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Abstract 
We investigate the emerging consequences of an applied strong in-plane elec-
tric field on a macroscopically large graphene sheet subjected to a perpendicular 
magnetic field, by determining in exact analytical form various many-body 
thermodynamic properties and the Hall coefficient. The results suggest exotic 
possibilities that necessitate very careful experimental investigation. In this al-
ternate form of Quantum Hall Effect, non-linear phenomena related to the 
global magnetization, energy and Hall conductivity (the latter depending on 
the strengths of magnetic B- and electric E-fields) emerge without using per-
turbation methods, to all orders of E-field and B-field strengths. Interestingly 
enough, when the value of the electric field is sufficiently strong, fractional 
quantization also emerges, whose topological stability has to be verified. 
 

Keywords 
Graphene, Landau Levels, Strong Electric Field Effects, Hall Conductivity, 
Magnetization, Quantum Hall Effect, Thermodynamics 

 

1. Introduction 

Dirac-type materials, such as Topological Insulators, monolayer graphene, and 
three-dimensional (3D) Dirac and Weyl semimetals, appear nowadays as stable 
(actually very robust) topological phases of matter, displaying behavioral pat-
terns that produce new physics at a very fundamental level and at the same time 
give the possibility of exotic future applications [1] [2] [3]. What make their 
fundamental properties so fascinating are the well-known dissipationless surface 
states that can propagate without any resistance and give rise to nontrivial topo-
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logical properties that are currently under intense investigation. When certain 
types of such materials (i.e. 2D Topological Insulators) are subject to a perpen-
dicular magnetic field, they may as well undergo a phase transition to Quantum 
Hall Insulators [4], violating the time reversal symmetry that controls the topol-
ogy of the surface states. Normally, there is a transverse (to B) small electric field 
E, which—to first order in E—is responsible for the macroscopic quantization of 
the Hall conductivity [5], and which is the central quantity in the present paper. 
Interestingly enough, the strong E-field regime has not been investigated in suf-
ficient detail so far, in particular with respect to the role of the E-field on ther-
modynamic many-body properties (see however [6], and for some earlier attempts 
see [7]-[14]), as these properties are determined in the noninteracting electrons 
framework (the one that, in any case, pertains to the Integer Hall Effect regime). 
In this work, we present potential consequences (on thermodynamic and trans-
port properties) of a strong electric field applied tangentially to a macroscopic 
2D graphene sheet, when also subjected to a perpendicular magnetic field of ar-
bitrary strength. 

Let us start with the graphene energy spectrum when a monolayer is subjected 
to an in-plane electric E (taken along the x-direction) and a perpendicular mag-
netic field B in the z-direction (and let us focus on the positive branch, and also 
ignore the Zeeman interaction term), and take the Landau gauge A = (0, xB, 0) 
in which the energy spectrum turns out to be (through a Dirac equation proce-
dure similar to the one in [15]) 

( )3 42
, 2 1

yn k f f yn eBu u kε β β= − +  ,              (1.1) 

with fE u Bβ =  a dimensionless parameter (always supposed to be lower than 
unity, 1β < ), n = 0, 1, 2, 3. The Landau Level index for the positive branch, fu  
is the Fermi velocity, and yk  is the wave vector along the y-direction. We also 
find that the guiding center operator’s eigenvalue (projected on the x-axis) X0 
reads 

( )
( )

2
0 1 42

2
sgn

1

B
B y

l n
X l k n

β

β
= −

−
,                  (1.2) 

with Bl c eB=   the magnetic length and ( )sgn n  is the sign function. Due to 
the spatial confinement in the x-direction, the guiding center operator 0X  may ac-
quire any value in the following range: 

02 2
x xL L

X− ≤ ≤                         (1.3) 

with xL  being the x-direction size of the system, which is here supposed to be 
macroscopically large. Each Landau Level, defined by different values of index n, 
contains 0Φ Φ  independent quantum states, with BSΦ =  the magnetic flux 
penetrating the 2D graphene sheet (S is the area) and 0 hc eΦ =  is the flux 
quantum. Now, because of the spin and valley degeneracies that are present in 
graphene, each Landau Level (L.L.) may accommodate up to 04Φ Φ  spinful 
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electrons, according to the Pauli exclusion principle excluding the lowest level n 
= 0, which can accommodate only up to 02Φ Φ  spinful electrons, due to mu-
tual sharing with the holes. 

As a next step it is convenient (for the thermodynamic calculations followed 
below), to express (1.1) as a function of the guiding center operator, namely 

( )0, 01 42

2

1
f

n X

n eBu
eEXε

β
= +

−



.                     (1.4) 

A few remarks are then in order about the energy gap (the inter-L.L. gap, for a 
constant guiding center) determined by: 

( )
( )1 42

2
1

1
f

n

eBu
n nδε

β
= + −

−



.                   (1.5) 

Unlike conventional semiconductors, the energy gap has an E-field depen-
dence. As can easily be seen from (1.5), the larger the E-field gets, the larger the 
energy gap becomes. On the other hand, the larger the L.L. index, the smaller the 
energy gap. This interplay will play a major role later on, when we consider the 
thermodynamic occupations of the energy levels. One can always prove that, for 
a given L.L. index and a value of E-field (such that 1β < ) there will always be 
an unavoidable overlap (states of greater n values have lower energy than states 
with lower n values). We can set conditions (for arbitrary E and n) for which this 
kind of overlap is avoided as: 

2, , 21x xn L n Lε ε + −≤                         (1.6) 

To picture this more properly, we provide examples in the graphs shown in 
Figure 1. 

Condition (1.6) along with (1.4) results in: 

( )
( )1 42

2
1

1
f

x

eBu
n n eEL

β
+ − ≥

−



 or n xeELδε ≥             (1.7) 

That is, in words, when the work performed by the electric field is smaller 
than the energy gap at a certain 0X , no overlap is observed between the L.L.s n 
and n + 1. Generally, for strong enough electric field or for a small enough L.L. 
index, the above inequality will be true (see Figure 2); but as the L.L. index of 
occupied levels gets larger (hence for a large number of electrons N) the energy 
gaps between adjacent L.L.s will become lower, until an inevitable gap closing 
occurs (Figure 2 providing a concrete example). 

We define Fn i=  to be the topmost L.L., which for a given value of E and B 
maintains an energy gap with its adjacent L.L.s: ( 1Fn i= − , 1Fn i= + ) Clearly, 
L.L. index 1Fn i= +  no longer separates from 2Fi +  with an energy gap, and 
in this case, Inequality (1.7) reverses direction: 1Fi xeELδε + ≤ . In other words, 
L.L.s with 0,1,2, , Fn i=   do not overlap, while L.L.s with higher quantum 
numbers ( , 1, 2,F F Fn i i i= + +  ) do overlap. 
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(a)                                       (b) 

Figure 1. (a) An example of an E-field value (strong) that do not cause overlaps between 
different L.L.s; (b) Another example of a weaker E-field that causes overlaps between ad-
jacent L.L.s. 

 

 
Figure 2. In an arbitrary, fixed E-field strength, overlaps occur as L.L. index gets larger. 
The overlaps are indicated by the conditions (inequalities) shown at the left of the figure. 
The red lines indicate the top-most energetic state in a given L.L., in comparison with the 
next adjacent L.L. lower state. The stronger the E-field gets, the larger the energy gap be-
comes, and the overlap will occur at an energetically high L.L. In the above example, 
overlaps occur between (n = 2, n = 3), (n = 3, n = 4), (n = 4, n = 5, n = 6 (not shown)). 
Levels n = 0, n = 1 do not overlap and they provide independent energy states when fol-
lowing an occupation procedure. In this case, 1Fi = . 

 
The above is a generic case for an arbitrary value of E and n. Of course there 

might be cases where overlaps start from n = 0 (for a low enough E-field), in 
which case 0Fi = , and all L.L.s with n > 0 overlap. In this case, with no energy 
gap present at all, graphene will gain a metallic character. Equation (1.7) with 
input 1Fn i= +  becomes then: 

( )
( )1 42

2
2 1

1
f

F F x

eBu
i i eEL

β
+ − + ≤

−



                (1.8) 
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2. The Strong E-Field Regime 

After the above discussion and definitions, we proceed to thermodynamic occu-
pations of the graphene’s energy levels at zero temperature. For this purpose, we 
consider a collection of N electrons at T = 0, which fill the lowest energy levels 
until the Fermi energy denoted by Fε . In reality, the Fermi energy is not con-
stant when there is an electric field running through the system; what we then 
mean by Fermi energy is actually a Fermi point, which is the topmost occupied 
state in the energy diagram. We also make the supposition that this Fermi point 
is located on a L.L. indexed with 1n ρ= −  ( 1,2,3,ρ =  ), so that there are al-
ways ρ L.L.s occupied at any time (the last level 1n ρ= −  being generally par-
tially occupied). First, we will focus on the special case where all ρ Landau Levels 
are not overlapping, and can be occupied independently by the N electrons. In 
this case the following relation must be satisfied: 

1 Fiρ − ≤                              (2.1) 

and for strong enough magnetic fields, it is guaranteed that Equation (2.1) will 
always be satisfied, and no overlap between L.L.s with different quantum num-
bers will be observed. In what follows, we will consider a constant, strong E-field, 
while the magnetic field may vary, but always in a way that satisfies Equation 
(2.1). 

Considering that the L.L. with n = 0 only has a capacity for 2Φ/Φ0 electrons, 
and that all the other 0n ≠  L.L.s may host up to 4Φ/Φ0 electrons, we find that 
in order to have ρ L.L.s occupied, the following inequality must hold: 

( ) ( )
0 0

2 22 3 2 1Nρ ρ
Φ Φ

− ≤ ≤ −
Φ Φ

                   (2.2) 

Note that when 1ρ =  then 
0

20 N Φ
≤ ≤

Φ
, as N is always a positive number. 

Treating N as a constant, we can solve (2.2) with respect to magnetic field B: 

( ) ( )0 0
1 1

2 2 3 2 2 1A An B n
ρ ρ

Φ ≥ ≥ Φ
− −

                 (2.3) 

with An  the electronic surface density and 0Φ  the flux quantum. Also note 
that we have considered the special case where 1Fiρ ≤ + , where all L.L.s are well 
separated with an energy gap, and no inter-L.L. overlapping occurs. (The special 
case of nonzero overlaps will be considered in the next Section). Note that Equa-
tion (2.3) can also describe the well-known unconventional Quantum Hall Effect 
in graphene, with the Hall conductivity given by the well-known relation: 

21 4
2H

Aen e
B h

σ ρ = = − 
 

                      (2.4) 

If one replaces B by the value 
( ) 0

1
2 2 1 AB n

ρ
= Φ

−
; Hσ  is then quantized in 

half-integer multiples of 
24e

h
. 

In the case we are considering the total energy of the system (minimized at T 
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= 0) is given as a sum over all states lower than “the Fermi state” or Fermi point, 
namely 

( )00 0, 01 4, , 2

2

1
f

n Xn X n X

n eBu
E eEXε

β
= = +

−
∑ ∑



             (2.5) 

In the thermodynamic limit xL →∞ , we may approximate the sum with re-
spect to 0X  as follows: 

0

2
0

0 2

4 d
x

x

L
y

LX

BL
X

−
→

Φ∑ ∫  for 0n >  and 
0

2
0

0 2

2 d
x

x

L
y

LX

BL
X

−
→

Φ∑ ∫  for 0n = . 

(2.6) 

The total internal energy of the system can then be separated in the energy of 
the fully occupied bands plus the energy of the partially occupied last L.L. (that 
contains the Fermi point, 1n ρ= − ): 

full partE E E= +                          (2.7) 

In what follows, we will consider the case 1ρ > , where the contribution of 
the lowest L.L. n = 0 is negligible. Given that all the bands up to 2n ρ= −  are 
fully occupied, we may write: 

( )

( )

2 22 2
full 0 0 01 41 12

0 02 2

2
1 4 12

0

2
4 d 4 d

1

2
4

1

x x

x x

L L
y f y

L Li i

f
n

BL n eBu BL eE
E X X X

eBu
n

ρ ρ

ρ

β

β

− −

= =− −

−

=

= +
Φ Φ−

Φ
=

Φ −

∑ ∑∫ ∫

∑





   (2.8) 

To determine partE , we must first determine the 0X  value at the Fermi point 
(limit of the 0X  integration at the 1n ρ= −  L.L.). From Equation (1.2) we get 
for 2πy yk l L=  and 1n ρ= − : 

( )
( )

2
0 1 42

2 12π

1

B
B

y

llX l
L

β ρ

β

−
= −

−
                    (2.9) 

The quantum number l, appearing in (2.9) has a starting value 0l  that can be 

determined by setting 0 2
xLX = −  as follows: 

( )
( )0 1 42

0

2 1
2 2π 1

y

B

L
l

l
β ρ

β

−Φ
= − +

Φ −
                  (2.10) 

Now, using the fact that the last L.L. contains ( )
0

22 3N ρ
Φ

− −
Φ

 electrons, we  

have all the necessary information to determine the guiding center value of the 
electron placed at the Fermi point: 

( )2
0,

0

2π 1
4F B

y

NX l
L

ρ
 Φ

= − − Φ 
                  (2.11) 
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For example, when ( )
0

2 2 3N ρ
Φ

= −
Φ

, (meaning that the last L.L. is empty of  

electrons), we get from (2.11): 

( ) ( )2 2
0,

0 0

2 2 32π π1 2
4F B B x

y y

X l l L
L L

ρ
ρ

−  Φ Φ
= − − = − = −  Φ Φ 

,    (2.12) 

whereas for ( )
0

2 2 1N ρ
Φ

= −
Φ

 we have that 0, 2F xX L= , explicitly demonstrating 

the correctness of our results. The remaining task to carry out is to calculate the 
energy of the partially occupied L.L. 1n ρ= −  

( )
( )

( )
( )

0, 0,
part 0 0 01 422 20 0

2 2
0,

0,1 42
0 0

2 1
4 d 4 d

1

2 1
4 4

2 2 81

F F
x x

X Xfy y
L L

fy y Fx x
F

eBuBL BL
E X eE X X

eBuBL BL XL LX eE

ρ

β

ρ

β

− −

−
= +

Φ Φ−

 −  = + + −    Φ Φ −  

∫ ∫




    (2.13) 

Substituting Equation (2.11) into (2.13) we obtain (in units of Fermi energy 
(in the absence of the electromagnetic field) πF F Au nε =  , per particle) 

( )
( ) ( ) [ ]

( )

1 2 3 2
part

1 42
0 0

2

0

4 1 2 4 1 2 3
1

1 4 8 3
8 2

F

A A

x

y y A

E B B
N n n

eEBLNE h eSE
L B L n

ε
ρ ρ ρ

β

ρ ρ ρ

     = − − − −    Φ Φ   −  

 
 + − − + − +   Φ 

(2.14) 

Finally, adding Equations (2.14) and (2.8) we arrive at the following result: 

( )
[ ] ( )

( ) ( )

3 2
2

1 4 12
0

1 2
2

0 0

4 2 2 3 1
1

4 1 1 4 8 3
8 2

F
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A y y A

E B n
N n

eEBLB NE h eSE
n L B L n

ρε
ρ ρ

β

ρ ρ ρ ρ

−

=

    = − − −    Φ − 

   
  + − + − − + − +     Φ Φ   

∑

(2.15) 

with 2

1

3
1 2, 1
2 4πn

nρ
ζ

ζ ρ−

=

 
    = − − − − 

 
∑  where 1 , 1

2
ζ ρ − − 
 

 is the Hurwitz 

Zeta function and 3
2

ζ  
 
 

 is the Riemman function. Note the interesting fact  

that, terms proportional to electric field strength E result in the following mag-
netization: 

2
2

0

4 8 3 ,
8 2

xE

y A

E
eELM NE hN

N B L nB
ρ ρ

∂

 = − = − − + ∂ Φ
          (2.16) 

which, when considered at full band occupation (meaning that 
( ) 0

1
2 2 1 AB n

ρ
= Φ

−
) 

yields: 
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( )2
2

2 2
00

2

4 2 1
4 8 3

8 2

1 2
2 2

H

xE

y AA

x x

A A

h eELM NE
N L nn

EL Le E
n h n

ρ
ρ ρ

σ
ρ

−
 = − − + ΦΦ

 = − = 
 

            (2.17) 

i.e. the proportional constant is equal to half Hall conductivity, similar to the cor-
responding result in a conventional semiconductor case [3]. (Plots of the field-free 
Energy and Magnetization are given in Figure 3). 

3. The Weak E-Field Regime 

We now proceed to a considerably more difficult case: the low E-field regime. In 
this regime, as the electric field becomes weaker, the energy gap gets smaller. As 
a result, there will be an unavoidable point where some L.L.s will overlap (Figure 
1(b)), and occupational patterns turn out to be more complex. Inequality (1.7) is 
no longer true for all n’s (it will indeed be true only for L.L.s with quantum num-
ber ≤ Fi ). If, for simplicity reasons, we suppose for a moment that the energy 
spectrum configuration stays the same as before, and that the only change we 
have is a larger number of electrons N to be placed on the available states, things 
become a bit clearer. L.L.s up to Fi  ( 0,1,2, , Fin =  ) won’t overlap with any of 
the rest L.L.s, while L.L.s with , 1, 2, , 1F F Fi i in ρ= + + −  will indeed overlap. 
In this case, we may also have that 1 Fiρ − ≥ . Recall from the previous Section 
that in addition, the following relation must also hold: 1β < . 

We fix the Fermi point at 1n ρ= − , with energy given by: 

( )
( ) 01 42

2 1

1

f
F F

eBu
eEX

ρ
ε

β

−
= +

−



                  (3.1) 

with 0FX  the guiding center position of the last energetically highest electron, 
occupying the Fermi point state. For the example case shown in Figure 4, and 
further supposing that the Fermi point is located at 0 2F xX L= −  (Figure 5) 
for simplicity reasons, we have that: 

( )1 42

8
21

f x
F

eBu LeEε
β

= −
−



                    (3.2) 

 

 
Figure 3. Energy in units of Fermi energy Fε  and magnetization in units of Bohr mag-
net on Bµ  as functions of the magnetic field when the electric field is switched off. 
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Figure 4. Diagram showing the occupations (navy blue) of the lowest energy states up to 
the Fermi point (red dot). Note that this is the optimal energy configuration for 1Fi =  
and ρ = 5. Landau levels indexed with n = 0 and n = 1 do not overlap, while n = 2 over-
laps with n = 3, and n = 3 overlaps with n = 4 and n = 5 (currently not occupied). If the 
Fermi point were located at i.e. n = 1, meaning that ρ = 2, we would then expect that the 
Hall conductivity would be quantized according to Equation (2.4). But, now, because of 
the inclusion of the overlaps, there is no need for an integer quantization, as we shall see 
in the main text. 

 

 
Figure 5. An example of the position of Fermi point for the purpose of the calculation in 
the main text. 
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Now, from the Figure 5, we observe that in this configuration, L.L.s n = 0, 1 
and 2 are fully occupied, while L.L. n = 3 is only partially occupied. To deter-
mine the exact number of states occupied in L.L. n = 3 we examine its intersec-
tion with the Fermi point (red line in Figure 5): 

( ) ( )01 4 1 42 2

6 8
21 1

f f x
F

eBu eBu LeEX eE
β β

+ = −
− −

 

               (3.3) 

which yields for 0FX : 

( )
( )0 1 42

8 6
2 1

fx
F

eBuLX
eE β

= − + −
−



                (3.4) 

From the above, we may determine the initial and final values of the xk  (that 
is, 0l  and fl ), namely 

( )0 1 42
0

6
2 2π 1

y

B

L
l

l
β

β

Φ
= − +

Φ −
                    (3.5) 

( )
( )

( )1 4 1 42 2
0

68 6
2 1 1

y yF
f

F

BL ELeBu el
Eh hu eBβ β

Φ
= − + − +

Φ − −

        (3.6) 

The number of states in L.L. n = 3 is then given by the difference of the initial 
and final values of l, namely 

( )
( )0 1 42

8 6
1

y F
f

BL eBul l
Eh β

− = −
−



                 (3.7) 

and the total number of states below the Fermi point reads: 

( )
( )1 42

0 00 1,2

2 8 6
1

y F

n n

BL eBug
Eh β= =

Φ Φ
= + + −
Φ Φ −



          (3.8) 

Because all these states are filled with electrons (4 electrons in each state for n > 
0 and 2 electrons for n = 0) we have that: 

( )
( )

( )
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            (3.9) 

Equation (3.9) yields for the Hall conductivity: 
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          (3.10) 

Although (3.10) does not necessarily imply that irrational quantization in 
graphene is possible, it is quite interesting to notice how the integer quantization 
(the first term) is destroyed as long as L.L.s become intermixed due to the extra 
overlaps—which in turn are induced by the E-field. The least one can gain out of 
these calculations is the importance of the energy gap, and the possible forma-
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tion of localized and extended states that lie inside this gap. When the gap is de-
stroyed, the system becomes metallic; it may thus not be unreasonable to find a 
Hall conductivity that is electric/magnetic field-dependent, destroying the pla-
teaux formation. This is something that needs to be further investigated experi-
mentally. 

4. Conclusion 

In this work, a thermodynamic study has been conducted with respect to a 2D 
Graphene monolayer subjected to crossed electric and magnetic fields. Thermo-
dynamic quantities like the global energy and magnetization have been exactly 
and analytically determined, in combination with transport properties, i.e. the Hall 
conductivity. The results suggest exotic possibilities that are here pointed out as 
a natural outcome of an exact and careful calculation in the noninteracting elec-
trons many-body framework, and these necessitate exceedingly careful experimental 
investigation. Finally, with respect to the range of validity, although our results in-
volve no approximations whatsoever, the general role of disorder in combination 
with the above physics of the strong fields is certainly something that needs fur-
ther study. 
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