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Abstract 
Increasing consumption, changing nature of loads and the need to reduce 
carbon emission are some of the factors threatening electricity grid stability 
and reliability. Demand side management programs mainly work by shifting 
consumption from peak to off-peak period, which inconveniences some con-
sumers and possibly creates a new peak (Reverse Peak) in off-peak hours. 
Growing use of Photovoltaic solar power in residences provides an opportu-
nity to manage grid reliability and stability in a more flexible manner, and mi-
tigates reverse peaks. We propose a community based scheduling algorithm 
that guarantees access to shared power capacity and integrates residences’ so-
lar power into the grid. Results indicate peak demand can be reduced by up to 
32.1%, while energy costs can be reduced by up to 14.0%. Furthermore, coor-
dinated discharging can mitigate reverse peaks by up to 23.4%. Encouraging 
and integrating green energy generation and storage in the consumer side is 
crucial to grid stability and reliability. 
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1. Introduction 

Traditional Electric Grids are characterized by centralized generation plants, 
vertically integrated utilities and supply side management of electricity. Tradi-
tional grids are showing strains because of recent trends such as deregulation of 
electricity markets, distributed generation, accommodation of intermittent re-
newable energy sources, and reduction of air pollution caused by electric grids, 
Demand Side Management (DSM) and increasing consumption [1] [2] [3] [4] 
[5]. 
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Challenges facing traditional grids have paved the way for Smart Grid vision. 
Smart grids are characterized by bidirectional flow of information and electrici-
ty. Smart grid promises benefits such as improved grid efficiency, resilience, re-
liability, self-healing ability, demand management, increased consumer choice 
and possibility of new products, services and markets. For benefits associated 
with smart grid to be realized, a number of challenges have to be addressed. For 
instance, smart grid necessitates overhaul of all existing electric meters and re-
placing them with smart meters which are relatively more expensive. Even ap-
pliances will have to be replaced with smart ones-capable of responding to con-
sumer settings and control signals from utilities. It is likely that consumers will 
be resistant to these changes because of fear of the unknown and privacy. How-
ever, factors such as decreasing cost of smart meters and smart appliances, im-
proving access to communication infrastructures and increasing awareness 
about electricity management means there is a good chance of changes to be 
embraced by both consumers and utilities [6]. 

Of main interest to smart grid is DSM of electricity, which provides an op-
portunity for consumers to respond to various signals from utility companies 
aimed at ensuring grid stability and reliability [7]. Key idea of DSM programs is 
to shift consumption from peak hours to off-peak hours. However, if imple-
mented, there is a possibility of creating a new peak during off-peak hours as 
discussed by [8]. 

Nature of electricity consumption varies greatly depending on whether a 
consumer is residential, industrial or commercial. The fact that 40% of world-
wide consumption is attributed to residential consumers has drawn the interest 
of many researchers [3]. Residential DSM programs can be categorized as either 
individual based or community based. 

Most DSM programs have focused on individual based solutions where sche-
duling of appliances is done per single residence, whereas in community based 
solutions, scheduling is done per group of residences. Heterogeneity of consum-
ers in the community may provide further scheduling flexibility that can be ex-
ploited by DSM programs. 

Growing penetration of Green Energy Sources (GES) in residences as ob-
served by [9] provides additional consumption versatility that can be employed 
by DSM programs. However, GES’ systems are characterized by intermittency 
and constraints on storage capacity, therefore it is crucial that they are integrated 
with electricity grid and access to it is guaranteed for each consumer. In com-
munity based DSM programs where power capacity is shared among several 
residences; guaranteed access to shared capacity is important for consumers’ 
confidence and acceptance of the program. In this paper, we propose a token 
based green-aware community scheduling program with coordinated storage 
charging and discharging, aiming at reducing energy cost while taking consumer 
comfort into account and mitigating reverse peaks. 

This paper is organized as follows: Section 2 discusses works related to resi-
dential DSM programs. Section 3 presents a definition of the problem. Section 4 
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describes a Token based scheduling algorithm. Section 5 studies the token based 
scheduling algorithm numerically and Section 6 draws conclusions. 

2. Related Works 

DSM denotes programs that allow utilities to plan, implement and monitor their 
activities so as to shape consumers’ electricity consumptions. DSM programs 
largely work by encouraging consumers to shift some of their tasks from peak to 
off-peak hours in return for some incentives. Reducing peak demand is in the 
interest of utilities as it enables them to curtail usage of peak plants which are 
commonly more expensive compared to base plants, and therefore reduce their 
running costs and improve reliability of supply. Success of DSM programs ne-
cessitates behavior change on the part of consumers as they may be required to 
change their consumption patterns. It is therefore not expected that all consum-
ers will respond positively to DSM programs, hence raising the need to exploit 
heterogeneity of consumers [10]. 

Works by [11] [12] have proposed DSM programs that encourages consumers 
to shift their consumption from peak-demand to off-peak demand using price 
incentives. Price is higher during peak-demand and cheaper during off-peak 
demand. As a result, consumers have an opportunity to reduce their bills by 
shifting consumption from peak-demand to off-peak demand. In [11], ap-
pliances are modeled as finite state machine and an amount of power that each 
consumer can access is limited. The proposed DSM program can achieve up to 
33.3% peak demand reduction. Work by [12] ensures interests of both utilities 
and consumers are taken into account when designing prices to encourage 
shifting of demand from peak-demand to off-peak demand. However, these 
works do not take into account discomforts that consumers have to face to shift 
their loads. 

In studies by [13] [14] [15] [16] [17], consumer cost minimization and com-
fort are taken into account as scheduling appliances means possible consump-
tion behavior change. Work by [13] establishes similarity in consumption pat-
tern so as to reduce both cost and scheduling discomfort to the consumer. Delay 
in running of appliances together with cost reduction has been studied in [14]. 
Authors in [15] have evaluated willingness of consumers to take part in a pro-
posed DSM program that employs fuzzy technology. The program estimates 
price responsiveness of consumers to incentives using a rational decision making 
model. Peak Average Ratio (PAR), cost and waiting time reduction using genetic 
algorithm have been considered in [16]. Work by [17] considers PAR reduction 
while avoiding possible reverse peaks using unequal consumer participation 
rates. Price fairness is also taken into account. Since shifting peak demand (PAR 
reduction) is likely to be painful for some consumers, further flexibility can be 
obtained by tapping into increasing use of GES in residences, especially by en-
couraging consumers to use their GES during peak demand. GES benefits in-
clude: lower costs in the long run, provides energy security through diversifica-
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tion, easily accessible to consumers and as an alternative to fossil fuels, it helps 
reduce carbon emissions [18]. 

DSM programs equipped with GES and Storage have been considered in [19] 
[20]. Residences with GES and storage have an opportunity to sell excess power 
generated to the grid using feed-in tariffs. The tariffs are designed in such a way 
the utility does not lose out money by setting the selling prices lower than the 
consumers buying prices. In [19], GES and storage are used to reduce energy 
cost and scheduling discomfort of the consumer. A disutility function is used to 
model discomfort and Markov chain based model is used to represent various 
constraints. Work by [20] provides an opportunity for consumers with storage 
to sell electricity to the grid while taking into account scheduling discomfort. 

All of these works [11]-[17] [19] [20] have scheduled appliances per single 
residence. Scheduling can also be done per group of residences and therefore be 
able to schedule multiple appliances at once. Scheduling per group of residences 
is also called community based scheduling. Some of the benefits of community 
based scheduling include: reverse peaks can be avoided through load synchroni-
zation in the community, allows interaction among community members and 
therefore they can trade with each other excess locally generated electricity and 
hence avoid transmission losses, system-wide perspective of community pro-
grams enable utilities to exploit consumers’ appliance usage diversity to manage 
peak demand [21] [22] [23]. 

Community based scheduling DSM programs have been studied in [8] [21] 
[23] [24] [25] [26]. Work by [21] proposes an autonomous and distributed 
agent-based DSM program that seeks to minimize energy cost while taking into 
consideration price fairness among consumers. Observing that DSM programs 
are sensitive to forecasting errors, work by [26] proposes a DSM program that is 
robust to forecasting errors by amalgamating consumption of several consum-
ers. Distributed generation and storage are used to reduce scheduling discomfort 
of consumers during peak hours by [25]. Reference [8] presents a DSM program 
that considers financial implications of both consumers and utility. The pro-
posed DSM program further mitigates reverse peaks by modeling interactions 
between utility and consumers as a Stackelberg game with the utility as a leader 
and a community of consumers as followers. In the game, the leader keeps on 
modifying prices in order to discourage formation of reverse peaks, until there is 
no incentive for consumers to respond in such a way that reverse peaks occur. 
However, constantly changing prices in order to mitigate reverse peaks may 
sound unfair to some consumers. In [24], a DSM program that minimizes con-
sumer cost and waiting discomfort is proposed. The program coordinates sche-
dule of appliances in the entire community. Residences in the community shares 
maximum power capacity set by a utility. Residences compete for shared capaci-
ty using an algorithm based on random back-off mechanism. Most of the dis-
cussed community based scheduling algorithms do not guarantee access to 
shared capacity for each residence, this increases resistance of consumers to em-
brace DSM programs. Moreover, power capacity constraints faced by utilities 
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has not been addressed in most of the proposed programs which does not reflect 
realities in developing countries where there generation capacity is largely in-
adequate. 

In this work, we propose a green-aware token based scheduling algorithm that 
seeks to reduce energy cost of the consumers depending on their comfort set-
tings regarding maximum waiting time of appliances. The algorithm coordinates 
charging and discharging of storage so that consumers with GES may consume 
stored energy during peak hours, thereby mitigating reverse peaks. 

3. Problem Definition 

We consider a community of electricity consumers with N residences, with n 
representing a particular residence. The community comprises of several nearby 
residences connected together by a communication network and to the low vol-
tage side of the distribution network. For privacy reasons, it is assumed that 
there is no directly communication between residences, except through a Coor-
dinator that can be housed at a transformer unit. We assume every residence in 
the community is equipped with Smart meters, Smart Appliances, Home Energy 
Management Units (HEMU). We further assume some residences have Photo-
voltaic systems with battery storage as illustrated in Figure 1. 

Smart meters are used to record electricity consumption, exchange informa-
tion between utility and consumer, and manage usage by switching on/off some 
appliances, track consumption over time and schedule appliances [27]. HEMUs 
provide an interface for a user to track consumption and take necessary optimi-
zation decisions. They can also be used to show generation capacity and storage 
constraints [28]. Smart appliances connect to the smart meter and depending on 
information received they can shift consumption from peak to off-peak hours 
[29]. 

Smart appliances can be categorized into two main groups: Fixed and Elastic 
appliances. Fixed appliances have stringent time and power requirements and 
therefore cannot be scheduled. Examples of fixed appliances include: Television, 
Computer, Lights, etc. Elastic appliances are flexible in terms starting time and 
power consumption. Examples of elastic appliances are: Dishwasher, Washing 
machine, Dryer, and Water Heater. Elastic appliances provide an opportunity to 

 

 
Figure 1. Green-aware system schematic. 
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schedule them during off-peak demand so as to reduce peak demand. Use of 
GES and storage during peak hours helps to overcome scheduling discomfort 
through self-supply. 

There are many forms of GESs, for instance Solar, wind and geothermal 
energy sources with various technological approaches. Among different tech-
nologies available on the market, Photovoltaic (PV) solar powered generation is 
the commonest, especially in residences [30]. Subsection 3.1 to 3.3 models a res-
idence with PV generation and storage. 

3.1. Solar Power Modeling 

Assuming some residences are installed with one or more PV arrays, hourly 
generated power is as indicated in Equation (1): 

, , ,
n
pv h pv pv h pv nP I Sη ∗ ∗=       [18] [31]              (1) 

,
n
pv hP  denotes hourly power output(in kWh) from consumer n’s PV array(s), 

pvη  is the PV system’s efficiency in converting solar energy into electric energy, 

,pv hI  is the hourly solar irradiation-power per unit area received from the Sun 
in the form of electromagnetic radiation, measured in kWh/m2, and ,pv nS  
represents the size of the PV array(s) in m2. 

3.2. Storage Modeling 

Residences with PV Solar system are additionally connected to battery storage so 
as to store generated power for use during peak demand. It is assumed the bat-
tery storage is charged during the day and used (discharged) at night. For each 
storage in residence n, there are two key constraints that determine how much 
power can be stored and accessed: minimum capacity min,nB  and maximum ca-
pacity max,nB . In between the two constraints is the State of Charge (SOC) which 
varies depending on whether the storage is being charged or discharged (see 
Equation (5)). Hourly SOC of residence n is denoted as ,h nB . Equation (2) indi-
cates SOC during charging process, where cη  is the charging efficiency. Based 
on works of [18] [32] [33]; we formulate Equation (2) to Equation (4) as follows: 

1, , ,
n

h n h n c pv hB B Pη+ ∗= +                        (2) 

Equation (3) indicates SOC during discharge process. dη  is the discharging 
efficiency and ,n hl  is the hourly load at residence n. 

1, , ,1h n h n d n hB B lη+ = − ∗                       (3) 

Charging and discharging is as indicated in Equation (4). Depth of Discharge 
(DOD) determines how deeply the storage can be discharged and is bounded 
between minimum capacity and maximum capacity as indicated in Equation (5). 

1, , , ,1n
h n h n c pv h c n hB B P lη η+ = + ∗ − ∗                    (4) 

min, , max,n h n nB B B≤ ≤  [18]                     (5) 

( )min, max,1n nB DOD B= − ∗  [18]                  (6) 
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3.3. Green-Aware Demand Side Management Model 

Suppose a community has N residences, let n denote particular residence. Let 
there be H scheduling slots in a day, where h represents particular scheduling 
slot. Let nλ  denote the probability that an appliance that is off at time h is re-
quested at time 1h + . Both requests for shared power capacity and duration of 
time the appliance is still on are random. A schedulable appliance a from resi-
dence n sends a request at time slot h to the smart meter to run a load rated ,n ax  
with comfort level ,n ad . The comfort level represents a maximum amount of 
scheduling slots that a consumer is willing to wait for the appliance to run. The 
comfort level of 0 means a user wants the load to be connected right away-no 
scheduling. To account for green energy and storage, an equation proposed in 
[24], is modified such that a decision to run the appliance right away or defer it 
is done based on Equation (7). If an appliance is turned on at time h, the proba-
bility that it will still be on at time 1h +  is iµ . We assume an event that par-
ticular appliance is on at time h is independent of the event that the same ap-
pliance is on at time 1h + . 

( ) ( ) ( )( ) ( )1
, ,1H r

a i s i h n h h nr sf s s h c Wφ µ−
==

= − ∗ + ∏ − ∆ +∗∗∑          (7) 

In Equation (7), s is the starting time of the appliance, where ,n ah s h d≤ ≤ + . 
So the first term indicates cost associated with waiting for the appliance to run. 

aφ  is the cost of waiting for particular elastic appliance. The second term is the 
expected cost if the appliance is on. ,h n∆  is net electricity consumed from the 
grid by residence n and its price is hc . ,h nW  is the wearing cost of residence n’s 
the PV system and storage during control period. According to Equation (7), the 
cost of running a certain appliance increases with increase in waiting time, net 
electricity consumed from the grid, or total running time of the appliance. Like-
wise, the cost decreases with decrease in waiting time, net electricity consumed 
from the grid, or total running time of the appliance. 

( )( )
( )( )( )

,

, , , min, ,

, , , min,

 if 0;

0 1 ;

1 * ,otherwise

n a n

h n h n d n a n n a

n a h n d n a n

x R

if B x B x

x B x B

η

η

=
∆ = − ∗ − ≥


− − −

           (8) 

( ) ( ),
, ,

0 if 0;

,otherwise
n

Hh n
a n h nh s

R
W

q x H s b
=

==   ∗ − ∆ + − ∗  ∑
           (9) 

In Equation (8) and Equation (9); Rn is a binary variable with a value of 0 if a 
residence has no green energy and 1 otherwise. In Equation (9), q is the storage 
wearing coefficient and b represents hourly wearing coefficient of other PV 
components. Equation (8) means electricity is wholly drawn from the grid if the 
consumer has no GES. Otherwise, electricity is fully or partly drawn from GES. 
This means as the size of storage and quality of PV increases, more electricity 
will be drawn from it, while poor GES system means more grid electricity will be 
consumed. Equation (9) implies that consumers without GES do not incur costs 
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associated with its wear and tear, whilst those who have GES incur those cost 
depending on how long they run the appliance. 

4. Consumption Scheduling 
Hourly maximum power capacity is shared throughout a community so as to 
exploit heterogeneity of consumers to implement a DSM program. Employing a 
token based algorithm, every consumer is guaranteed to access a token at least 
once in every scheduling slot. A Coordinator unit housed at a transformer unit 
manages the tokens. The Coordinator receives price and power capacity con-
straints information from a utility company and communicates them to the en-
tire community using the token. The token holds information about hourly 
prices, hourly maximum capacity and hourly instantaneous consumed power.  

Consumers in the community need no token to run their fixed appliances, 
however their loads contribute towards maximum power capacity. For inelastic 
appliances, consumers can run them directly if they have sufficient stored power; 
otherwise, they have to wait for the token. Algorithm 1 illustrates an access 
guaranteed and green-Aware token based consumption Scheduling Algorithm. 

Algorithm 1: Green-Aware and Access guaranteed Token Based Scheduling 
Algorithm 
Input: Appliance Rating, Comfort Level, Maximum Power Capacity 
Output: Appliance Schedule 

1) Initialize number of consumers N 
2) H-- > 24 
3) for (h-- > 1 to H) do 
4) Initialize Maximum Power Capacity hPmax,  
5) while (h has not expired) do 
6)  if (Appliance Request = True and hPmax,  Not Exceeded) 
7)   if (Appliance Type = Fixed) 
8)    Run the Appliance 
9)   else 
10)    If (Stored Power is Sufficient and h = Peak Time) 
11)      Run the appliance 
12)     else 
13)      for (n-- > 1 to N) do 
14)      Wait for token 
15)      Decide whether to run, defer or drop 
       the appliance using Equation 7 
16)      Pass the token 
17)  else 
18)   Wait for token and pass it 

5. Numerical Study 
For the sake of legibility and clarity of figures, a community with 10 residences 
(N = 10) has been considered. Actual Time of Use (ToU) prices from Con Edi-
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son-an energy company in New York, have been used [34]. ToU pricing used in 
this work divides a day into two parts: off-peak period (from 2300 hrs to 0900 
hrs) and peak period (1000 hrs to 2200 hrs). Price of electricity for off-peak pe-
riod is $0.014/kWh, while that of peak period is $0.21/kWh. Hourly maximum 
shared power capacity is 40 KW as in [24]. Self-generation, particulary solar 
power based generation is on the rise worldwide and it accounts for 6% - 20% of 
total generation [35]. While self-generation in developed countries is largely fu-
eled by environmental concerns, in developing countries it is triggered by insuf-
ficient generation capacity or unreliability of power. Acquiring GES systems in 
developing countries such as Tanzania is flexible enough such that customers 
have an opportunity to choose prepaid or postpaid payment plan. Based on these 
facts, it has been assumed 50% of residences in the community have GES and 
Storage with varying capacities. Table 1, Table 2 and Table 3 shows parameters 
for Elastic appliances and their associated consumption patterns as suggested in 
[24], fixed appliances proposed by [33], and both PV and storage, based on stu-
dies by [18] [36] [37], respectively. 

Figure 2 shows each residence’s access to shared maximum power capacity at 
different hours. All residences in the community have access to shared maxi-
mum power capacity, regardless of whether they have GES and storage or not. 
Each residence is guaranteed access to shared capacity at least once during each 
scheduling slot. 

Total consumption of GES in the community is shown in Figure 3. The pro-
posed algorithm schedules appliances to consume stored power during peak 
hours only-specifically, starting from 1800 hrs. It is assumed charging of the 
storage happens during daytime; therefore charging and discharging are not 
happening concurrently. 

 
Table 1. Elastic appliances. 

Parameters Washer Drier Heater 

,n ax  1.8 3.4 5.0 

,n ad  6 4 2 

aφ  0.10 0.25 0.40 

min nλ  0.01 0.0392 0.0952 

max nλ  0.0704 0.1193 0.2078 

μi 0.283 0.632 0.865 

 
Table 2. Fixed appliances. 

Appliance Rating 

Television 0.20 

Computer 0.35 

Indoor Lighting 0.36 

Refrigerator 0.50 
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Table 3. Storage and PV. 

Parameter Value 

cη  85% 

dη  100% 

DOD 70% 

max,nB  5 - 8 kWh 

( ), Africapv hI  1 kW/m2 

,pv nS  7.6 - 20.7 m2 

pvη  16% 

 

 
Figure 2. Access to shared capacity. 

 

 
Figure 3. Green power consumed. 
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Figure 4 indicates power consumed from the grid which has PAR value of 
1.018. Figure 5 shows total consumption of power in the community (green and 
grid power) with PAR = 1.50. From Figure 4 and Figure 3 it can be observed 
that GES and Storage can reduce grid’s peak demand by up to 32.1% without en-
tirely relying on shifting consumption and hence reduce energy cost by up 14%. 

While DSM works by shifting demand from peak hours to off-peak, Figure 6 
indicates loads shifted to 2000 hours and 2300 hours. Based on applied ToU 
pricing, 2000 hours is in peak hours and 2300 hours is in off-peak hours. Like-
wise, Figure 7 indicates loads shifted to 1800 hours, 2100 hours and 2300 hours. 
1800 hours and 2100 hours are peak hours and 2300 hours is off-peak hour. Both 
figures, this occurs when electricity is drawn from both grid and GES. 

 

 
Figure 4. Power consumed from the grid. 

 

 
Figure 5. Total consumed power (grid + green). 
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Figure 6. Two reverse peaks. 

 

 
Figure 7. Three reverse peaks. 

 
There are times when only a fraction of requested load can be run using ener-

gy stored in batteries, so the rest of the energy has to be drawn from the grid. But 
since electricity drawn from grid is subject to capacity constraints, if maximum 
capacity is reached, then the remaining fraction that has to be drawn from the 
grid is shifted to next hour so as to reduce inconveniences for the consumer with 
GES. This enables utilities to spread shifted loads over several hours and thereby 
mitigate reverse peaks and avoid dropping loads when total shifted loads exceed 
maximum capacity constraints. For instance, in Figure 6, load shifted to 2000 
hours (12.1 KW) is 23.4% of total shifted. Without GES, this load would be 
dropped if there was a capacity constraint or cause an even higher reverse peak if 
there was no capacity constraint because all of it would be shifted to 2300 hours 
which is off-peak hour as in Figure 8. 
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Figure 8. Token-based scheduling algorithm without GES-all deferred 
loads shifted to 2300 hours. 

 

 
Figure 9. Random back-off algorithm without GES-all deferred loads 
shifted to 2300 hours. 

 
Work by Kishore and Snyder [24] proposes a scheduling algorithm that is 

based on random back-off mechanism in order to share maximum capacity. 
Consumer have to wait random amount of time if it happens two or more of 
them are requesting shared capacity at the same time. While the algorithm re-
sults in comparable cost savings and PAR reduction with our proposed algo-
rithm; it shifts all the loads to an hour right after peak hours-as it can be seen in 
Figure 9. With capacity constraint, some loads will be dropped if maximum 
hourly capacity is reached; otherwise, a reverse peak would occur-that is a high-
est peak occurring in previously off-peak hours. 
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6. Conclusion 

Community based DSM programs provides better opportunity to exploit con-
sumption diversity and consequently reduce peak demand of electricity. Shifting 
load from peak to off-peak period can be a challenge to some consumers, hence 
exploiting rapidly growing PV Solar technology and integrating it with the grid 
leads to more flexible DSM programs. The green-aware and access guaranteed 
scheduling algorithm proposed in this work has the potential to reduce PAR and 
energy cost by up 27.7% and 14.0% respectively. Moreover, the algorithm can be 
used to mitigate reverse peaks by up to 23.4%. Grid stability can be improved by 
encouraging and integrating distributed generation and storage of GES on the 
consumer side. This work can be extended to account for cases where consumers 
are able to sell extra energy to the grid and among them. Also, a shared GES in 
the community such as Wind farm and its storage can be studied. 
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