress tensor, ( )1γ  as the first convected time derivative of the 
Green’s strain tensor. These measures are physical as these are related to the fac-
es and edges of the true deformed tetrahedron. Since ig  and ig  form reci-
procal bases, we could also use covariant directions for stress measure and con-
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travarian directions for strain rate measures, i.e., ( )0σ  and ( )1γ , covariant 
Cauchy stress tensor and contravariant strain rate tensor. Mathematically this is 
justified, however in terms of physics, this description requires ig  to be normal 
to the tetrahedron faces and ig  to be the material line tangent vectors. In other 
words, this description requires a new configuration of the actual deformed te-
trahedron that is non-physical. When strain rates are small, the two measures 
are the same as the deformed and undeformed configurations are virtually the 
same. 

3. Internal Rotation Rates and Their Gradients 

Velocities ( v ) and velocity gradients ( ij i jL v x= ∂ ∂ ) are fundamental measures of 
deformation physics in fluent continua, hence these in their entirety must form 
the basis for a complete thermodynamic framework. Polar decomposition of the 
changing velocity gradient tensor in the deforming fluent continua into stretch 
rates and pure rotation rates shows that a location and its neighboring locations 
can experience different rotation rates during deformation. Alternatively, we can 
also consider decomposition of the velocity gradient tensor into symmetric and 
antisymmetric tensors. The symmetric tensor is a measure of strain rates whe-
reas the antisymmetric tensor is a measure of pure rotation rates. The measures 
of internal rotation rates due to deformation in the two approaches describe the 
same physics but in different forms. Polar decomposition gives rotation rate 
matrix and not the rotation angle rates whereas the antisymmetric part of the 
velocity gradient tensor yields rotation angle rates that are explicitly defined in 
terms of velocity gradients. 

If the varying internal rotation rates between the neighboring locations are re-
sisted by the fluent continua, then there must exist conjugate internal moments 
corresponding to these. The internal rotation rates and the conjugate moments 
can result in additional energy storage and/or dissipation as well as memory. 
Since this physics of internal rotation rates arises due to L , it exists in all de-
forming isotropic, homogeneous fluent continua. Incorporating entirety of 

L    in the conservation and balance laws implies that we incorporate the addi-
tional physics due to internal rotation rates in the existing thermodynamic 
framework as the physics due to the symmetric part of velocity gradient tensor is 
already present in it. The internal rotation rates can be visualized as the rotation 
rates about the axes of a triad located at a material point (or location) whose axes 
are parallel to the fixed Cartesian x-frame. We present details in the following. 
The velocity gradient tensor L    can be decomposed into pure rotation rate 
tensor tR    and the right and left stretch rate tensors t

rS    and t
lS   . 

tR    is orthogonal and t
rS    and t

lS    are symmetric and positive-definite. 

t t t t
r lL R S S R         = =                           (1) 

Let ( { },t
i iλ φ ); 1,2,3i =  be the eigenpairs of T

L L        in which { } { }T
iji jφ φ δ= , 

then 
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2T Tt t
rL L Sλ          = Φ Φ =                          (2) 

The columns of  Φ   are eigenvectors { }iφ  and tλ    is a diagonal matrix 
of the eigenvalues t

iλ ; 1,2,3i = . If we choose 
Tt t

rS λ      = Φ Φ       
                    (3) 

then (2) holds, hence definition of t
rS    in (3) is valid. tR    can now be de-

fined using (1). 
1t t

rR L S
−

    =                              (4) 

Furthermore, using 
2T t

lL L S     =                               (5) 

and following a similar procedure we can establish 
Tt t

lS λ      = Φ Φ       
                      (6) 

1t
lS L

−
   =                                   (7) 

tR    defined by (4) and (7) is unique. We note that in this approach tR    is a 
rotation rate transformation matrix, hence does not contain rotation angle rates. 
Alternatively, we can consider decomposition of L    into symmetric ( D   ) 
and antisymmetric ( W   ) tensors. 

{ }
{ }
v

L D W
x

 ∂
     = = +      ∂  

                            (8) 

( ) ( )1 1;
2 2

T T
D L L W L L           = + = −                        (9) 

or 

( ) ( ), , , ,
1 1;
2 2ij i j j i ij i j j iD v v W v v= + = −               (10) 

Expanded form of W    can be written as 

3 2

3 1

2 1

0
0

0

t t
i x i x

t t
i x i x

t t
i x i x

W
 Θ − Θ
   = − Θ Θ  
 Θ − Θ 

                      (11) 

3 32 1
1 2

3 2 1 3

1 2
3

2 1

1 1; ;
2 2

1
2

t t
i x i x

t
i x

v vv v
x x x x

v v
x x

   ∂ ∂∂ ∂
Θ = − Θ = −   

∂ ∂ ∂ ∂   
 ∂ ∂

Θ = − ∂ ∂ 

           (12) 

Alternatively, (12) can be derived as 

j j
i j ijk k

i i

v v
x x

ε
∂ ∂

× = × =
∂ ∂

v e e e∇                    (13) 
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3 32 1 2 1
1 2 3

2 3 3 1 1 2

v vv v v v
x x x x x x

     ∂ ∂∂ ∂ ∂ ∂
× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    

v e e e∇         (14) 

or 

( )( ) ( )( ) ( )( )1 1 2 2 3 32 2 2t t t
i x i x i x× = − Θ + − Θ + − Θv e e e∇          (15) 

The rotation rates in (12) are in clockwise sense, whereas quantities in (15) are 
twice the magnitude compared to (12) and are in counterclockwise sense. We 
note that W   , the antisymmetric part of L   , has rotation rates whereas 

tR    from the polar decomposition of L    is a transformation matrix related 
to rotation rates. The details in both are related to rotation rates and are derived 
using L   , hence use of tR    or W    is interchangeable depending upon 
the need. Another important point we note is that from (11), W    is undoub-
tedly a tensor of rank two. This is also obvious from (13) containing i j×e e  
term. However, the rotation rates t

i iΘ  as in (12) can be viewed as a vector 
quantity. That is, the three rotations about the axes of a triad at a material point 
can be arranged in the form of a vector. This form is advantageous when deter-
mining gradients of the rotation rates (shown later). We clearly observe that 
t
i iΘ  are completely defined by the components of L   , i.e., dependent on the 
components of L   , therefore are not unknown degrees of freedom at a ma-
terial point or at a location. Definition of W  from (9) or (10) clearly shows 
that it is a tensor of rank two, i.e., 

1
2

j i
i j

i j

v v
x x

 ∂ ∂
= ⊗ −  ∂ ∂ 

W e e                    (16) 

The gradient of W  in (16) can be written as 

1 1
2 2

j ji i
l i j l i j

l i j l i j

v vv v
x x x x x x

    ∂ ∂∂ ∂∂ ∂
 = ⊗ ⊗ − = ⊗ ⊗ −       ∂ ∂ ∂ ∂ ∂ ∂    

W e e e e e e∇  (17) 

Clearly W∇ , i.e., gradient of W , is a tensor of rank three. An alternative 
presentation of the gradients of t

iΘ  is simple and easier to incorporate in the 
further developments. Let us represent rotation rates as a vector 

{ } 1 2 3, ,
Tt t t t

i i x i x i x Θ = Θ Θ Θ                    (18) 

Gradients of t
iΘ  in (18) can be defined using 

{ }
{ }

( )
or

t t
i i

t t
i i i

ij
j

J J
x x

Θ Θ
∂ Θ ∂ Θ

  = =  ∂ ∂
              (19) 

The gradient tensor 
t
iΘ J  of rotation rates in (19) can be decomposed into 

symmetric and antisymmetric tensors 
t
i
s JΘ 

  
 and 

t
i
a JΘ 

  
. 

t t t
i i i

s aJ J JΘ Θ Θ     = +     
                    (20) 

 

DOI: 10.4236/am.2018.91005 49 Applied Mathematics 
 

https://doi.org/10.4236/am.2018.91005


K. S. Surana et al. 
 

1
2
1
2

t t t
i i i

t t t
i i i

T

s

T

a

J J J

J J J

Θ Θ Θ

Θ Θ Θ

      = +       
      = −       

                  (21) 

4. Considerations of Stress, Moment, and Strain Rate 
Tensors 

When the velocity gradient tensor varies between neighboring material points 
(or locations), so do the internal rotation rates t

iΘ . Hence, the rotation rate 
tensor W  can vary between the material points. When the rotation rates W  
are resisted by the deforming fluent continua, conjugate moments are created. 
W  and conjugate moments can result in additional energy storage, dissipation, 
and rheology, in addition to dissipation, rheology, etc., which are already present 
due to Cauchy stress tensor and the strain rate tensor. Thus, in the deforming 
fluent continua, rotation rates W  are conjugate to the moment tensor which 
necessitates that on the boundary of the deformed volume there must exist re-
sultant moment. 

Consider a volume of matter V


 in the reference configuration with closed 
boundary V∂



. The volume V  is isolated from V


 by a hypothetical surface 
V∂  as in the cut principle of Cauchy. Consider a tetrahedron 1T  such that its 

oblique plane is part of V∂  and its other three planes are orthogonal to each 
other and parallel to the planes of the x-frame. Upon deformation, V



 and V∂


 
occupy V



 and V∂


 and likewise V  and V∂  deform into V  and V∂ . 
The tetrahedron 1T  deforms into 1T  whose edges (under finite deformation) 
are non-orthogonal covariant base vectors ig . The planes of the tetrahedron 
formed by the covariant base vectors are flat but obviously non-orthogonal to 
each other. We assume the tetrahedron to be the small neighborhood of material 
point o  so that the assumption of the oblique plane ABC  being flat but still 
part of V∂  is valid. When the deformed tetrahedron is isolated from volume 
V  it must be in equilibrium under the action of disturbance on surface ABC  
from the volume surrounding V  and the internal fields that act on the flat 
faces which equilibrate with the mating faces in volume V  when the tetrahe-
dron 2T  is placed back in the volume V . 

Consider the deformed tetrahedron 1T . Let P  be the average stress per unit 
area on plane ABC , M  be the average moment per unit area on plane ABC  
(henceforth referred to as moment for short), and n  be the unit exterior nor-
mal to the face ABC . P , M , and n  all have different directions when the 
deformation is finite [32]. 

As mentioned earlier, the edges of the deformed tetrahedron are covariant 
base vectors ig  that are tangent to deformed curvilinear material lines: 

k
i k

i

x
x

∂
=

∂
g e                         (22) 

and 
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i
ij

j

xJ
x
∂

=
∂

                         (23) 

The columns of J  are covariant base vectors ig  that form non-orthogonal 
covariant basis. Contravariant base vectors ig  are normal to the faces of the 
deformed tetrahedron formed by the covariant base vectors: 

jj
l

l

x
x
∂

=
∂

g e                        (24) 

and 

i
ij

j

xJ
x
∂

=
∂

                        (25) 

The rows of J  are contravariant base vectors jg . These form a 
non-orthogonal contravariant basis. Covariant and contravariant bases are reci-
procal to each other [32]. 

4.1. Contravariant Cauchy Stress Tensor 

The definition of the stresses on the non-oblique faces of the deformed tetrahe-
dron formed by the covariant base vectors ig  in the contravariant directions 
orthogonal to the faces of the deformed tetrahedron is most natural. Let ( )0



σ  
or ( )0



σ  be the contravariant stress tensor with components ( )0
ijσ


 or ( )0
ijσ


 
with dyads i j⊗g g  . Component ( )0

11σ


 or ( )0
11σ


 is in the 1g  direction on a face 
of the tetrahedron with unit exterior normal 1g , i.e., on the 1g  face. Likewise 

( )0
12σ


 or ( )0
12σ


 and ( )0
31σ


 or ( )0
31σ


 act on 1g  and 3g  faces in the 2g  and 1g  
directions. Using dyads i j⊗g g   or contravariant law of transformation, we can 
write [32] 

( ) ( )0 0
i j ijσ= ⊗g g 



σ                       (26) 

Using (22) in (26), we can write 
( ) ( )

( ) ( )

( ) [ ] ( ) [ ]

0 0

0 0

0 0

i j ij

ij ik kl jl

T

J J

J J

σ

σ σ

σ σ

= ⊗

=

   =   

e e





σ

                   (27) 

( )0σ  is a contravariant Cauchy stress tensor (Lagrangian description) from 
which ( )0σ  can be easily obtained by replacing [ ]J  by 

1
J

−
    and ( )0σ  by 

( )0σ  in (27). Since the dyads of ( )0σ  or ( )0σ  are i j⊗e e , the Cauchy prin-
ciple holds between P  and ( )0σ . 

( )( )0 T
= ⋅P nσ                        (28) 

4.2. Covariant Cauchy Stress Tensor 

Instead of using contravariant directions and stress components ( )0



σ  and co-
variant basis ig , we could use covariant stress components ( )( )0 ij

σ


 or ( )( )0 ij
σ


 
and contravariant basis ig . Consideration of ( )( )0 ij

σ


 of course will require a 
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different deformed tetrahedron such that covariant base vectors ig  are normal 
to its oblique faces. The adverse consequences of choosing this measure of stress 
for finite deformation are discussed by Surana, et al. [32] [33]. Here we proceed 
with this measure as an alternative to the contravariant stress measure. Using 
dyads i j⊗g g   and components ( )( )0 ij

σ


, we can write [32] 

( ) ( )( )0 0
i j

ij
σ= ⊗g g 



σ                     (29) 

And using (24) 

( ) ( )( )
( )( ) ( )( )
( ) ( )

0 0

0 0

0 0

i j ij

ki ljij kl

T

J J

J J

σ

σ σ

σ σ

= ⊗

=

      =       

e e



σ

                   (30) 

( )0σ  is the covariant Cauchy stress tensor (Eulerian description) from which 

( )0σ  can be obtained by replacing J    with [ ] 1J −  and ( )0σ  with ( )0σ  in 
(30). Since the dyads of ( )0σ  are i j⊗e e , the Cauchy principle holds between 
P  and ( )0σ . 

( )( )0

T
= ⋅P nσ                        (31) 

Remarks. 
The Cauchy stress tensors ( )0σ  or ( )0σ  and ( )0σ  or ( )0σ  are 

non-symmetric at this stage and so are the stress tensors ( )0



σ  and ( )0


σ . 
Following the details given in Reference [32] we can also define Jaumann stress 
tensor ( )0 Jσ  using ( )0σ  and ( )0σ  stress measures. 

4.3. Contravariant and Covariant Cauchy Moment Tensor 

When the deformed tetrahedron with moment M  on its oblique face ABC  is 
isolated from the volume V , its faces will have existence of moments (per unit 
area) on them. As in case of stress measure, contravariant basis is the most nat-
ural way to define these. Following the notations parallel to those used in case of 
Cauchy stress tensors, we can write the following using contravariant measures 
of moment tensor: 

( )0
i j ijm m= ⊗g g                         (32) 

Using (22) in (32) we obtain 

( )

( ) ( )

( ) [ ] ( ) [ ]
( ) ( )

0

0 0

0 0

1 10 0

i j ij

ij ik kl jl

T

T

m

m J m J

m J m J

m J m J
− −

= ⊗

=

   =   

       =          

m e e







                (33) 

and the Cauchy principle 
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( )( )0 T
= ⋅M m n                         (34) 

Likewise when using covariant measure of moment tensor we have 

( ) ( )( )0 0
i j

ij
m= ⊗m g g 



                     (35) 

And using (24) in (35) we obtain 

( ) ( )( )
( )( ) ( )( )
( ) ( )

( ) [ ] ( ) [ ]

0 0

0 0

0 0

1 1
0 0

i j ij

ki ljij kl

T

T

m

m J m J

m J m J

m J m J− −

= ⊗

=

      =       

    =    

m e e







                  (36) 

and the Cauchy principle 

( )( )0

T
= ⋅M m n                          (37) 

As in case of stress tensors ( )0σ  and ( )0σ , the moment tensors ( )0m  and 

( )0m  are also non-symmetric at this stage. 

4.4. Convected Time Derivatives of the Stress and Strain Tensors 

Convected time derivatives of strain and stress tensors in covariant and contra-
variant bases play an important role in the Eulerian description, especially in 
constitutive theories. If we define ( )0T 

   and ( )0T 
   covariant and contrava-  

riant Cauchy stress tensors and ( )0T 
   and ( )0T 

   as corresponding second  

Piola-Kirchhoff stress tensors, then the convected time derivatives of ( )0T 
    

and ( )0T 
   in co- and contravariant bases are defined by ( )kT 

   and ( )kT 
  ;  

1,2, ,k n=   and are given by the following for compressible matter [32]. 

[ ] [ ]

[ ] [ ] ( ) [ ]

( ) ( ) ( ) ( ) ( )

1

1 1 1 1

1, 2, ,

tr

k k

T
kk

T

k k k k k

D T T
Dt
T J T J k n

DT T L T T L T L
Dt

−

− − − −

   =    
   = =   
              = + + +               

J   (38) 

and 

[ ] [ ]

[ ] ( )

( ) ( ) ( ) ( ) ( )

1

1 1 1 1

1, 2, ,

tr

k k

Tk k

Tk k k k k

D T T
Dt

T J T J k n

DT T L T T L T L
Dt

−

− − − −

   =    
      = =      
              = − − +               

J   (39) 

and Jaumann rates are defined as 

( ) ( )
( )( )1 ; 1,2, ,

2
k kJ

kT T T k n     = + =                    (40) 
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If [ ]0ε 
   and [ ]0ε 

   are Green’s and Almansi strain tensors in co- and con-
travariant bases, then their convected time derivatives ( )kγ 

   and ( )kγ 
  ; 

1,2, ,k n=   are defined as [32] 

[ ] [ ]

[ ] [ ] ( ) [ ]

( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ] ( ) [ ]

( ) ( )

1

1 1 1 1

11 0

1

tr 1, 2, ,

1
2

k k

T
kk

T

k k k k k

T

T

D
Dt

J J

D L L L k nDt
D J J
Dt

L L D

γ γ

γ γ

γ γ γ γ γ

γ ε γ

γ

−

− − − −

   =    


    =    
              = + + + =              

     = =      

       = + =       

J

J

  (41) 

and 

[ ] [ ]

[ ] ( )

( ) ( ) ( ) ( ) ( )

[ ] [ ] ( )

( ) ( )

1

1 1 1 1

1 0 1

1

tr 1, 2, ,

1
2

k k

Tk k

Tk k k k k

T

T

D
Dt

J J

D L L L k nDt
D J J
Dt

L L D

γ γ

γ γ

γ γ γ γ γ

γ ε γ

γ

−

− − − −

   =    

      =       
              = + + + =              

        = =         

       = + =       

J

J

  (42) 

and Jaumann rates ( )k Jγ 
  ; 1,2, ,k n=   are defined as 

( ) ( )
( )( )1 ; 1,2, ,

2
k kJ

k k nγ γ γ     = + =                    (43) 

In classical continuum theories for thermoviscous fluids without memory 
[32], only stress rates of order zero, i.e., ( )0σ , ( )0σ , and ( )0 Jσ , are used in the 
ordered rate constitutive theories of up to order n [32]. In such theories, ( )kγ 

  , 
( )kγ 

  , and ( )k Jγ 
  ; 1,2, ,k n=   are considered as argument tensors (in ad-

dition to some others) of ( )0σ 
  , ( )0σ 

  , and ( )0 Jσ 
  , respectively. Thus, the 

Cauchy stress tensor and the constitutive theory for it are basis dependent. In 
the derivations of the conservation and balance laws and the constitutive theo-
ries, we choose basis independent ( )0 σ  as Cauchy stress tensor which could be 

( )0σ , ( )0σ , or ( )0 Jσ ; 1,2, ,k n=  . ( )k γ ; 1,2, ,k n=   convected time deriv-
atives are considered as arguments of ( )0 σ  which could be ( )kγ , ( )kγ , or 
( )k Jγ . These choices of ( )0 σ  and ( )k γ ; 1,2, ,k n=   make all derivations 
hold for any desired choice of stress measure and the corresponding convected 
time derivatives of the strain measures. In case of non-classical theories consi-
dered here, exactly the same notation is used except that the Cauchy stress ten-
sor is not symmetric, thus ( )k γ ; 1,2, ,k n=   cannot be the argument tensors 
of ( )0 σ , but can be paired with it. Similarly, the Cauchy moment tensor choice 
can be ( )0m , ( )0m , or ( )0 Jm , depending upon the choice of basis. In the deriva-
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tions and the details that follow, we consider ( )0 σ  and ( )0 m  as Cauchy stress 
and moment tensors. With these choices the details that follow hold for any de-
sired choice of basis. 

5. Conservation and Balance Laws 

The non-classical continuum theory used in this paper for fluent continua in-
corporates new physics due to internal rotation rates that are defined by L , 
hence known. This new physics is absent in the currently used thermodynamic 
framework for fluent continua. Introduction of this new physics may influence 
some or all conservation and balance laws which can only be determined by in-
itiating their derivations from the most fundamental stage as we do in classical 
continuum theories [32] [34]. In this process of deriving conservation and bal-
ance laws with the new rotation rate physics we may very well find that some 
conservation and balance laws are not affected; however, such conclusions 
without rigorous derivations are not possible. In the non-classical continuum 
theory for fluent continua with velocities, velocity gradients, strain rate tensor, 
internal rotation rates, and their gradients describing the kinematics of deforma-
tion, we must at least consider the following conservation and balance laws 
based on the assumption of thermodynamic equilibrium that are used for clas-
sical continuum theories during the evolution of the deforming matter: 1) con-
servation of mass, 2) balance of linear momenta, 3) balance of angular momenta, 
4) first law of thermodynamics (i.e., balance of energy), and 5) second law of 
thermodynamics (i.e., entropy inequality). 

The use of conservation and balance laws that are necessary for classical con-
tinuum theories for non-classical continuum theories with additional physics 
due to internal rotation rates raises a fundamental concern: are these sufficient 
to ensure equilibrium of deforming non-classical fluent continua? It is pointed 
out by Yang, et al. [31] that an additional balance law is required in non-classical 
continuum theories for solids incorporating internal rotations (also see [29] 
[30]) arising from the Jacobian of deformation. In case of fluent continua, the 
existence of internal rotation rates due to the velocity gradient tensor necessi-
tates an additional balance law to ensure that in the presence of this physics the 
entire volume of fluid will remain in equilibrium. In recent papers by Surana, et 
al. [29] [30], comprehensive discussion of the work of Yang, et al. [31] as well as 
authors’ own view regarding the need for this additional balance law in 
non-classical continuum theories for solid and fluid continua have been pre-
sented. This is not repeated here for the sake of brevity. The readers can refer to 
References [29] [30] [31]. 

Balance of moments of moments (similar to balance of moments of forces in 
classical continuum theory) is an additional balance law needed due to the pres-
ence of Cauchy moment tensor that is independent of forces. In the derivation 
presented subsequently, one notes that this balance law yields the Cauchy mo-
ment tensor to be symmetric, just like the balance of angular momenta in clas-
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sical continuum theory gives rise to the symmetry of the Cauchy stress tensor. 
One can use inductive reasoning to extend this concept of the need for addition-
al balance laws when additional kinematic variables (over and beyond velocities 
and rotation rates) and their conjugates appear in the theory. One notes that 
each additional kinematic variable introduces its conjugate that requires two 
balance laws, out of which the balance law that requires their sum to balance 
with others already exists from the consideration of prior kinematic variables; 
hence the new conjugate quantities can be incorporated in it, but the other bal-
ance law that requires balance of their moments is an additional balance law. In 
other words, only one balance law is needed for each conjugate quantity corres-
ponding to each kinematic variable. 

In the non-classical continuum theory considered here for fluent continua, we 
need only one additional balance law, namely the balance of moments of mo-
ments, due to the fact that balance of moments balance law already exists from 
the classical continuum theory. Whether we consider balance of moments of 
moments as an additional balance law in non-classical continuum theories for 
fluent continua influences the derivation of the constitutive theories for the 
Cauchy moment tensor. In the present work we consider both cases and the as-
sociated constitutive theories to establish restrictions on the material coefficients 
appearing in them. 

5.1. Conservation of Mass, Balance of Linear and Angular 
Momenta 

We consider compressible fluent non-classical continua with internal rotation 
rates to present conservation and balance laws. For incompressible fluent conti-
nua, 0 constantρ ρ= =  and ( )tr 0=D , hence the conservation and balance 
laws presented here can be easily modified. 

Conservation of mass in a deforming volume of fluid leads to continuity equa-
tion that remains the same in the present work as it is for the classical conti-
nuum theory [32] [34] and is given in the following for compressible fluent con-
tinua in Eulerian description. 

( ) 0
t
ρ

ρ
∂

+ ⋅ =
∂

v∇                      (44) 

or 

( )div 0D
Dt
ρ

ρ+ =v                     (45) 

in which ( ), tρ x  is the density at a material point at x  in the current confi-
guration. 

For a deforming volume of matter, the rate of change of linear momenta must 
be equal to the sum of all other forces acting on it. This is Newton’s second law 
applied to a volume of matter. The derivation is exactly same as that for classical 
continuum theory. Following Reference [32] and using Cauchy stress tensor 
( )0 σ , we can write the following. 
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( )0 0bD
Dt

ρ ρ− − ⋅ =
v F σ∇                    (46) 

or 
( )0

0jibi i
j i

j j

v vv F
t x x

σ
ρ ρ ρ

∂∂ ∂
+ − − =

∂ ∂ ∂
               (47) 

in which bF  are body forces per unit mass and ( )0 σ  is basis independent 
Cauchy stress tensor. Equations (46) or (47) are momentum equations in 1x , 

2x , and 3x  directions. 
The principle of balance of angular momenta for a non-classical continuum 

can be stated as: The material derivative (time rate of change) of moments of 
momenta must be equal to the vector sum of the moments of forces and the 
moments. Thus, due to the surface stress P , total surface moment M  (per 
unit area), body force bF  (per unit mass), and the momentum dVρv  for an 
elemental mass dVρ  in the current configuration we can write the following in 
Eulerian description. 

( ) ( )
( )

( )
d d db

V t V t V t

D V A V
Dt

ρ ρ
∂

× = × − + ×∫ ∫ ∫x v x P M x F         (48) 

The negative sign for M  is due to the fact that clockwise rotation rates are 
considered positive. The moments created by these must also be considered pos-
itive when clockwise. Following the derivation given by Surana, et al. [1]-[6], we 
obtain 

( )

( ) ( )( )0 0
, d 0k mk m ijk ij

V t

m Vσ− =∫ e                  (49) 

Since volume V  is arbitrary, we have 
( ) ( )0 0

, 0mk m ijk ijm σ− =                     (50) 

or 
( ) ( )0 0: 0⋅ − =m σ∇                      (51) 

Equation (51) represents balance of angular momenta. The basis independent 
Cauchy stress tensor ( )0 σ  is non-symmetric and so is the basis independent 
Cauchy moment tensor ( )0 m . 

5.2. First Law of Thermodynamics 

The sum of work and heat added to a deforming volume of matter must result in 
increase of the energy of the system. This is expressed as a rate equation in Eule-
rian description in the following. 

tDE DQ DW
Dt Dt Dt

= +                      (52) 

tE , Q , and W  are total energy, heat added, and work done. These can be 
written as [1]-[6] [32] 
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( )

1 d
2

bt

V t

DE D e V
Dt Dt

ρ  = + ⋅ − ⋅ 
 ∫ v v F u               (53) 

( )
d

V t

DQ A
Dt ∂

= − ⋅∫ q n                               (54) 

( )
( )dt

i
V t

DW A
Dt ∂

= ⋅ + ⋅∫ P v M Θ                      (55) 

where e  is specific internal energy, bF  is body force vector per unit mass, 
and q  is rate of heat. Note that the additional term t

i⋅M Θ  in DW Dt  
contributes additional rate of work due to rates of internal rotations t

iΘ . Ex-
panding integrals and following Reference [32], one can show the following. 

( )

( ) ( ) ( )( )0 0 0 d 0
t

ti i i
ji ji i

V t j j

vDe m V
Dt x x

ρ σ
 ∂ ∂ Θ

+∇ ⋅ − − − ⋅ ⋅ =  ∂ ∂ 
∫ q mΘ ∇    (56) 

Since volume V  is arbitrary, the following holds: 

( ) ( ) ( )( )0 0 0 0
t

ti i i
ji ji i

j j

vDe m
Dt x x

ρ σ
 ∂ ∂ Θ

+∇ ⋅ − − + ⋅ ⋅ =  ∂ ∂ 
q mΘ ∇       (57) 

We note that in the term ( )( )0t
i ⋅ ⋅ mΘ ∇  we can substitute ( )0⋅ m∇  from the 

balance of angular momenta (51), thereby eliminating gradients of ( )0 m  but 
instead introducing Cauchy stress tensor ( )0 σ . 

5.3. Second Law of Thermodynamics 

Let η  be entropy density in deformed volume ( )V t , h  be the entropy flux 
between ( )V t  and the volume of matter surrounding it (i.e., contacting 
sources), and s  be the source of entropy in ( )V t  due to non-contacting bo-
dies, then the rate of increase of entropy in volume ( )V t  is at least equal to that 
supplied to ( )V t  from all contacting and non-contacting sources [32]. Thus 

( ) ( ) ( )
d d d

V t V t V t

D V h A s V
Dt

ηρ ρ
∂

≥ +∫ ∫ ∫                 (58) 

Using Cauchy’s postulate for h , we have 

h = − ⋅nψ                                   (59) 

( )
d 0

V t

D s V
Dt
ηρ ρ + ⋅ − ≥ 

 ∫ ψ∇                  (60) 

Since the volume V  is arbitrary, the following holds: 

0D s
Dt
η

ρ ρ+ ⋅ − ≥ψ∇                      (61) 

Using 

, rs
θ θ

= =
q

ψ                         (62) 

where θ  is the absolute temperature, q  is the heat vector, and r  is a suita-
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ble potential. Substituting for ( rρ⋅ −q∇ ) from energy equation (after inserting 
rρ  term in it) and expressing Helmholtz free energy density in terms of e , 

ρ , and θ  ( e ρθΦ = − ), we can derive the following for (61) [1]-[6] [32]: 

( )( ) ( )( )
( )( )

0 0

0

tr tr

0

t
i

t
i

D D L m J
Dt Dt

θρ η σ
θ

Θ Φ ⋅      + + − −         

− ⋅ ⋅ ≤

q g

mΘ ∇

      (63) 

in which 
t
i JΘ 
 

 is the gradient of internal rotation rates. Inequality (63) re-
sulting from the second law of thermodynamics is the most fundamental form of 
entropy inequality in Helmholtz free energy density Φ . 

5.4. Balance of Moments of Moments as a Balance Law 

In a deforming volume of matter, conservation and balance laws ensure ther-
modynamic equilibrium. Thus, in classical continuum theories, conservation of 
mass, balance of linear and angular momenta, and the first and second laws of 
thermodynamics must be satisfied. In non-classical continuum theories for sol-
ids and fluids incorporating the internal rotations (due to Jacobian of deforma-
tion) and the internal rotation rates (due to velocity gradient tensor), are the 
conservation and balance laws for classical continuum theories sufficient to 
ensure equilibrium of the deforming matter? 

Yang, et al. [31] pointed out, using geometric considerations, that in 
non-classical continuum theories, an additional balance law, balance of mo-
ments of moments, is required to ensure equilibrium of the deforming solid 
matter. Surana, et al. [1]-[10] have used this concept successfully. More recently 
Surana, et al. [29] [30] showed theoretically as well as through model problems 
that in the case of non-classical continuum theories the balance of moments of 
moments is a necessary balance law. In the absence of this balance law the con-
stitutive theories for non-classical solid and fluent continua become 
non-physical and spurious. 

Balance of moments of moments (similar to balance of moments of forces in 
classical continuum theory) is additional balance law needed due to the presence 
of Cauchy moment tensor ( )0 m  that is independent of forces. In the derivation 
presented subsequently, one notes that this balance law yields the Cauchy mo-
ment tensor ( )0 m  to be symmetric, just like the balance of angular momenta in 
classical continuum theory gives rise to the symmetry of the Cauchy stress ten-
sor. One can use inductive reasoning to extend this concept of the need for addi-
tional balance laws when additional kinematic variables (over and beyond veloc-
ities and rotation rates) and their conjugates appear in the theory. One notes that 
each additional kinematic variable introduces its conjugate that requires two 
balance laws, out of which the balance law that requires their sum to balance 
with others already exists from the consideration of prior kinematic variables; 
hence the new conjugate quantities can be incorporated in it, but the other bal-
ance law that requires balance of their moments is an additional balance law. In 
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other words, only one balance law is needed for each conjugate quantity 
corresponding to each kinematic variable [6]. 

In the non-classical continuum theory considered here for fluent continua, we 
need only one additional balance law, namely the balance of moments of mo-
ments, due to the fact that balance of moments balance law already exists from 
the classical continuum theory. Consider the current configuration at time t. 
Consider Eulerian description. For the deforming volume of fluid to be in equi-
librium, moments of moments (or couples) must vanish. In the moments of 
moments balance law, we must consider M  and also the shear components of 
the stress tensor ( )0 σ , that is, ( )0: σ . Thus, we can write the following (neg-
lecting inertial terms) in Eulerian description. 

( )( )0: d d 0
V V

V A
∂

× − × =∫ ∫x x Mσ                (64) 

We expand the second term in (64) and then convert the integral over V∂  to 
the integral over V  using the divergence theorem and use balance of angular 
momenta for further simplification to obtain the following: 

( )0 d 0k ijk ij
V

m V =∫ e                       (65) 

and since V  is arbitrary, we obtain the following form: 
( )0 0ijk ijm =                         (66) 

Equation (66) implies that the Cauchy moment tensor ( )0 m  is symmetric. 
Thus in the non-classical continuum theory presented here for fluent continua, 
the Cauchy moment tensor is symmetric if the new balance law is used but the 
Cauchy stress tensor is always non-symmetric. In the classical continuum theory, 
the Cauchy stress tensor is symmetric and the Cauchy moment tensor does not 
exist as the rotation rates are not considered in the theory. We remark here also 
as we did in our earlier papers [9] [10] [29] [30] that in most reported works on 
non-classical theories (specifically for solids) except Reference [31] this balance 
law is not considered. As a consequence the Cauchy moment tensor remains 
non-symmetric, requiring additional constitutive theories for the non-symmetric 
part of the moment tensor. However, the constitutive theory for the symmetric 
part of Cauchy moment tensor remains the same regardless of whether one uses 
balance of moments of moments as a balance law. In this paper we consider both 
cases, i.e., symmetric ( )0 m  as well as non-symmetric ( )0 m  (in the absence of 
balance of moments of moments). The resulting constitutive theories are com-
pared and the material coefficients and the restrictions on them are established. 

6. Constitutive Theories 

In this section we present constitutive theories for compressible non-classical 
fluent continua with dissipation when the balance of moments of moments is 
not considered as a balance law. Thus, ( )0 m  is non-symmetric, requiring con-
stitutive theories for ( )0

s m  as well as ( )0
a m . When the balance of moments of 
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moments is used as an additional balance law, ( ) ( )0 0
s=m m , hence, there is no 

constitutive theory for ( )0
a m . The constitutive theories for incompressible fluids 

can be easily obtained using the constitutive theories presented here for com-
pressible case by imposing restriction that 0 constantρ ρ= =  and ( )tr 0=D . 
These details are intentionally omitted for the sake of brevity. 

From entropy inequality as well as other balance laws it is straightforward to 
conclude that Φ , η , ( )0

s σ , ( )0
s m , ( )0

a m , and q  are the constitutive va-
riables. A decision on their argument tensors is facilitated if we can establish rate 
of work conjugate pairs from the entropy inequality. From the entropy inequali-
ty (63) we note that q  and g  are conjugate, but both of the trace terms con-
tain non-symmetric tensors, hence these are not conjugate pairs [35]-[54]. 

Consider decomposition of ( )0 σ , ( )0 m , L , and 
t
iΘ J  into symmetric and 

antisymmetric tensors 
( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0;

;
t t t
i i i

s a s a

s a
Θ Θ Θ

= + = +

= + = +

m m m

L D W J J J

σ σ σ
             (67) 

Note that 

( )( ) ( )( )
( )( ) ( )( )

0 0

0 0

tr 0; tr 0

tr 0; tr 0
t t
i i

s a

s a a s

W D

m J m J

σ σ

Θ Θ

      = =      

      = =      

          (68) 

and 
( ) ( )

( )( ) ( )( ) ( )( )

0 0

0 0 0

:

: :t t t
i i i a

⋅ =

⋅ ⋅ = ⋅ = ⋅

m

m

σ

σ σ

∇

Θ ∇ Θ Θ



 
          (69) 

( )( ) ( )( )0 0tr :t
a i aWσ    = − ⋅   σΘ                     (70) 

Using (67) - (70), the entropy inequality (63) reduces to 

( )( )
( )( ) ( )( )

0

0 0

tr

tr tr 0
t t
i i

s

s s a a

D D D
Dt Dt

m J m J

θ
ρ η σ

θ

Θ Θ

 Φ ⋅    + + −     

      − − ≤      

q g

            (71) 

In ( )( )0tr s Dσ       and ( )( )0tr
t
i

s sm JΘ  
   

 both tensors are symmetric and in 

( )( )0tr
t
i

a am JΘ  
   

 both tensors are antisymmetric, hence these are rate of work 

conjugate pairs. Likewise, in ( ) θ⋅q g , q  and g  are conjugate as well. 

We consider Φ , η , ( )0
s σ , ( )0

s m , ( )0
a m , and q  as possible dependent va-

riables in the constitutive theories. For compressible fluent continua, density 
must be incorporated as an argument of all dependent variables in the constitu-
tive theories. We note that compressibility is due to determinant of the Jacobian 
of deformation { } { }J = ∂ ∂x x . Recall that in Lagrangian description (from 
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continuity) ( )0 ,J tρ ρ= x , hence ( )0 ,J tρ ρ= x  in which 0ρ  is density 
in the reference configuration (constant), i.e., instead of J  we can use 

( )1 , tρ x  in Lagrangian description or ( )1 , tρ x  in Eulerian description as an 
argument of all dependent variables in the constitutive theories. At later stages 

( )1 , tρ x  can be replaced by simply ( ), tρ x  using simple calculus. 
Temperature θ  is certainly a valid choice for thermoviscous behavior. From 
the conjugate pairs in (71), we note that D , 

t
i
s
ΘJ , 

t
i
a
ΘJ , and g  are natural 

choices of argument tensors for ( )0
s σ , ( )0

s m , ( )0
a m , and q  dependent va-

riables in the constitutive theories, respectively. 
Additionally D , 

t
i
s
ΘJ , 

t
i
a
ΘJ , g , and θ  all must be considered as argu-

ment tensors of Φ  and η . Thus, at this stage we have the following for the 
dependent variables in the constitutive theories and their argument tensors. 

( ) ( )

( ) ( )

( ) ( )

0 0

0 0

0 0

1= , , , , ,

1 , , , , ,

1 , ,

1 , ,

1 , ,

1 , ,

t t
i i

t t
i i

t
i

t
i

s a

s a

s s

s s s

a a a

θ
ρ

η η θ
ρ

θ
ρ

θ
ρ

θ
ρ

θ
ρ

Θ Θ

Θ Θ

Θ

Θ

 
Φ Φ 

 

 
=  

 

 
=  

 

 
=  

 

 
=  

 

 
=  

 

D J J g

D J J g

D

m m J

m m J

q q g

σ σ

                  (72) 

Using Φ  in (72) one can obtain the material derivative of Φ  needed in 
(71). 

( ) ( )

( ) ( )

2

1
1

t
i

t
i

t
i

t
i

ik s ik
ik s ik

a ik i
ia ik

D D J
Dt D J

J g
gJ

ρ
ρ

ρ

θ
θ

Θ

Θ

Θ

Θ

 Φ ∂Φ ∂Φ ∂Φ
= Φ = − + +  ∂    ∂∂  

 

∂Φ ∂Φ ∂Φ
+ + +

∂ ∂∂

 







       (73) 

From the continuity Equation (44) 

kk ki ik
D D D
Dt
ρ

ρ ρ ρ ρ δ= = − ⋅ = − = −v ∇               (74) 

and 

2

1
ρ

ρ
ρ

∂Φ ∂Φ
− =

∂ 
∂  
 

                        (75) 

Using (74) and (75) in (73) 
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( ) ( )

( ) ( )

t
i

t
i

t
i

t
i

ik ki ik s ik
ik s ik

a ik i
ia ik

D D J
D J

J g
gJ

ρ δ
ρ

θ
θ

Θ

Θ

Θ

Θ

∂Φ ∂Φ ∂Φ
Φ = + +

∂ ∂ ∂

∂Φ ∂Φ ∂Φ
+ + +

∂ ∂∂

 





            (76) 

Substituting (76) into (71) and regrouping terms 

( )

( ) ( )

( ) ( )

( )( ) ( )( )

02

0 0tr tr 0

t
i

t
i

t
i

t
i

t t
i i

ki s ik ik ik s ik
ik s ik

a ik i
ia ik

s s a a

D D J
D J

J g
gJ

m J m J

ρ δ σ ρ ρ
ρ

ρ ρ ρ η θ
θ θ

Θ

Θ

Θ

Θ

Θ Θ

 ∂Φ ∂Φ ∂Φ
− + + ∂ ∂  ∂

 ∂Φ ∂Φ ∂Φ ⋅
+ + + + + ∂ ∂ ∂

      − − ≤      

q g

 



         (77) 

For inequality (77) to hold for arbitrary but admissible D , 
t
i
s
ΘJ , 

t
i
a
ΘJ , g , 

and θ  the following must hold. 

0 0
ik ikD D

ρ
∂Φ ∂Φ

= ⇒ =
∂ ∂

                       (78) 

( ) ( )
0 0

t t
i i
s ik s ikJ J

ρ
Θ Θ

∂Φ ∂Φ
= ⇒ =

∂ ∂
                 (79) 

( ) ( )
0 0

t t
i i
a ik a ikJ J

ρ
Θ Θ

∂Φ ∂Φ
= ⇒ =

∂ ∂
                 (80) 

0 0
i ig g

ρ
∂Φ ∂Φ

= ⇒ =
∂ ∂

                         (81) 

0 0ρ η η
θ θ

 ∂Φ ∂Φ
+ = ⇒ + = ∂ ∂ 

                 (82) 

and 

( ) ( )( ) ( )( )0 0 02 tr tr 0
t t
i ii i

ki s ik s s a a
q gik D m J m Jρ δ σ

ρ θ
Θ Θ ∂Φ       − + − − ≤        ∂ 

 (83) 

Equations (78)-(83) are fundamental relations resulting from the entropy in-
equality. 

Remarks. 
a) Equations (78)-(81) imply that Φ  is not a function of D , 

t
i
s
ΘJ , 

t
i
a
ΘJ , 

and g . 
b) Based on (82), η  is not a dependent variable in the constitutive theory as 

η
θ
∂Φ

= −
∂

, hence η  is deterministic from Φ . 

c) The inequality (83) in this form is essential. For example, if we set 
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( )02 0ki s ikρ δ σ
ρ

∂Φ
− =

∂
                      (84) 

and 

( )( ) ( )( )0 0tr tr 0
t t
i ii i

s s a a
q g m J m J
θ

Θ Θ      − − ≤      
            (85) 

then from (84) we note that ( )0
s σ  is not a function of D  as Φ  is not a func-

tion of D , which is a contradiction as ( )0
s σ 

   and D    are conjugate. 
In view of these remarks, the arguments of the dependent variables in the 

constitutive theories in (72) can be modified. We can use ( ), tρ x  instead of  

( )
1

, tρ x
. 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

0 0

0 0

0 0

,0,0,0,0,

, ,

, ,

, ,

, ,

t
i

t
i

s s

s s s

a a a

ρ θ

ρ θ

ρ θ

ρ θ

ρ θ

Θ

Θ

Φ = Φ

=

=

=

=

D

m m J

m m J

q q g

σ σ

                     (86) 

We note that even though in (86) we do have argument tensors of the depen-
dent variables in the constitutive theory, resolution of the first term in the en-
tropy inequality (83) is essential before we can proceed further. 

Decomposition of Symmetric Cauchy Stress Tensor ( )
sσ

0  
We consider decomposition of ( )0

sσ  into equilibrium and deviatoric stress 
tensors, ( )( )0

se
σ  and ( )( )0

sd
σ . The motivation for doing this is to separate the 

stress tensor σ(0)
s  into one that is purely responsible for change in volume and 

another one that only causes change in shape, i.e., distortion. 
( ) ( )( ) ( )( )0 0 0

s s se d
= +σ σ σ                      (87) 

in which we consider the following 
( )( ) ( )( )( )
( )( ) ( )( )( )
( )( ) ( )( )( )

0 0

0 0

0 0

,0,

, ,

,0, 0

s se e

s sd d

s sd d

ρ θ

ρ θ

ρ θ

=

=

= =

D

σ σ

σ σ

σ σ

                  (88) 

That is, ( )( )0
se
σ  is not a function of D  and ( )( )0

sd
σ  vanishes when D  is 

zero. Substituting (87) into entropy inequality (83) and rearranging terms 

( )( ) ( )( )
( )( ) ( )( )

0 02

0 0tr tr 0
t t
i i

i i
ki s ik s ike ik d ik

s s a a

q gD D

m J m J

ρ δ σ σ
ρ θ

Θ Θ

 ∂Φ
− + − ∂ 

      − − ≤      

           (89) 
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6.1. Constitutive Theory for Equilibrium Stress ( )( )s
e

σ0 : 

Compressible Thermofluids 

Since Φ  is not a function of D  and neither is ( )( )0
se
σ  (due to (88)), the 

constitutive theory for ( )( )0
se
σ  must be derivable from 

( )( ) ( )

( )( ) ( )[ ]

0 2

0

,

,

s ki kie ik

se

p

p I

σ ρ δ ρ θ δ
ρ

σ ρ θ

∂Φ
= =

∂

  =  

                (90) 

in which 

( ) 2,p ρ θ ρ
ρ

∂Φ
=

∂
                       (91) 

( ),p ρ θ  is called thermodynamic pressure and is generally referred to as equa-
tion of state [32] [34] in which p  is expressed as a function of ρ  and θ  or 

1v
ρ

=  and θ , where v  is specific volume. If we assume compressive pres-  

sure to be positive, then ( ),p ρ θ  in (90) can be replaced by ( ),p ρ θ− . Using 
(90), inequality (89) reduces to 

( )( ) ( )( ) ( )( )0 0 0tr tr 0
t t
i ii i

s ik s s a ad ik

q g D m J m Jσ
θ

Θ Θ      − − − ≤      
      (92) 

6.2. Constitutive Theory for Equilibrium Stress ( )( )s
e

σ0 : 

Incompressible Thermofluids 

For incompressible matter density is constant, hence 0ρ ρ= . For this case 

0
ρ

∂Φ
=

∂
, hence the constitutive theory for this case cannot be derived using 

(90), instead we must consider 1J = . We must incorporate the incompressi-
bility condition in the entropy inequality. We recall that the incompressibility 
condition in Eulerian description is given by 

tr 0ik kiD D δ ⋅ = = = v∇                   (93) 

Based on (93), we can write 

( ) 0ik kip Dθ δ =                       (94) 

in which ( )p θ  is an arbitrary Lagrange multiplier. Adding (94) to (89) and 

realizing that for incompressible matter 0
ρ

∂Φ
=

∂
, we obtain 

( ) ( )( )( ) ( )( )
( )( ) ( )( )

0 0

0 0tr tr 0
t t
i i

i i
ki s ik s ike ik d ik

s s s s

q gp D D

m J m J

θ δ σ σ
θ

Θ Θ

− + −

      − − ≤      

          (95) 
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In case of incompressible fluids ( )( )0
se
σ  is a function of θ  only, hence we 

have 

( )( ) ( ) ( )( ) ( )[ ]0 0ors ik se ik e
p p Iσ θ δ σ θ = =  

           (96) 

( )p θ  is called mechanical pressure. Since ( )p θ  is an arbitrary Lagrange 
multiplier, it is not deterministic from the deformation field. In view of (96), in-
equality (95) also reduces to (92), that is, (92) holds for both compressible and 
incompressible matter. 

The final form of the entropy inequality is given by 

( )( ) ( )( ) ( )( )0 0 0tr tr 0
t t
i ii i

s ik s s s sd ik

q g D m J m J
θ

Θ Θ      − − − ≤      σ      (97) 

This form of the entropy inequality has all the conjugate pairs needed for con-
stitutive theories. 

6.3. Final Choice of the Dependent Variables and Their Argument 
Tensors in the Constitutive Theories 

In view of the stress decomposition, constitutive theories for ( )( )0
se
σ , and the 

conjugate pairs in (92), we finally can write the following. 
Compressible Matter 

( )
( ) ( )( ) ( )( )

( )( ) ( ) ( )
( )( ) ( )( )( )

0 0 0

0 2

0 0

,

, ; ,

, ,

s s se d

se

s sd d

p p

ρ θ

ρ θ ρ θ ρ
ρ

ρ θ

Φ = Φ

= +

∂Φ
= =

∂

=

I

D

σ σ σ

σ

σ σ

             (98) 

( ) ( ) ( )
( ) ( ) ( )

( )

0 0

0 0

, ,

, ,

, ,

t
i

t
i

s s s

a a a

ρ θ

ρ θ

ρ θ

Θ

Θ

=

=

=

m m J

m m J

q q g

 

If compressive pressure is considered positive, then ( ),p ρ θ  can be replaced 
by ( ),p ρ θ−  in (98). 

Incompressible Matter 
In this case 0ρ ρ= , constant, hence we have 

( )
( ) ( )( ) ( )( )

( )( ) ( )
( )( ) ( )( )( )

0 0 0

0

0 0

; 0

,

s s se d

se

s sd d

p

θ

θ
ρ

θ

Φ = Φ

= +

∂Φ
= =

∂

=

I

D

σ σ σ

σ

σ σ

                   (99) 
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( ) ( ) ( )
( ) ( ) ( )

( )

0 0

0 0

,

,

,

t
i

t
i

s s s

a a a

θ

θ

θ

Θ

Θ

=

=

=

m m J

m m J

q q g

 

The choice of argument tensors for ( )( )0
sd
σ  can be modified and made more 

general by recognizing that 

( )
( )1

1= =D γ γ                            (100) 

( )1γ  and ( )1γ  being the first convected time derivatives of Green’s and Almansi 
strain tensors in covariant and contravariant bases. Let 

( )
( ) ( ), , and ; 1,2, ,k k J

k k n= γ γ γ                   (101) 

be the convected time derivatives of Green’s and Almansi strain tensors and 
Jaumann rates up to order n. We note that contravariant stress measure is con-
jugate with the covariant convected time derivatives and likewise covariant stress 
measure is conjugate with contravariant convected time derivatives. Thus with 

( )( )0
sd
σ  as deviatoric stress measure its argument ( )1=D γ  (same as ( )1γ ) can 

be replaced by ( ); 1, 2, ,k k n= γ  in (98) and (99). Using the basis independent 
notation, we consider 

( )( ) ( )( ) ( )( )0 0 , ; 1, 2, , ,k
s sd d

k nρ θ= = σ σ γ               (102) 

in (98) for compressible case (all others remaining same) and 
( )( ) ( )( ) ( )( )0 0 ; 1, 2, , ,k

s sd d
k n θ= = σ σ γ                 (103) 

in (99) for incompressible case (all others remaining same). 

6.4. Conditions to be Satisfied by the Constitutive Theories 

The final form of the entropy inequality (97) must be satisfied by the constitutive 
theories for ( )0

sσ , ( )0
s m , ( )0

a m , and q . The entropy inequality (97) is satisfied 
if 

( )( )( )( )
( )( )( )
( )( )( )

0

0

0

0

0

0

0

t
s i

t
a i

s
d d s ikik

m
d s ik s ik

m
d a ik a ik

i i

D

m J

m J

q g

σ

θ

Θ

Θ

Ψ = ≥

Ψ = ≥

Ψ = ≥

≤

                    (104) 

The inequalities in (104) imply that the rate of work due to ( )( )0
sd
σ , ( )0

s m , 
and ( )0

a m  (i.e., s
dΨ , s m

dΨ , and a m
dΨ ) must be positive. Thus, the constitu-

tive theories for ( )0
sσ , ( )0

s m , ( )0
a m , and q  must ensure that the inequalities in 

(104) are satisfied. In other words, the inequalities in (104) form the basis for 
determining restrictions on the material coefficients. We note that any other 
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means of determining restrictions on the material coefficients in the constitutive 
theories do not have thermodynamic basis. In this paper we use inequalities 
(104) to determine restrictions on the material coefficients in the constitutive 
theories for non-classical thermoviscous compressible and incompressible fluids 
as well as classical fluids. 

6.5. Theory of Generators and Invariants (Representation 
Theorem) 

In the following sections we present derivations of the constitutive theories for 
( )( )0

sd
σ , ( )0

s m , ( )0
a m , and q  using theory of generators and invariants (re-

presentation theorem) based on pioneering works of Spencer, Wang, Zheng, etc. 
[35]-[54]. To illustrate the basic concepts of representation theorem, consider a 
symmetric tensor ( )1 2, , , kT A A A

 of rank r with 1 2, , , kA A A  as its argu-
ments that could be a mix of tensors of rank r or lower. If tensor T  belongs to 
a space, then the space must have a basis, referred to as integrity. It has been 
shown that for a symmetric tensor T  of rank r the basis consists of all possible 
tensors of rank r that are derived using its arguments , 1, 2, ,i i k=A  , called the 
combined generators of the argument tensors. If I , , 1, 2, ,i i N=G 



 are the 
combined generators constituting the basis of the of space of tensor T , then we 
can represent T  by a linear combination of I , , 1, 2, ,i i N=G 



, i.e. 

0

1

N
i

i
i

α α
=

= +∑T I G


                             (105) 

( ); 1, 2, , ; 0,1, ,i i jI j M i Nα α= = = 



          (106) 

in which ; 1, 2, ,jI j M= 



 are the combined invariants of the argument ten-
sors of ( )⋅T . 

Remarks. 
1) When T  is an antisymmetric tensor of rank r then the same representa-

tion theorem concept applies except that in this case the combined generators 

iG


 will all be antisymmetric tensors of rank r. 
2) It has not been shown in references [35]-[54] or elsewhere, to our know-

ledge, that if T  is a non-symmetric tensor of some rank with non-symmetric 
tensors as its arguments, then the representation theorem holds. 

3) Material coefficients are derived from ( ) , 0,1, ,i i Nα ⋅ =   using Taylor 
series expansion in the invariants and others (like temperature θ ) about a 
known configuration. 

4) We use the representation theorem to derive constitutive theories for 
( )( )0

sd
σ , ( )0

s m , ( )0
a m , and q  and consider their simplified forms to illustrate 

the restrictions on the material coefficients. 

6.6. Constitutive Theory for ( )( )0
sd
σ : Compressible Matter  

Consider 
( )( ) ( )( ) ( )( )0 0 , ; 1, 2, , ,k

s sd d
k nρ θ= = σ σ γ              (107) 
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( )( )0
sd
σ  is a symmetric tensor of rank two whose arguments are ρ , a tensor of 

rank zero, ( ) ; 1, 2, ,k k n= γ , all symmetric tensors of rank two, and θ , a ten-
sor of rank zero. Based on the theory of generators and invariants, ( )( )0

sd
σ  can 

be expressed as a linear combination of the combined generators of its argument 
tensors that are symmetric tensors of rank two. 

Let I, ; 1, 2, ,s i i Nσ =G 



 be the combined generators of the argument tensors 
of ( )( )0

sd
σ  that are symmetric tensors of rank two and ; 1, 2, ,s jI j Mσ = 



 be 
the combined invariants of the same argument tensors of ( )( )0

sd
σ , then we can 

write 

( )( ) ( )0 0

=1

s s s
N

i i
sd i

σ σ σα α= +∑I G
  

σ                 (108) 

in which 

( ), ; 1, 2, , ,s s si i jI j Mσ σ σα α ρ θ= = 

 

              (109) 

We note that (108) and (109) hold in the current configuration in which the 
deformation is not yet known, hence s iσα



 are not material coefficients. To de-
termine or establish material coefficients from (109), we consider Taylor series 
expansion of each ; 0,1, ,s i i Nσα = 



 in ; 1, 2, ,s jI j Mσ = 



 and θ  about a 
known configuration Ω  of the deforming volume of matter and retain only up 
to linear terms in the invariants and θ  (for simplicity). Following reference 
[32], we can derive 

( )( ) ( ) ( ) ( )

( )( ) ( )( )

0 0

1 1

1 1 1

s ss s s

s s s s s

M N
j i

s tmj id j i

N M N
j i i

ij i
i j i

a I b

c I d

σ σσ σ σ

σ σ σ σ σ

σ α θ θ

θ θ

ΩΩ

Ω

= =

= = =

= + − − +

+ + −

∑ ∑

∑∑ ∑

I I I G

G G

  

   

σ

  (110) 

s
jaσ , s

ibσ , s
ijcσ



, s
idσ



, and s
tm

σα


 are material coefficients defined in known 
configuration Ω . This constitutive theory requires ( )1M N MN N+ + + +  
material coefficients. The material coefficients are functions of ρ

Ω
, ( )s jIσ

Ω


, 
and θ

Ω
. This constitutive theory is nonlinear in the components of the augu-

ment tensors of ( )( )0
sd
σ  and is based on integrity, the only assumption being in 

the Taylor series expansion of ; 0,1, ,s i i Nσα = 



. 

Rate Constitutive Theory of Order One ( )n = 1  for ( )( )sd
σ0 : 

Compressible Matter 
In this case we limit the number of argument tensors of ( )( )0

sd
σ  to ρ , ( )1γ  

(or D ), and θ  by choosing 1n = . That is, we consider 
( )( ) ( )( )( )0 0 , ,s sd d

ρ θ= Dσ σ                  (111) 

Based on (111) we have 
1 2 2; ; 2s s Nσ σ= = =G D G D
 

               (112) 

and 
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( ) ( ) ( )1 2 2 3 3tr ; tr ; tr ; 3s s sI I I Mσ σ σ= = = =D D D
  

        (113) 

In (113) we could have also considered principal invariants of D . Since the 
two sets of invariants are related, the resulting constitutive theory is unaffected. 
Thus 

( )( ) ( )
2

0 0

1

s s si i
sd i

σ σ σα α
=

= +∑I G
  

σ                  (114) 

Using (112) and (113) for 2N =  and 3M =  in the general expression (110) 
we can obtain the following explicit expression for the first order ( 1n = ) consti- 
tutive theory for ( )( )0

sd
σ . 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

( )

0 0 2 3
1 2 3

2
111 2

2 3 2
12 13 21

2 2 3 2
22 23 1

2
2

tr tr tr

tr

tr tr tr

tr tr

s s s

s ss s

s s s

s s s

s

sd

tm

a a a

b b c

c c c

c c d

d

σ σ σ

σ σσ σ

σ σ σ

σ σ σ

σ

σ

α θ θ

θ θ

θ θ

Ω

Ω

Ω

Ω

= + + +

− − + + +

+ + +

+ + + −

+ −

I D I D I D I

I D D D D

D D D D D D

D D D D D

D



  

  



σ

   (115) 

This constitutive theory requires 14 material coefficients and contains up to 
fifth degree terms in the components of D . 

6.7. Constitutive Theory for ( )
s m0 : Compressible Matter 

Using (98) defining the argument tensors of ( )0
s m , we have 

( ) ( ) ( )0 0 , ,
t
i

s s sρ θΘ=m m J                     (116) 

( )0
s m  and 

t
i
s
ΘJ  are both symmetric tensors of rank two and ρ  and θ  are 

tensors of rank of zero. Based on the theory of generators and invariants (i.e., 
representation theorem), ( )0

s m  can be expressed as a linear combination of the 
combined generators of its argument tensors that are symmetric tensors of rank 
two. I , 

t
i
s
ΘJ , and ( )2t

i
s
ΘJ  are the combined generators of ρ , 

t
i
s
ΘJ , and θ  

that are symmetric tensors of rank two. Thus, based on representation theorem, 
we can write 

( ) ( ) ( )2
0 0 1 2t t

s s i s im m m
s s sα α αΘ Θ= + +m I J J

  

            (117) 

in which 

( ), ; 1, 2,3,s s sm m mi i jI jα α ρ θ= =
 

               (118) 

; 1, 2,3s m jI j =


 are the combined invariants of the argument tensors of ( )0
s m  in 

(116). We can either choose 

( ) ( ) ( )2 3
1 2 3tr ; tr ; tr

t t t
s i s i s im m m

s s sI I IΘ Θ Θ   = = =   
   

J J J
  

      (119) 
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or the principal invariants of 
t
i
s
ΘJ , i.e., t

i s

I
Θ 

 
 

J
, t

i s

II
Θ 

  
 

J
, and t

i s

III
Θ 

  
 

J
. In the  

following derivation we consider (119). To derive material coefficients using 
(118), we expand each s m iα



; 0,1,2i =  in Taylor series in s m jI


; 1,2,3j =  and 
θ  about a known configuration Ω  and retain only up to linear terms in the 
invariants s m jI



 and θ  (for simplicity). Following Reference [32] we can derive 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 3
0 0

1 2 3

2

111 2

2 3

12 13

2 2 2

21 22

tr tr tr

tr

tr tr

tr tr

t t t
s s si i i

t t t t
s si i s i i

t t t t
s i i s i i

t t t t
s i i s i i

m m m
s s s s

m m m
s s s s

m m
s s s s

m m
s s s s

m a a a

b b c

c c

c c

Θ Θ Θ

Ω

Θ Θ Θ Θ

Θ Θ Θ Θ

Θ Θ Θ Θ

   = + + +   
   

+ + +

   + +   
   

 + +  
 

m I J I J I J I

J J J J

J J J J

J J J J



 

 

( ) ( ) ( )( )

( ) ( )( )

3 2

23 1

2

2

tr
t t t

s i i s i

t
s s i

m m
s s s

m m
tm s

c d

I d

θ θ

α θ θ θ θ

Θ Θ Θ
Ω

Θ
Ω Ω

 + + − 
 

− − + −

J J J

J

 

 

 (120) 

This constitutive theory requires determination of 14 material coefficients, all 
evaluated in a known configuration Ω . This constitutive theory is based on in-
tegrity. The only assumption is in Taylor series expansion of s m iα



; 0,1,2i = . 
Material coefficients s m

ja , s m
ib , s m

ijc


, and s m
id


 are functions of ρΩ , 

( )s m jI
Ω



, and θΩ . This constitutive theory requires ( 1M N MN N+ + + + ) ma-
terial coefficients. The constitutive theory is also nonlinear in the argument ten-
sors and is based on integrity, the only assumption being Taylor series expansion 
of s m iα



; 0,1, ,i N= 
. 

6.8. Constitutive Theory for ( )
a m0 : Compressible Matter 

Consider (using (98)) 

( ) ( ) ( )0 0 , ,
t
i

a a aρ θΘ=m m J                     (121) 

We note that ( )0
a m  and 

t
i
a
ΘJ  are both antisymmetric tensors of rank two and 

ρ  and θ  are tensors of rank zero. We have the following invariants for 
t
i
a
ΘJ . 

( )

( )

2

2

10; tr 0; 0
2

0; tr 0; 0

t
i

t t t
i i ia a a

t
i

t t t
i i ia a a

a
J J J

a
J J J

I II III

i ii iii

Θ Θ Θ

Θ Θ Θ

Θ
     
          
     

Θ
     
          
     

 = = − ≠ = 
 

 = = ≠ = 
 

J

J

       (122) 

Thus, the only non-zero invariants in this case are t
i a J

II
Θ 

  
 

 and t
i a J

ii
Θ 

  
 

. These 
are obviously related. 
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1
2t t

i ia aJ J
II ii

Θ Θ   
      
   

= −                       (123) 

Let 1a
t
i a

m

J
I ii

Θ 
  
 

=  be the non-zero combined invariant of the argument ten-  

sors of ( )0
a m  in (121). The combined generators of the argument tensors of 

( )0
a m  that are antisymmetric tensors of rank two only include 

t
i
a
ΘJ . Hence, we 

can write 

( ) ( )0 t
a im

a aα Θ=m J


                         (124) 

( )1, ,a a am m mIα α ρ θ=
 

                    (125) 

To determine material coefficients in the constitutive theory for ( )0
a m  in 

(124), we expand a mα


 in (125) in Taylor series in 1a mI


 and θ  about a 
known configuration Ω  and retain only up to linear terms in 1a mI



 and θ . 
Following Reference [32], we can derive 

( ) ( ) ( )( ) ( )( )0 1
11 21

t t t
a i a a i a im m m m

a a a ab c I d θ θΩ
Θ Θ Θ= − + − −m J J J

 

      (126) 

This constitutive theory requires three material coefficients, 1
a mb , 11

a mc


, and 

2
a md


. However, if the ( )θ θΩ−  term is neglected then the constitutive theory 
(126) only requires two material coefficients, 1

a mb  and 11
a mc


. This constitutive 
theory contains up to cubic terms in the components of the antisymmetric ten-
sor 

t
i
a
ΘJ , hence is a nonlinear constitutive theory in the components of 

t
i
a
ΘJ . 

6.9. Constitutive Theory for Heat Vector q  

Recall the inequality (104) resulting from the second law of thermodynamics. 

( )0 as 0θ⋅ ≤ >q g                       (127) 

In (127), q  and g  are conjugate. The simplest possible constitutive theory 
for q  can be derived by assuming that q  is proportional to −g  which 
leads to the following constitutive theory for q : 

( )k θ= −q g                          (128) 

Alternatively, if we assume 

( ), ,ρ θ=q q g                         (129) 

then using representation theorem, we can begin with (as g  is the only com-
bined generator of ρ , g , and θ  that is a tensor of rank 1) 

qα=q g


                          (130) 

in which 

( ), , ;q q q qI Iα α ρ θ= = ⋅g g
  

                  (131) 

qI


 being the only invariant of the argument tensors ρ , g , and θ . Expand-
ing qα



 in Taylor series in qI


 and θ  about a known configuration Ω  and 
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retain only up to linear terms in qI


 and θ , we obtain the following [32]: 

( ) ( )1 2k k k θ θΩΩ Ω Ω
= − − ⋅ − −q g g g g g              (132) 

in which 

( )
( ) ( ) ( )

( )
( )

1 2; ;
q q q

q q
q q

k I k k
I I

α α α
α

θΩ Ω ΩΩ Ω

Ω Ω Ω

∂ ∂ ∂
= − = = −

∂∂ ∂
  



 

    (133) 

This nonlinear constitutive theory is a complete constitutive theory based on 
the representation theorem (using (130) and (131)). The only assumption in the 
constitutive theory is the truncation of the Taylor series beyond linear terms in 
qI


 and θ . Obviously standard Fourier heat conduction law (128) is a subset of 
(133) when k is the only material coefficient that only depends on temperature 
θ . 

7. Restrictions on the Material Coefficients in the 
Constitutive Theories for ( )( )s

d
σ0 , ( )

s m0 , ( )
a m0 , and q  

In this section we consider the constitutive theories for ( )( )0
sd
σ , ( )0

s m , ( )0
a m , 

and q  derived using 
( )( ) ( )( )( )

( ) ( ) ( )
( ) ( ) ( )

( )

0 0

0 0

0 0

, ,

, ,

, ,

, ,

t
i

t
i

s sd d

s s s

a a a

ρ θ

ρ θ

ρ θ

ρ θ

Θ

Θ

=

=

=

=

D

m m J

m m J

q q g

σ σ

                  (134) 

with these argument tensors, the constitutive theories are basis independent as  
( )

( )
1

1 Dγ γ     = =       and 
t
i
s
ΘJ  and 

t
i
a
ΘJ  are basis independent as well. When  

D    is replaced with ( )k γ 
  ; 1,2, ,k n=  , the constitutive theories for the 

deviatoric part of the symmetric Cauchy stress tensor become basis dependent. 
Thus, in what follows, we could replace ( )( )0

sd
σ , ( )0

s m , and ( )0
a m  in (134) with 

( )sd
σ , s m , and a m , but instead we continue with the notation in (134) as 

this is more general and holds when the constitutive theories are basis depen-
dent. For simplicity we neglect ( )θ θΩ−  term and ( )0 σ

Ω
I  terms without loss 

of generality. 

7.1. Constitutive Theory for ( )( )sd
σ0  

7.1.1. Compressible Matter 
We consider the constitutive theory for ( )( )0

sd
σ  given by (115) derived from 

the conditions (Equation (104)) resulting from entropy inequality. The constitu-

tive theory for ( )( )0
sd
σ  must satisfy 
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( )( )( )0tr 0s
d d s Dσ   Ψ = >  

                   (135) 

Substituting for ( )( )0
sd
σ  from (115) in (135) (after neglecting first term and 

( )θ θΩ−  term) the following must hold (redefining 1 2s bσ µ=  and 1
s aσ λ=  

to conform to standard notation used in fluid mechanics). 

( )( )( )
( )( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

0

2 2 3
2 3

222 3 2
11 122

3 2 3
13 21

22 3 3
22 23

tr

tr tr tr tr tr

2 tr tr tr tr

tr tr tr tr

tr tr tr 0

s s

s s

s s

s s

s
d d s

s

D

a a

b c c

c c

c c

σ σ

σ σ σ

σ σ

σ σ

σ

λ

µ

   Ψ =   

= + +

+ + + +

+ +

+ + >

D D D D D

D D D D

D D D D

D D D

 

 

 

    (136) 

In inequality (136) some trace terms with the material coefficients are always 
positive whereas the others may be positive or negative. We note that for arbi-
trary but admissible choice of D , the following holds. 

( ) ( ) ( ) ( ) ( ) ( )2 3tr , ve or ve ; tr , ve ; tr , ve or ve+ − + + −D D D       (137) 

Using (137), we can determine the signs of the terms containing products of 
the trace terms in (136). To ensure that 0s

dΨ >  always holds regardless of 
those terms that can be negative, the material coefficients corresponding to these 
terms must be set to zero so that 0s

dΨ >  always holds for all arbitrary but 
admissible choices of D . This gives 

( )( )( )
( )( ) ( ) ( )( )

( )( ) ( )( )

0

2 22
11

2 22 3
12 23

tr

tr 2 tr tr

tr tr

s

s s

s
d d s D

c

c c

σ

σ σ

σ

λ µ

   Ψ =   

= + +

+ +

D D D

D D



 

            (138) 

with the following restrictions on the material coefficients 

13 21 222 3 2

11 12 23

0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0

s s s s s s

s s s

a a b c c c

c c c

σ σ σ σ σ σ

σ σ σλ µ

= = = = = =

> > > > >

  

  

      (139) 

with these restrictions on the material coefficients the constitutive theory for 
( )( )0

sd
σ  becomes 

( )( ) ( ) ( ) ( ) ( )0 2 3 2
11 12 232 tr tr tr trs s s

sd
c c cσ σ σµ λ= + + + +D D I D D D D D D
  

σ  (140) 

This constitutive theory (140) for ( )( )0
sd
σ  satisfies the condition 0s

dΨ >  
for arbitrary but admissible D  as required by the entropy inequality. 

7.1.2. Incompressible Matter 
For incompressible fluids 0 constantρ ρ= =  and ( )tr 0=D , hence s

dΨ  and 
( )( )0

sd
σ  reduce to 
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( ) ( )( ) ( )( )2 22 2 3
12 232 tr tr tr 0s ss

d c cσ σµΨ = + + >D D D
 

       (141) 

( )( ) ( ) ( )0 2 3 2
12 232 tr trs s

sd
c cσ σµ= + +D D D D D
 

σ              (142) 

The restrictions on the material coefficients are the same as in (139). The con-
stitutive theory (142) ensures that s

dΨ  in (104) is positive, hence satisfies en-
tropy inequality. 

7.2. Constitutive Theory for ( )
s m0 : Compressible and 

Incompressible Matter 

We consider the constitutive theory for ( )0
s m  given by (120) derived using in-

tegrity. From the conditions (equation (104)) resulting from the entropy inequa-
lity, the constitutive theory for ( )0

s m  must satisfy 

( )( )0tr 0
t

s im
d s sm Θ  Ψ = >   J                  (143) 

Substituting for ( )0
s m  from (120) in (143) (after neglecting the first term and 

( )θ θΩ−  without loss of generality) the following must hold (redefining 

11 2s m b µ=  and 11
s m a λ=  to conform with the notations used for the constitu-

tive theory for ( )( )0
sd
σ ). 

( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( )

2 2
0

1 2

3 2 3

13 2

22 2

11 12

3 2

13

tr tr tr tr

tr tr 2 tr( ) tr

tr tr

tr tr

t t t t
s i i s i i

t t t t
s si i i i

t t
s i s i

t t
s i i s

m m
d s s s s s

m m
s s s s

m m
s s

m m
s s

m J a

a b

c c

c

λ

µ

Θ Θ Θ Θ

Θ Θ Θ Θ

Θ Θ

Θ Θ

   Ψ = = +       

   + + +   
   

  + +   
  

   + +   
   

J J J

J J J J

J J

J J

 



( ) ( )

( ) ( ) ( )

3

21

22 3 3

22 23

tr tr

tr tr tr 0

t t
i i

t t t
s i i s i

s s

m m
s s s

c

c c

Θ Θ

Θ Θ Θ

 
 
 

      + + >      
      

J J

J J J



 

   (144) 

In inequality (144) some trace terms with the material coefficients are always 
positive, whereas the others may be positive or negative, hence the products of 
such terms are not ensured to be positive. We note that 

( ) ( ) ( ) ( ) ( ) ( )
2 3

tr , ve or ve ; tr , ve ; tr , ve or ve
t t t
i i i
s s s
Θ Θ Θ   + − + + −   

   
J J J  (145) 

Using (145) we can determine the signs of terms continuing products of the 
trace terms in (144). To ensure that 0s m

dΨ >  always holds regardless of those 
terms that can be negative, the material coefficients corresponding to those 
terms that can be negative must be set to zero so that 0s m

dΨ >  always holds 
for all arbitrary but admissible choices of 

t
i
s
ΘJ . This gives 

 

DOI: 10.4236/am.2018.91005 75 Applied Mathematics 
 

https://doi.org/10.4236/am.2018.91005


K. S. Surana et al. 
 

( )( ) ( ) ( )( )

( ) ( )

2 22

1 1 11

222 3

12 23

tr 2 tr tr

tr( ) tr

t t t
s i i s i

t t
s i s i

m m
d s s s

m m
s s

c

c c

λ µΘ Θ Θ

Θ Θ

 Ψ = + + 
 

    + +     
    

J J J

J J



 

       (146) 

with the following restrictions on the material coefficients. 

13 21 222 3 2

1 1 11 12 23

0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0

s s s s s s

s s s

m m m m m m

m m m

a a b c c c

c c cλ µ

= = = = = =

> > > > >

  

  

     (147) 

with these restrictions on the material coefficients, the constitutive theory for 
( )0

s m  becomes 

( ) ( ) ( )

( ) ( ) ( )

0
1 1 11

2 3 2

12 12

2 tr tr

tr tr

t t t t
i i s i i

t t t t
s i i s i i

m
s s s s s

m m
s s s s

c

c c

µ λΘ Θ Θ Θ

Θ Θ Θ Θ

= + +

   + +   
   

m J J I J J

J J J J



 

       (148) 

This constitutive theory for ( )0
s m  satisfies the condition 0s m

dΨ >  for arbi-
trary but admissible 

t
i
s
ΘJ  as required by entropy inequality. 

7.3. Constitutive Theory for ( )
a m0 : Compressible and 

Incompressible Matter 

Consider the constitutive theory for ( )0
a m  given by (126) derived using integrity. 

From the conditions (Equation (104)) resulting from the entropy inequality, the 
constitutive theory for ( )0

a m  must satisfy 

( )( )0tr 0
t

a im
d a am JΘ  Ψ = >   

                  (149) 

Substituting for ( )0
a m  from (126) into (149) (after neglecting the first term 

and ( )θ θΩ−  without loss of generality) the following must hold (redefining 

1
a mb β=  and 11 1

a mc β=


). 

( ) ( )
22 2

1tr tr
t t

a i im
d a aβ βΘ Θ    Ψ = − +     

    
J J             (150) 

We note that ( )2
tr

t
i
a
Θ 

 
 

J  is negative, hence 

10 and 0β β> >                      (151) 

are the restrictions on the material coefficients that ensure that 0a m
dΨ >  holds 

for arbitrary but admissible choices of 
t
i
a
ΘJ  tensor. 

7.4. Constitutive Theory for q  

Consider the constitutive theory for q  derived based on integrity [32] using 

( ), ,ρ θ=q q g  given by (132). The conditions (Equation (104)) resulting from 
the entropy inequality require that 
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0 or 0 as 0 always holdsθ
θ
⋅

≤ ⋅ ≤ >
q g q g           (152) 

Substituting q  from (132) in (152), the following must hold (dropping Ω  
for k  and 1k ). 

( )( )1 0k k⋅ = − ⋅ − ⋅ ⋅ ≤q g g g g g g g               (153) 

Since 0⋅ ≥g g , the inequality (152) is satisfied for arbitrary but admissible 
choices of g  if 

10 and 0k k> >                      (154) 

The conditions on k  and 1k  are the restrictions on these material coeffi-
cients due to the condition (152) resulting from the entropy inequality. 

8. Remarks Regarding Constitutive Theories and 
Restrictions on the Material Coefficients 

1) The entropy inequality provides two important pieces of information: the 
first one, the conjugate pairs, is crucial in determining the constitutive theories 
and the second, dissipation functions and ⋅q g , provides mechanism for estab-
lishing restrictions on the material coefficients in the constitutive theories. 

2) The conjugate pairs in the entropy inequality are essential in establishing 
the constitutive variables and their argument tensors. 

3) Once the argument tensors of the constitutive variables are known, the re-
presentation theorem provides a consistent and rigorous mathematical frame for 
deriving the constitutive theories as well as establishing the material coefficients. 
The constitutive theories so derived are based on integrity, hence utilize com-
plete basis of the space in which the constitutive variables exist. In deriving these 
constitutive theories we have only utilized one important piece of information 
from the entropy inequality, the conjugate pairs. 

4) The other important aspect present in the conjugate pairs is that the trace 
of their products represents the rate of work (dissipation function), hence must 
be positive. Thus, the constitutive theories derived in (3) must be substituted in 
the dissipation function and examined to ensure that the dissipation function is 
always positive. This provides means to establish restrictions on the material 
coefficients in the constitutive theories. It may very well be that some material 
coefficients need to be forced to be zero (as shown in Section 7) in order for the 
dissipation function to be unconditionally positive. 

5) We have shown in Sections 7.1 - 7.4 that the constitutive theories based on 
representation theorem and integrity do not always satisfy the conditions of the 
corresponding dissipation function to be unconditionally positive. 

6) We emphasize that within the restriction of the thermodynamic frame, and 
specifically the entropy inequality and the conditions resulting from it, the dis-
sipation function (and some other similar terms) is the only means of establish-
ing restrictions on the material coefficients. One may alternatively seek other 
means that may lead to different conclusions [55] regarding the restrictions on 
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the material coefficients, hence may result in altogether different restrictions on 
the material coefficients than reported in this paper. However, if we only follow 
the conditions resulting from the entropy inequality, then obviously these alter-
nate approaches and the restrictions on the material coefficients derived using 
them are thermodynamically not admissible. 

7) We note that all constitutive theories presented here are based on integrity 
(complete basis) and are nonlinear, that is, the constitutive variables are nonli-
near functions of their argument tensors. In such theories solving for the argu-
ment tensor in terms of the constitutive variable is non-unique and may not 
even be possible. However, if the constitutive theory is linear, then one could 
possibly obtain an expression for the argument tensor in terms of the constitu-
tive variable and the material coefficients. Can this expression for the argument 
tensor be used to establish restrictions on the material coefficients? Maybe so, 
but it has no thermodynamic basis, that is, it is not justified based on the condi-
tions resulting from the entropy inequality. 

8) In the section that follows we consider specialized form of the constitutive 
theories presented in this paper that are valid for classical continuum theories in 
which the Cauchy stress tensor ( )0

dσ  is symmetric and is a linear function of 
the first convected time derivative of the strain tensor. We examine restrictions 
on the material coefficients using the concepts presented here and compare these 
with the published works. 

9. Classical Continuum Theory for Viscous Fluids: 
Restrictions on Material Coefficients 

In classical continuum theory for compressible viscous fluids without memory 
the Cauchy stress tensor is symmetric and if we only consider linear constitutive 
theory for the deviatoric Cauchy stress tensor, then the Cauchy stress tensor ba-
sis is independent as the first convected time derivatives of the Green’s and Al-
mansi strain tensors are the same, namely, the symmetric part of the velocity 
gradient tensor, and we can write the following for the constitutive theory for 
the deviatoric Cauchy stress tensor. 

( )( ) ( ) ( )0 0 2 trs dd
µ λ= = +D D Iσ σ                (155) 

From the derivation of the constitutive theory for ( )( )0
sd
σ  for the 

non-classical case presented in this paper, we clearly note the µ  and λ  are 
two independent material coefficients as the derivation of the constitutive theory 
provides no mechanism of dependence of one on the other. Stokes [55] sug-
gested that if the density of the fluid remains nearly constant, that is, if the fluid 
is almost incompressible, one could make the assumption that 3 2 0λ µ+ = . 
This has been referred to as Stokes’ assumption or Stokes’ hypothesis and is used 
almost universally in fluid mechanics. More recently, Rajagopal [56] advocated 
that 3 2 0λ µ+ >  must hold and that 3 2 0λ µ+ =  is invalid. The derivation by 
Rajagopal [56] in simple terms is explained in the following. 
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Using (155), we postulate that inverse of (155) should be unique, that is, we 
derive D  in terms of ( )0

dσ , which gives us 

( ) ( )( )0 01 tr
2 3 2d d

λ
µ λ µ
 

= − + 
D Iσ σ               (156) 

From (156), we note that when 3 2 0λ µ+ = , D  is infinity, hence Rajagopal 
[56] argued that 3 2 0λ µ+ >  must hold (under the presumption that , 0λ µ ≠ ). 
This conclusion has also been arrived at by Eringen [22] using 0s

dΨ >  but, 
unfortunately, using incorrect tensor algebra; hence, this derivation in support 
of 2 3 0µ λ+ >  is not valid either. In the approach used by Rajagopal [56] there 
are several issues that are in violation of thermodynamic consistency, as ex-
plained next. 

1) First, we have seen that the constitutive theory for ( )0
dσ  is nonlinear in D  

when it is based on integrity; hence, if we attempt to express D  as a function of 
( )0

dσ , it will be non-unique. 
2) Secondly, the derivation of (156) has nothing to do with the condition re-

sulting from the entropy inequality which requires that 

[ ]( )tr 0s
d d Dσ  Ψ = >                      (157) 

Thus, using (156) to establish the restriction that 3 2 0λ µ+ >  must hold has 
no thermodynamic basis. This restriction is as unfounded as 3 2 0λ µ+ =  pro-
posed by Stokes [55]. 

3) We have already seen that µ  and λ  are two independent material coef-
ficients based on the derivation of the constitutive theory for ( )( )0

sd
σ  or ( )0

dσ . 
There has to be a much more compelling argument based on physics to make 
them dependent on each other than the relation (156). 

4) Based on entropy inequality, validity of (156) implies that it satisfies (157). 
Substituting (156) in (157), we obtain 

[ ]( ) ( )( ) ( )
( )( )( )2

0 021tr tr tr
2 2 3 2

s
d d d dD λ

σ
µ µ λ µ

 Ψ = = −  +
σ σ      (158) 

In (158), when 0λ ≠  and 0µ ≠ , we cannot ensure that s
dΨ  in (158) is 

positive for all admissible ( )( )0
sd
σ  as the magnitudes of ( )( )0 2tr dσ  and 

( )( )( )2
0tr dσ  cannot be quantified, and due to the negative sign associated with 

the second term in (158). Thus (156) may be in violation of the condition (157) 
resulting from the entropy inequality. 

If we just consider constitutive theory (155) and use inequality (157), then we 
have 

[ ]( ) ( ) ( )( )22tr 2 tr tr 0s
d d Dσ µ λ Ψ = = + >  D D           (159) 

For s
dΨ  to be greater than zero, 0µ >  and 0λ >  must hold. Further-

more, since µ  and λ  are two independent non-zero material coefficients, 
they cannot be expressed in terms of each other. No other restrictions on µ  
and λ  can be inferred from (159). Restrictions on k  and 1k  for the consti-
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tutive theory for the heat vector q  remain the same as discussed earlier, that is, 
0k >  and 1 0k >  must hold. 

Remarks. 
1) We have shown that 0µ >  and 0λ >  are the only restrictions on the 

material coefficients µ  and λ  that are thermodynamically justified based on 
entropy inequality. 

2) 2 3 0µ λ+ =  (Stokes’ hypothesis) or 2 3 0µ λ+ >  advocated by Rajagopal 
[56] have no thermodynamic basis, hence cannot be justified. 

3) µ  and λ  are two independent material coefficients that must be deter-
mined from experiments for a fluid of interest. 

10. Summary and Conclusions 

1) A consistent derivation of the constitutive theories for ( )( )0
sd
σ , ( )0

s m , 
( )0

a m , and q  for non-classical viscous fluent continua has been presented using 
the conjugate pairs in the entropy inequality in conjunction with the representa-
tion theorem (theory of generators and invariants). In this derivation, balance of 
moments of moments is not considered as a balance law, hence ( )0 m  is not 
symmetric. When the balance of moments of moments is used as a balance law, 
( )0 m  is symmetric, hence ( )0 0a =m . In each case, material coefficients are de-
rived using Taylor series expansion of the coefficients in the linear combination 
in terms of invariants of the argument tensors and temperature θ . All material 
coefficients in these constitutive theories are independent of each other. 

2) The constitutive theories are based on integrity (complete basis) and are 
nonlinear functions of the argument tensors (used in determining the combined 
generators and the invariants). 

3) The restrictions on the material coefficients in the nonlinear constitutive 
theories are established strictly using the conditions resulting from the entropy 
inequality requiring the corresponding dissipation functions to be positive. 

4) Steps (1) - (3) are based on thermodynamic considerations, hence the con-
stitutive theories and the restrictions on the material coefficients satisfy the en-
tropy inequality. 

5) Simplified forms of the linear constitutive theory for ( )( ) ( )0 0
s dd

=σ σ  used 
in classical continuum theories for fluent continua are also considered. In this 
case, Cauchy stress tensor is symmetric and is only a linear function of the sym-
metric part of the velocity gradient tensor, hence is basis independent. In this 
constitutive theory (Equation (155)), µ  and λ  are two independent material 
coefficients. Consideration of 0s

dΨ >  yields that 0µ >  and 0λ >  must 
hold for all arbitrary but admissible choices of D . This is consistent when the 
constitutive theory is nonlinear or when it is for non-classical viscous fluent 
continua. At this stage, there are no other thermodynamic or constitutive con-
siderations that can be used to establish that µ  and λ  are dependent on each 
other, that is, they are not independent material coefficients. Based on the work 
presented here, we are compelled to conclude: 
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a) Stokes’ hypothesis [55] 2 3 0µ λ+ =  as originally postulated has no ther-
modynamic basis because it is not derived using thermodynamic considerations 
resulting from the entropy inequality. 

b) Referring to (156), expressing D  in terms of ( )0
dσ  (same as deriving 

constitutive theory for D  in terms of ( )0
dσ ) to establish restrictions on the 

material coefficients in the constitutive theory for ( )( )0
sd
σ  [56] has no ther-  

modynamic basis. Thus, the conclusion that 2 3 0µ λ+ >  based on (156) has no 
thermodynamic basis either (since 2 3 3Kµ λ+ = , the bulk modulus, one can 
simply say that, in general, 2 3 0µ λ+ ≠ ). We have also shown that if we con-
sider (156) to hold, then 0s

dΨ >  as required by the entropy inequality may 
not hold; hence, this restriction may result in violation of thermodynamic equi-
librium. This approach can only be used in linear constitutive theories. The con-
stitutive theories presented here (and in general) based on integrity are nonli-
near in which case this approach is not only invalid, but will fail. 

In conclusion, the work presented in this paper is thermodynamically consis-
tent and provides a rigorous approach of deriving constitutive theories and of 
establishing restrictions on the material coefficients for non-classical and clas-
sical thermoviscous compressible and incompressible fluent continua. In the 
case of classical compressible viscous fluids when using linear constitutive theory 
for deviatoric Cauchy stress tensor, 0µ >  and 0λ >  are the only thermody-
namically consistent restrictions on the independent material coefficients µ  
and λ . Furthermore, 2 3 0µ λ+ =  (Stokes’ hypothesis) and 2 3 0µ λ+ >  ad-
vocated in the literature as a replacement for Stokes’ hypothesis do not have any 
thermodynamic basis and are in violation of the fundamental conclusion from 
the derivation of the constitutive theory that µ  and λ  are independent materi-
al coefficients. The restrictions on the material coefficients in the non-classical 
theories for ( )0

s m , ( )0
a m , and q  have been derived. These all need to be great-

er than zero to ensure the dissipation functions to be greater than zero and 
0⋅ ≤q g  as required by the entropy inequality. 
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