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Abstract 
 
This paper presents a mathematical model of linear acoustic wave propagation in fluids. The benefits of a 
mathematical model over a normal mode analysis are first discussed, then the mathematical model for acous-
tic propagation in the test medium is developed using computer simulations. The approach is based on a 
analytical solution to the homogeneous wave equation for fluid medium. A good agreement between the 
computational presented results with published data. 
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1. Introduction 
 
In recent years, physical acoustic wave modeling has 
become a successful tool in diagnostic and therapeutic 
ultrasound application. There are several wave equations 
available for describing acoustic wave propagation [1-4]. 
Numerical methods can be used as a tool for sound field 
simulation. Discrete-time simulation algorithms for wave 
propagation can be derived by numerically solving a 
acoustic wave equation in terms of the variables for 
sound pressure and particle velocity. Initial conditions 
for time derivatives and boundary conditions for space 
derivatives are necessary to provide a complete set of 
solutions of the wave equation. These equations are most 
commonly solved by propagation in time. However, 
when propagating over large distances, such methods are 
expensive in terms of memory and computational costs 
[5].  

The normal mode method analysis gives exact solu-
tions without any assumed restrictions on pressure and 
velocity components distributions. It is applied to wide 
range of problems in different branches (Othman [6-8], 
Sharma et al. [9], Othman and Kumar [10], Othman and 
Singh [11] and Othman et al. [12]). It can be applied to 
boundary-layer problems, which are described by the 
linearized Navier-stokes equations in electrohydrody-
namic (Othman [13]). 

In this paper, the normal mode analysis can be em-
ployed to solve linear acoustic wave equation analytically. 

The technique focuses on description of a linear model and 
discuses the conditions under which using this technique. 
The propagation of acoustic pressure wave by the normal 
mood analysis in a medium with two-dimensional spa-
tially-variable acoustic properties has been explained.  
 
2. Acoustic Wave Equation 
 
Consider sound waves propagating in the water. Instead 
of the wave equation, we base our work on the basic 
Euler’s equation and the equation of continuity. For sim-
plicity, the discussion is confined to a two-dimensional 
space. In a 2-D Cartesian coordinate system, the sound 
pressure  and the particle velocity v satisfy the fol-
lowing linear equations: 
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where   ˆ ˆ( , , ) , , , ,x y x y t xv x y t yv x y t v  is the parti-
cle velocity, p(x, y, t) is the pressure and   is the den- 

sity of the fluid with wave number k
c


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1i   ,   is the angular frequency, c and   are the 
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speed of sound and attenuation in inhomogeneous me-
dium, respectively.  
 
3. Normal Mode Analysis 
 
The solution of considered physical variable can be de-
composed in terms of normal modes as the following 
form 
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where  are the amplitude of the functions 
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Equations (5)-(7) form a coupled system 
Eliminating *
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The solution of Equation (8) has the form 
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where , and  are the roots of the 
characteristic equation 
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The solution of Equation (8) is given by 
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From Equations (6) and (11) we can obtain 
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From Equations (7) and (11) we can obtain 
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4. Boundary Conditions 
 
On the surface at x = 0 
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Substituting from (4) into (16) then Equations (11) and 
(14) 
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By subtracting Equations (17) and (18) we get 
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By substituting from Equations (19) and (20) into 
Equations (11), (12) and (14) 
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5. Computational Results 
 
To study the wave propagation phenomenon in viscous 
medium and under different frequencies, we can apply 
the theoretical acoustic viscous wave Equation (21). Us-
ing water as the medium, the parameters are given as 
following:  and . Let 
the wave peak amplitude be  Pa and 

3998 Kg/m  1481 m/secc 
* 1o  FP * 1o   

m/sec at the source (x = 0), we simulate the pressure 
wave peak amplitude, in Equation (21), vs. the distance 
from the source at various frequencies. The results are 
shown in Figure 1 (in dB and linear scale). As expected, 
the peak wave amplitude becomes smaller as we move 
further from the source. We can also notice that as the 
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wave frequency goes higher, more attenuation can be 
observed at any given location. The peak pressure as 
function of frequency shown in Figure 2 for fixed dis-
tance at x = 2 cm. It is clear from this figure that the 
magnitude of peak of pressure little changes with the 
frequency. The predicted results are very agreement to 
the recorded by Wang [14]. 

Let us consider a 2-D simulation in which the pressure 
varies in the x and y directions. Figure 3 shows the 2-D 
pressure computational as function in the plane x-y. 
From this figure, it can be seen that the pressure ampli-
tude becomes smaller when moving in the x-y plane fur-
ther from the source. 
 
6. Conclusions 
 
A normal mode analysis which accurately the pressure 
acoustic wave equation, has been developed. This tech-
nique has a number of attractive features, foremost of 
which is the speed and simplicity with which it can be 
designed and implemented. The model could be used in  

 

 

Figure 1. Pressure amplitude (dB) as function of the dis-
tance from the origin. 
 

 

Figure 2. The pressure amplitude as function of frequency 
at distance 2 cm from the source. 

 

Figure 3. The pressure amplitude as function of plane x-y 
direction. 
 
the future to incorporate non-linear propagation effects. 
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