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Abstract 
We start with a recently introduced spherically symmetric geodesic fluid 
model (arXiv: 1601.07030) whose energy-momentum tensor (EMT) in the 
comoving frame is dust-like with nontrivial energy flux. In the non-comoving 
energy frame (vanishing energy flux), the same EMT contains besides dust 
only radial pressure. We present Einstein’s equations together with the matter 
equations in static spherically symmetric coordinates. These equations are 
self-contained (four equations for four unknowns). We solve them analytically 
except for a resulting nonlinear ordinary differential equation (ODE) for the 
gravitational potential. This ODE can be rewritten as a Lienard differential 
equation which, however, may be transformed into a rational Abel differential 
equation of the first kind. Finally, we list some open mathematical problems 
and outline possible physical applications (galactic halos, dark energy stars) 
and related open problems. 
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1. Introduction 

Analytic solutions of the coupled Einstein-matter equations for the stationary 
anisotropic and spherically symmetric case, without supplying any external 
input, are rather rare. The only example we know, a conformal flat generalization 
of the de Sitter space-time, has been published very recently ([1], Section 6). But 
normally one has to provide some external input. The generic case has been 
discussed recently by Herrera, Ospino and Di Prisco [2]. The authors of [2] 
provide only three Einstein equations for five unknowns (energy density, two 
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pressures, two metric functions). So the knowledge of two solution generating 
functions is required. 

In the present paper, we describe another model for which we derive an analytic 
solution except for one remaining ordinary differential equation. We start with a 
recently introduced irrotational geodesic fluid model whose energy-momentum 
tensor (EMT) in the frame comoving with the fluid is dust-like with nontrivial 
energy flux [3]. Then we pass over to the non-comoving energy frame (vanishing 
energy flux [4]). Here the same EMT contains besides dust only radial pressure. 
We consider the resulting Einstein’s field equations together with the matter 
equations in static spherically symmetric coordinates. These equations are 
self-contained (four equations for four unknowns). We solve them analytically 
except for a resulting nonlinear ordinary differential equation (ODE) for the 
gravitational potential. This ODE turns out to be the general relativistic 
generalization of a corresponding ODE derived in [5] for the nonrelativistic 
darkon fluid model. It has been used in [5] as a model for galactic halos. 

The paper is organized as follows. We define our model in Section 2. In 
Section 3, we introduce non-comoving coordinates and present the corresponding 
Einstein equations and the matter equations. In the course of integration of these 
equations in Section 4, we derive a nonlinear ODE for the gravitational 
potential. We reformulate this ODE in Section 5 as a Lienard differential 
equation and transform it into a rational Abel differential equation of the first 
kind. In Section 6, we list some open mathematical problems. Finally, possible 
physical applications (galactic halos, dark energy stars) and related open 
problems are outlined in Section 7. 

2. Fluid Model 

Our model is defined by a self-gravitating, irrotational, pressure-less and stress 
free geodesic fluid whose EMT in the frame comoving with the fluid is dust-like 
with a nontrivial energy flux. 

Therefore our model will be described by the following covariant set of 
equations (Greek indices run from 0 to 3 and we use the usual summation 
convention)  
● Einsteins equations ( 8π , 1G cκ = = ) 

G Tµν µνκ=                           (1) 

with a EMT T µν , decomposed w.r.t. the unit and time-like fluid velocity vector 
uµ   

T u u q u q uµν µ ν µ ν ν µρ= + +                    (2) 

where ρ  is the total energy density (comprising baryonic and the so called 
dark sector contributions) and qµ  is the energy flux vector ( 0u qµ µ = ) in the 
comoving frame. 
● Constraints for uµ  

Geodesic flow:  
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0u uλ µ
λ∇ =                           (3) 

Irrotational flow:  

0u uµ ν ν µ∇ −∇ =                         (4) 

The covariant derivative µ∇  is given in terms of a torsion-free connection 
(Christoffel symbols). 
● Covariant conservation of the EMT  

0T µν
µ∇ =                           (5) 

which is a consequence of (1) (Bianchi identities). 

3. Einsteins Equations and the Matter Equations in 
Non-Comoving, Static and Spherically Symmetric Coordinates 

Our fluid will be assumed to move with radial velocity v  relative to the energy 
frame (EF). Such a choice of relative motion may be related to the observed 
motion of e.g. a galaxy relative to the microwave background [6]. 

For static spherically symmetric coordinates in the EF we use Schwarzschild 
(canonical) coordinates [7]  

( ) ( )2 22 2 2 2 2d e d e d dr rs t r rφ λ= − + + Ω                  (6) 

Then uµ  and qµ  are given by ( ) ( )( ), v v r q q r= =   

( ) ( ),  u n vs q q vn sµ µ µ µ µ µβ β= + = +
               

(7) 

with ( ) 1 221 vβ
−

= − . The time-like and space-like unit vectors nµ  and sµ  are 
defined by  

( ) ( )e ,0 ,  0,e .n sµ φ µ λ− −= =
                    

(8) 

Sometimes it is convenient to use instead of ( )rλ  the mass function ( )M r  
related to each other by  

1
2 2e 1 M

r
λ

−
 = − 
                         

(9) 

The EMT (2) reads in the energy frame (decomposition of T µν  w.r.t. nµ  
and sµ ) [8]  

* *
rT n n p s sµν µ ν µ νρ= +                     (10) 

where the energy density *ρ  and the radial pressure *
rp  in the EF are related 

to the corresponding kinematic quantities in the comoving frame by  

* * * 2
2 ,   

1 rp v
v
ρ

ρ ρ= = −
+                     

(11) 

In (11) we have used the relation  
*q vρ= −                           (12) 

which follows from the requirement of the vanishing energy flux in the EF [8]. 
With the metric (6) and the EMT (10) we obtain for the Einstein Equation (1) [7]  
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*
2

2M
r

κρ
′

=
                         

(13) 

( )*
2

1 21 1 1 2r
Mp r
rr

κ φ   ′= − + − +  
                  

(14) 

2 2 10 1 M M
r r r r
φ

φ φ φ
′′     ′′ ′ ′= + + − − +     

                 
(15) 

Here and in what follows a prime denotes differentiation of a function w.r.t. to 
its argument. 

The matter equations consist of two parts:  
● The generalized Tolman-Oppenheimer-Volkoff (TOV) equation, following 

from the space-like part of (5) (or, more directly, from (13)-(15))  

( ) ( )* * 2 *
2

1 0r rp r p
r

ρ φ ′′+ + =
                  

(16) 

● The geodesic flow constraint (3) [8] (cp. also [9])  
2 0vv β φ′ ′+ +                         (17) 

The irrotational flow constraint (4) is automatically satisfied in spherically 
symmetric coordinates. 

4. Integration of the Einstein and Matter Equations 

To integrate the set of independent equations (14)-(17) we will proceed in three 
steps:  
● Equation (17) can easily be integrated  

2 21 ev φ= −                          (18) 

● Insertion of * * 2
rp vρ = −  from (11) and (18) into the TOV-Equation (16) 

leads to  

( ) ( )
2

2 * 2 *
2

e 0
e 1r rr p r p

φ

φ

φ′ ′+ =
−                    

(19) 

which again can easily be integrated  

( ) 1 2* 2
2 1 erp

r
φα −

= −
                      

(20) 

where α  is an integration constant. 
For *

rp  to be real valued we have to require  

( ) 0rφ ≤                           (21) 

● Next we insert (20) into the 2nd Einstein Equation (14) and solve for M r   

( ) 1 221 e 121
1 2

M
r r

φκα

φ

−
− +

− =
′+                    

(22) 

Insertion of (22) into the 3rd Einstein Equation (15) leads, after some 
straightforward manipulations, to a nonlinear ordinary differential equation 
(ODE) for the gravitational potential  
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( ) ( ) ( )( ) ( )( )
3 22 2 2 2 2 22 1 e 1 e 1 1 2 e = 0

2
r r r rφ φ φκαφ φ κα φ φ ′′ ′ ′ ′+ − + − + + + 

 

 

(23) 

Comment: The weak field limit ( ( )0φ ε= ) of (23) yields (cp. [8], subsection 
6.5)  

( ) ( ) 3 22 2
2

r γφ φ −′′ = −
                      

(24) 

where we have put ( )( )5 2, 0γ κα γ ε= − = . 
The result (24) turns out to be equal to the corresponding equation obtained 

for the stationary solution of the nonrelativistic darkon fluid model in [5]. In 
this limit we get from the Poisson equation and (24) the following relation 
between the energy density ρ  and the potential φ   

( ) 3 2
2 2

r
γκρ φ −= −

                       
(25) 

Then positivity of ρ  requires  

0γ >                            (26) 

Note that a positive energy density yields a negative radial pressure according 
to (11). 

5. Reformulation of the ODE (23) as a Lie-Nard Differential 
Equation or as an Abel Differential Equation1 

With the transformation  

( ) ( ) ( )log ,    2r x r r x rφ ϕ φ→ = → = −               (27) 

the ODE (23) becomes the autonomous ODE  

( ) ( ) ( )( ) ( )( )
3 22 1 e 1 e e 1 1 2 .ϕ ϕ ϕϕ ϕ ϕ γ γ ϕ ϕ− − −′ ′′ ′ ′ ′− − − − − = − −

    
(28) 

The further transformation  

1 ef ϕϕ −→ = −                        (29) 

leads to the mixed Lienard differential equation  

( ) ( ) ( )2
1 2 0 0f g f f g f f g f′′ ′ ′+ + + =               (30) 

with  

( ) ( ) ( ) 12 3 2
0 1g f f f fγ γ

−
= − −  

( ) ( ) 13 2 3 2
1

3
2 2
fg f f f fγ γ γ

− = + − − 
 

 

( ) ( ) 13 2
2 2

g f f fγ γ
−

= −
                    

(31) 

To transform (30) into an Abel differential equation we proceed as usual [10]: 
With ( ) ( )f x y f→ ,  

 

 

1For convenience, by “Abel differential equation”, we mean Abel differential equation of the first 
kind. 
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( ) ( ) ( )( )1 11 21y f f f xγ
− −− ′= −

                 
(32) 

we obtain from (30) 

( ) ( ) ( ) ( ) ( )2 3
2 3y f h f y f h f y f′ = +                (33) 

with  

( ) 1 2 3 2
2

31
2 2

h f f fγ γ− −= + −  

( ) ( ) ( )23 2 1 2
3 1 1 .h f f f fγ γ− −= − −

               
(34) 

By the further transformation  

( ) ( )1 2 ,   f x f u x y f→ = =                   (35) 

we obtain from (33), (34) a rational Abel differential equation  

( ) ( ) ( )2 3
2 3u x H x u H x u′ = +                   (36) 

with  
3 2

2 2

2 3x xH
x
γ γ+ −

=  

( )
( )( )22

3 3

2 1x x
H x

x

γ γ− −
=

                  
(37) 

Unfortunately (36) does not belong to the known integrable cases of rational 
Abel differential equations. But, as shown in [11] (see also [12] and [13]), all 
integrable rational Abel differential equations consist of classes whose members 
are related to each other by the equivalence transformation  

( ) ( ) ( ) ( ) ( ),  x F z u x P z w z Q z= = +                (38) 

where F, P and Q are arbitrary functions of z satisfying 0F ′ ≠  and 0P ≠ . 
A computer algebra routine has been presented in [11] which allow us to 

decide whether a given Abel differential equation belongs to one of the known 
integrable classes. 

6. Open Problems 

From the results of Section 5 follow immediately the following open mathematical 
problems:  
● For which values of γ  does the Lienard Equation (30) has positive solutions 

f(x) with ( )0 1f x≤ ≤   
● Check by means of the computer program presented in [11] whether the 

Abel Equation (36) belongs to one of the known integrable classes.  
● If the answer is no, elaborate numerical solutions for Equation (36).  
● Stability of the stationary solutions.  

7. Physics 

Analytic or numerical results for the gravitational potential ( )rφ  from 
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solutions of either the nonlinear ODE (23) or any of its equivalent forms given 
in Section 5 will be suitable for the description of either galactic halos or of dark 
energy stars. 

7.1. Galactic Halos 

A star in circular motion in a gravitational potential ( )rφ  possesses the 
tangential velocity ( )tgv r  given by the relationship  

2
tgv rφ′=                           (39) 

which holds also in the general relativistic case (see [14]). Keeping in mind that 
in our model φ  is sourced not only by stellar matter but also by the so called 
dark sector contributions, we may use a solution for φ  in (39) for modeling of 
galactic rotation curves (RCs). 

For the description of galactic halos, we need gravitational potentials φ  
which vanish for r →∞ . But in the nonrelativistic case, described by (24), 
solutions vanish already for a finite but very large distance as shown in [5] by a 
theorem due to Taliaferro [15] as well as by numerical results. 

Problem 1: Will admissible solutions (see Section 6) of the Lienard Equation 
(30) extend up to x →+∞  or will they end at finite x? 

The numerical results for the RCs in the nonrelativistic case as shown in ([5] 
Figure 6) for our model are in good agreement with the observed nearly flat RCs 
at large radii for “dark matter dominated” galaxies (for a very recent review on 
the dark matter issues, see [16]). 

We do not expect any essential modifications of the weak field limit at large 
radii for the relativistic model presented in this paper. 

On the other hand, at small scales, our nonrelativistic model seems to show 
numerically a vanishing RC already at a very small but nonzero radius [5]. It was 
not possible to give a definite answer to this point in [5] because the numerical 
solutions have shown a discontinuous behavior around the critical value cb  for 

( )0b ϕ′= . 
Problem 2: Behavior of the gravitational potential ( )rφ  for 0r →  in the 

weak field limit as well as for the case of strong fields. 

7.2. Dark Energy Stars 

As has been already stated, our model shows a negative radial pressure for a 
positive energy density. Therefore, it is predestinated for the description of 
anisotropic dark energy (DE) stars. To do that, we have to take a solution of our 
model as interior solution which has to be matched with the exterior Schwarzschild 
solution. 

Recent treatments of anisotropic DE stars are to be found in [17] [18] and 
[19]. In all these cases, analytic solutions are given by supplying some functions 
and constants as external input. In [17], proportionalities between energy 
densities and DE radial pressure as well as analytic expressions for the two 
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metric functions φ  and λ  are assumed. In [18], two equations of state and an 
analytic expression for the DE energy density are given. An analytic expression 
for the mass function and a DE-equation of state for the radial pressure are 
provided in [19]. 

In our model, no such external inputs are needed. But in order to proceed, we 
have to succeed in finding (approximate) analytic expressions or numerical 
results for the gravitational potential. 
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