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Abstract

Let p be a prime. For any finite p-group G, the deep transfers
TheH/H —>G'/G" from the maximal subgroups Hof index (G:H)=p

in G to the derived subgroup G’ are introduced as an innovative tool for
identifying G uniquely by means of the family of kernels

24(G) = (ker(T, &) Gnyp - For all finite 3-groups G of coclass cc(G) =1, the
family ¢,(G) is determined explicitly. The results are applied to the Galois
groups G =Gal(F /F) of the Hilbert 3-class towers of all real quadratic
fields F=Q(/d) with fundamental discriminants d >1, 3-class group
Cl,(F) =C, xC;, and total 3-principalization in each of their four unramified
cyclic cubic extensions E/F . A systematic statistical evaluation is given for
the complete range 1<d <10", and a few exceptional cases are pointed out
for 1<d <10°.
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1. Introduction

The layout of this paper is the following. Deep transfers of finite p-groups G,
with an assigned prime number p, are introduced as an innovative supplement
to the (usual) shallow transfers [[1], p. 50], [[2], Equation (4), p. 470] in §2. The
family s, (G) = (ker(T, ) ), Of the kernels of all deep transfers of G is
called the deep transfer kernel type of G and will play a crucial role in this paper.
For all finite 3-groups G of coclass cc(G)=1, the deep transfer kernel type
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24(G) = (Ker(Ty ¢))iics is determined explicitly with the aid of commutator
calculus in §3 using a parametrized polycyclic power-commutator presentation
of G'[3] [4] [5]. In the concluding $4, the orders of the deep transfer kernels are
sufficient for identifying the Galois group G; F :=Gal(F,” / F) of the maximal
unramified pro-3 extension of real quadratic fields F :Q(JE ) with 3-class
group Cl,(F)=C,xC;, and total 3-principalization in each of their four

unramified cyclic cubic extensions E,,...,E,.

2. Shallow and Deep Transfer of p-Groups

With an assigned prime number p>2, let G be a finite p-group. Since our
focus in this paper will be on the simplest possible non-trivial situation, we
assume that the abelianization G/G’ of G is of elementary type (p,p) with
rank two. For applications in number theory, concerning p-class towers, the
Artin pattern has proved to be a decisive collection of information on G
Definition 2.1. The Artin pattern AP(G):=(z(G),»(G)) of G consists of

two families
7(G)=(H,/ Hi,)]sisp+1 and ¢(G):= (ker(-r(;,Hi ))Jsisp+l (2.1)

containing the targets and kernels of the Artin transfer homomorphisms
Ton G /G"—> H; /H] [[5], Lem. 6.4, p. 198], [[2], Equation (4), p. 470] from G
toits p+1 maximal subgroups H; with ie{l,..., p+1}. Since the maximal
subgroups form the shallow layer Lyr,(G) of subgroups of index (G:H;)=p
of G, we shall call the T;,, the shallow transfersof G, and i (G):=(G) the
shallow transfer kernel type (sTKT) of G.

We recall [[2], §2.2, pp. 475-476] that the sTKT is usually simplified by a

family of non-negative integers, in the following way. For 1<i< p+1,
( {j if ker(T,,, )=H, /G’ forsome je{l,..., p+1},
J{S 1 =

= . (2.2)
0 ifker(Tg, )=G/G"

The progressive innovation in this paper, however, is the introduction of the
deep Artin transfer.

Definition 2.2. By the deep transfers we understand the Artin transfer
homomorphisms Ty o T H IH/ > G'/G" [[5], Lem. 6.1, p. 196], [[6], Dfn. 3.3,

p. 69] from the maximal subgroups H,,...,H_,; to the commutator subgroup

p+1
G’ of G, which forms the deep layer Lyr,(G) of the (unique) subgroup of
index (G:G')=p® of G with abelian quotient G/G'. Accordingly, we call the

family
4 (G) = (#ker(Tyy, ¢ Dicicpa (2.3)

the deep transter kernel type (dTKT) of G.

We point out that, as opposed to the sTKT, the members of the dTKT are only
cardinalities, since this will suffice for reaching our intended goals in this paper.
This preliminary coarse definition is open to further refinement in subsequent

publications (See the proof of Theorem 3.1.).
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3. Identification of 3-Groups by Deep Transfers

The drawback of the sTKT is the fact that occasionally several non-isomorphic
p-groups G share a common Artin pattern AP(G) = (7(G), »,(G)) [[7], Thm.
7.2, p. 158]. The benefit of the dTKT is its ability to distinguish the members of
such batches of p-groups which have been inseparable up to now. After the
general introduction of the dTKT for arbitrary p-groups in §2, we are now going
to demonstrate its advantages in the particular situation of the prime p=3
and finite 3-groups G of coclass ¢c(G)=1, which are necessarily metabelian
with second derived subgroup G"=1 and abelianization G/G'=C,xC,,
according to Blackburn [8].

For the statement of our main theorem, we need a precise ordering of the four
maximal subgroups H,,...,H, of the group G=(X,y), which can be
generated by two elements X, Y, according to the Burnside basis theorem. For

this purpose, we select the generators X,y such that
H,=(y,G"), H,=(x,G", H,=(xy,G", H,=(xy*G", (3.1)

and H, =y,(G), provided that G is of nilpotency class cl(G)>3. Here we
denote by

7:(G)={g G |(vheG')[g,h]ey,(C)} (3.2)

the two-step centralizer of G' in G, where we let (7,(G)),, be the lower
central series of G =y,(G) with y(G)=[y.,(G),G] for i>2, in particular,
7,(G)=G".

The identification of the groups will be achieved with the aid of parametrized
polycyclic power-commutator presentations, as given by Blackburn [3], Miech
[4], and Nebelung [5]:

n

Gl (Z,W) ={X,¥,S5,--:5,1 1S = ¥, %, (ViL3) S =[S 5. X1, s, =L [y, 8,1 =51 4,
(V:sl) [y- Si] =1, X =s y35253 = Sé—l’ (v::zs) Si3$i3+15'+2 =1, Sriz = sr?—l =1),

n-11 i

(3.3)

where ae{0,1} and w,ze{-1,0,1} are bounded parameters, and the index
of nilpotency n=_cl(G)+1=cl(G)+cc(G) =log,(ord(G)) =10(G) isan
unbounded parameter.

Lemma 3.1. Let G be an arbitrary group with elements X,y €G. Then the
second and third power of the product Xy are given by

1) (xy)? =x’y’s,t,, where s,:=[y,x], t,=[s,,y],

2) (xy)° =XV (s;Lt,)° S;U5UsS,ty, where sy =[s,,X], t, =[t,y], u,=[s;, ],
Us = fug,y].

If G=G!(z,w), then (xy)’=x’y?s,s,% and (xy)’=x’y’sls,;s;3, and the
second and third power of xy> are given by (xy’)’=x’y's’s % and
(y*)° =X°y’s;s58, 5

Proof. We prepare the calculation of the powers by proving a few preliminary
identities:
yx=1-yx=xyy x - yx=xy -y 'x'yx = xy-[y, X] = xys, , and similarly
S,Y=VY5,[S,,Y]=ys,t; and s,x=xs,-[S,,X] = xs,S; and
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ty = yt, - [t;, y]=yt,t, and s;y=ys;-[S;, ¥]=ysu, and
u,y = yu, -[u,, y] = yu,u. . Furthermore,
yX2 =yX-X= XyS2 X= Xy'SZX =Xy- X5253 =X- yX'SZS3 =X- XyS2 -5253 = XZyS§S3 5
SY =Sy Y= YSt Y = YS, LY =S, Yl = Y-S,y bl = Y yst b = YISt
S;Y =YY = YSiU, Y = Y8y Uy = Sy - YU, U

= Y-S,y Ul = Y- YS,U, - Uyl = Y2S,UU,

Now the second power of Xy is
(XY)° = XyXy = X yX- Y =X XS, -y = XY -8,y = XY - ys,ty = X*y s by
and the third power of Xy is
(xy)* = xy - (xy)* = xy - X*y?s,t; = X- yx* - y*s,ty = X- X*ys78; - Y8,
=x3ys2 - s,y% sty = XPyss - yPs,ulug - st = X3S, -8, Y7 - S;UZUS, L,
=x%ys, - y2S,tt, - S;uiUS,t, = X2y -8,y - S, tt, S,ulu S t,
= X3y - Y25,t2t, - S,t2t, SURUS b, = XP Y2 (S,t2t,) 2 S,uZUg St

If G=G](z,w), then t,=u,=u;=1, t,=s%, t:=5%=1, and G’ is
abelian. U

Theorem 3.1. (3-groups G of coclass cc(G) = 1.) Let G be a finite 3-group of
coclass cc(G)=1 and order ord(G)=3" with an integer exponent N>2 .
Then the shallow and deep transter kernel type of G are given in dependence on
the relational parameters a,n,w,z of G =G, (z,w) byTable1.

Proof. The shallow TKT ,(G) of all 3-groups G of coclass cc(G)=1 has
been determined in [2], where the designations a.n of the types were introduced
with ne{l,2,3}. Here, we indicate a capable mainline vertex of the tree
T'(R) withroot R=C,xC, [7] by the type a.1* with a trailing asterisk. As usual,
type a.3* indicates the unique 3-group G =Syl,A, with 7(G)=(3,3,3),(3,3)%.
Now we want to determine the deep TKT 1¢,(G), using the presentation of
G =G, (z,w) in Formula (3.3). For this purpose, we need expressions for the
images of the deep Artin transfers T,:=T, o :H;/H/—>G’, for each 1<i<4.
(Observe that p=3 implies G"=1 by [8].) Generally, we have to distinguish
outer transfers, T,(g-H/)=g° if geH,\G' [[2], Equation (4), p. 470], and
inner transfers,

T.(g-H))=g""™" =g°-[g,h°]-[[0,h],h] if geG' and Ais selectedin H,\G'
[[2], Equation (6), p. 486].

First, we consider the distinguished two-step centralizer H, = y,(G) with
i=1.Then H,=(y,G") and H =1 if a=0 (H, abelian), but
H =7,,(G)=(s,,) if a=1 (H, non-abelian) [[2], Equation (3), p. 470].
The outer transfer is determined by T,(y-H,)=y®=s,’s;'s?,. For the inner
transfer, we have T(s;-H/)= S“y”2 = S3 Is;,y ]-[[Sj Y1 yl=s; S Ly]= Sj
forall j>3,but T,(s,-H;)=s;-s ;313 [s,3,¥]1=s; for j=2,since

S, €¢5n1) =7,4(G)=¢,(G) lies in the centre of G. The first kernel equation
s,°s;'st, =1 is solvable by either n=3, where z2=0, s,=1, si=1,0r n=4,
z=1, where sy =1, s, =s,.The second kernel equation s’ =1 is solvable by
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Table 1. Shallow and deep TKT of 3-groups Gwith cc(G) =1.

G= n Type »,(G) #,(G)
G!(0,0) =2 al* (0,0,0,0) (3.3.3.3)
G:(0,0) >3 al* (0,0,0,0) (9,9,9,9)
G!(0,0) >5 al (0,0,0,0) (3,9.3.3)

G'(0,-1) >5 al (0,0,0,0) (3.3,9,9)
G'(0,1) >5 al (0,0,0,0) (3.3.3.3)
G!(0,1) >4 a2 (1,0,0,0) (9,3,3,3)

G!(-1,0) >4 even a3 (2,0,0,0) (9,9,3,3)
G!(1,0) >5 a3 (2,0,0,0) (9,9,3,3)
G!(1,0) =4 a3* (2,0,0,0) (27,9,3,3)
G (0.1) =3 Al 1,1,1,1) (9,3,3,3)

either i=n-1 or i=n-2. Thus, the deep transfer kernel is given by

H, =(y,s,) =C,;xC, if n=3(G extra special),

H, =(y,5,,5;) =C,xC, xC; if n=4,z=1(G =Syl,A),
V00(G)=(8,,,8,1)=CyxCjif n=4,z#1orn>5,a=0,
Vn2(G) ! 7,4(G) =(s,.,) =C; if n>5, a=1(H, non-abelian).

ker(T,) = (3.4)

Second, we put i=2. Then H,=(x,G") and H,=y,(G)=(s;,....S,,) -
The outer transfer is determined by T,(x-Hj)=x%=s",. The inner transfer is
given by T,(s;-H;)= sﬁ*x*xz =s3-[s;,X°]-[[s;, X1, X]=57s} ;8;,, =1, forall j>2,
independently of a,n,w,z . Consequently, the deep transfer kernel is given by
H, /H, =(X,S,,.-,S,40 1 {S3s+-+,S,4) =(X,S,) =C,; xC; if w=0,

3.5
G'ITH)=(Sy,.,S ) 1 (S5, S ) =(S,) =Cy if w==1. (3:3)

ker(T,) ={

Next, we put i=3. Then H,;=(xy,G") and H;=y,(G)=(s;,...,S,,) . The
outer transfer is determined by T,(xy-Hj) = (xy)® = x’y’sls,s; % = s¥"**. For
the inner transfer, we have
T,(s;-Hy) = s}”"*‘x")z =535, xy°]-[[s;, ¥y, xy] =s7s},45,., =1, for all j23,
independently of a,n,w,z . The first kernel equation S‘n”flz’za =1
W+2z—2a=0(mod3) is solvable by either a=w=2z=0 or a=1, w=-1.

Therefore, the deep transfer kernel is given by
H,/H;=(xy,s,) =C,xC; if eithera=w=z=00ra=1,w=—

11
) (3.6)
G'/ Hj =(s,) = C, otherwise.

ker(T,) ={

Finally, we put 7= 4. Then H, =(xy*,G') and H,=y,(G)=(s,,...,S, ) The
outer transfer is determined by T,(xy*-H;)=(xy*)®=x>y’spszs, 2 =7 2.
The inner transfer is given by
T,(s, - Hi) = s 0 2 s xy®]-[[s;, xy2], xy2] = 8838, =1, for all j>3,
independently of a,n,w,z . The first kernel equation S:/jlzzfza =1 <
w+2z-2a=0(mod3) issolvable by either a=W=2z=0 or a=1, w=-1.

Thus, the deep transfer kernel is given by
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Ker(T,) = H,/Hj =(xy%s,)=C,xC,if eithera=w=z=00ra=1, w=-1,
*1G'I H} =(s,) = C, otherwise.
(3.7)

These finer results are summarized in terms of coarser cardinalities in Table

O

4. Arithmetical Application to 3-Class Tower Groups
4.1. Real Quadratic Fields

As a final highlight of our progressive innovations, we come to a number
theoretic application of Theorem 3.1, more precisely, the unambiguous
identification of the pro-3 Galois group G;F =Gal(F,” /F) of the maximal
unramified pro-3 extension F*), that is the Hilbert 3-class field tower, of
certain real quadratic fields F = Q(\/a ) with fundamental discriminant d >1,
3-class group Cl;(F) of elementary type (3,3), and shallow transfer kernel
type a.l, s (F)=(0,0,0,0), in its ground state with 7(F)~(9,9),(3,3)° orina
higher excited statewith 7(F)~(3%,3%),(3,3)°, e>3.

The first field of this kind with d =62501 was discovered by Heider and
Schmithals in 1982 [9]. They computed the sTKT s (F)=(0,0,0,0) with four
total 3-principalizations in the unramified cyclic cubic extensions E;/F,
1<i<4, on a CDC Cyber mainframe. The fact that d =62501 is a triadic
irregular discriminant (in the sense of Gauss) with non-cyclic 3-class group
Cl,(F) =C, xC; has been pointed out earlier in 1936 by Pall [10] already. The
second field of this kind with d =152949 was discovered by ourselves in 1991
by computing s, (F) on an AMDAHL mainframe [11]. In 2006, there followed
d =252977 and d =358285, and many other cases in 2009 [12] [13].

Generally, there are three contestants for the group G=G;F, for any
assigned state 7(F)~(3%,3%),(3,3)°, €>2, and the following Main Theorem
admits their identification by means of the deep transfer kernel type (See their
statistical distribution at the end of Section 4.1.).

Theorem 4.1. (3-class tower groups G of coclass co(G) = 1 and type a.1.)
Let F=Q(/d) bea quadratic field with fundamental discriminant d, 3-class
group Cl,(F)=C,;xC,, and shallow transfer kernel type a.1,

»#,(F)=1(0,0,0,0).

Then Fis real with d >1, the 3-class tower group G =G;'F of Fhas coclass
cc(G)=1, and the relational parameters N>5 and we{-1,0,1} of
G =G;'(0,w) are given in dependence on the deep transfer kernel type s, (F)
as follows:

G=GX*"(0,00 with n=2(+1),w=0 << ,(F)~(3933),
G=GX*"M(0,-1) with n=2@+1),w=-1 < x,(F)~(33,9,9), (41)
G=G/M(0,1) with n=2(+),w=1 < ,(F)~(333,3),

where we suppose that the state of type a.l Is determined by the transfer target
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type (F)~(3°,3),(3,3)° with e>2.

Proof. Let F = Q(\/a ) be a quadratic field with 3-class group
Cl,(F)=C,xC,, denote by E,...,E, its four unramified cyclic cubic
extensions and by Tg p :Cl,(F) > Cl,(E;) (1<i<4) the transfer
homomorphisms of 3-classes.

If the 3-principalization is total, thatis ker(Tg ) =Cl,(F), for each 1< i<4,
then F must be a rea/ quadratic field with positive fundamental discriminant
d >1, since the order of the principalization kernels ker(Tg,e) of an imaginary
quadratic field F is bounded from above by (Up:Ng,Ug)-E:F=1.3=3,
according to the Theorem on the Herbrand quotient of the unit groups Ug .

By the Artin reciprocity law of class field theory [1] [14], the principalization
type »(F)=(0000) of the field F corresponds to the shallow transfer kernel
type ,(G)=(0000) of the 3-class tower group G =Gal(F”/F) of F and
the abelian type invariants Cl,(F)=1* of the 3-class group of F correspond to
the abelian quotient invariants G/G'=1* of G.

According to [2], a finite 3-group G with G/G’'=1" and s (G) = (0000)
must be of coclass c¢c(G)=1. Table 1 shows that either G =G;(0,0) of type
a.l'with Nn22 or G=G/'(0,w) oftypea.l with n>5 and -1<w<l.

For a real quadratic field F, the relation rank d,(G)=dimy H,(G,F,) of the
3-class tower group G =G{”F is bounded by d,(G)<3 [[15], Thm. 1.3, pp.
75-76]. Consequently, G cannot be a non-abelian mainline vertex G (0,0)
with n>3 of the coclass-1 tree 7'(R) with root R=C,xC,, since all these
vertices have the relation rank 4. According to [[12], Thm. 4.1 (1), p. 486], G
cannot be the abelian root R=GZ(0,0) either, and we must have
G=G/(0,w) with n>5 and we{-1,0,1}.

Now the claim is a consequence of Theorem 3.1 and Table 1. U

Table 2 shows that the ground state 7(F)=(9,9),(3,3)° of the sTKT
#,(F)=1(0,0,0,0) has the nice property that the smallest three discriminants
already realize three different 3-class tower groups G =G;F =(729,i) with
i €{99,100,101}, identified by their dTKT ¢, (F) =5, (G).

In Table 3, we see that the first excited state t(F)=(27,27),(3,3)° of the
STKT ,(F)=(0,0,0,0) does not behave so well: although the smallest two
discriminants [12] [13] [16] [17] already realize two different 3-class tower
groups G =G; F =(656L,i) with ie{2225,2227}, we have to wait for the
seventh occurrence until (6561,2226) is realized, as the dTKT ¢, (F) =, (G)
shows. The counter 7 is a typical example of a statistic delay.

The second excited state 7(F)=(81,81),(3,3)° of the sSTKT

Table 2. Deep TKT of 3-class tower groups Gwith 7(G) = (9,9),(3,3)°.

G #,(G) MD
(729,99) = G (0,0) (3,9,3,3) 62,501
(729,100 = G (0,-1) (3,3,9,9) 152,949
(729,101y = G* (0,1) (3,3,3,3) 252,977
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Table 3. Deep TKT of 3-class tower groups Gwith 7(G) = (27,27),(3,3)°.

G #,(G) MD further discriminants
(6561,2225) = G (0,0) (3,9,3,3) 10,399,596 16,613,448
(6561,2226)~G'(0,-1)  (3,3,9,9) 27,780,297

(6561,2227) = G/ (0,1) (3,3,3,3) 2,905,160 14,369,932, 15,019,617, 21,050,241

»#,(F)=(0,0,0,0) , however, is well-behaved again: the smallest three
discriminants already realize three different 3-class tower groups

G=G;F =G/°(0,w) with we{0,-1,1}, identified by their dTKT

24 (F)=5¢,(G). (For logarithmic orders =9, no SmallGroup identifiers exist.)
See Table 4.

In all tables, the shortcut MD means the minimal discriminant [[7], Dfn. 6.2,
p. 148].

The diagram in Figure 1 visualizes the initial eight branches of the coclass tree
T'(R) with abelian root R=(9,2)=C,xC, . Basic definitions, facts, and
notation concerning general descendant trees of finite p-groups are summarized
briefly in [[18], §2, pp. 410-411] [19]. They are discussed thoroughly in the
broadest detail in the initial sections of [20]. Descendant trees are crucial for
recent progress in the theory of p-class field towers [15] [21] [22], in particular
for describing the mutual location of the second p-class group GiF and the
p-class tower group GJF of a number field G. Generally, the vertices of the
coclass tree in the figure represent isomorphism classes of finite 3-groups. Two
vertices are connected by a directed edge G — H if His isomorphic to the last
lower central quotient G/, (G), where c=cl(G)=n-1 denotes the nilpotency
class of G, and |G|=3|H |, that is, »,(G)=C, is cyclic of order 3. See also
[[18], §2.2, p. 410-411] and [[20], §4, p. 163-164].

The vertices of the tree diagram in Figure 1 are classified by using various
symbols:

1) big contour squares [] represent abelian groups,

2) big full discs e represent metabelian groups with at least one abelian
maximal subgroup,

3) small full discs ® represent metabelian groups without abelian maximal
subgroups.

The groups of particular importance are labelled by a number in angles, which
is the identifier in the SmallGroups Library [23] [24] of MAGMA [25]. We omit
the orders, which are given on the left hand scale. The sTKT 3¢, [[2] Thm. 2.5,
Tbl. 6-7], in the bottom rectangle concerns all vertices located vertically above.
The first component 7(1) of the TTT [[26] [27], Dfn. 3.3, p. 288] in the left
rectangle concerns vertices G on the same horizontal level containing an abelian
maximal subgroup. It is given in logarithmic notation. The periodicity with
length 2 of branches, B(j)=B(j+2) for j=>4, sets in with branch B(4),
having a root of order 3*

3-class tower groups G =G, F with coclass cc(G)=1 of real quadratic
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Table 4. Deep TKT of 3-class tower groups Gwith 7(G) = (81,81),(3,3)*.

G »,(G) MD
G,°(0,0) (3,9,3,3) 63,407,037
G,°(0,-1) (3,3,9,9) 62,565,429
G,°(0,1) (3,3,3,3) 40,980,808
order 3™ (1) = o
Cg =(1) 3PN 9y — 03 x O3
9 T 32 (1) O TKT a.l
»xs = (0000)
branc
G2(0,1) =(4) = G3(0,0)
274 33 (12) TKT A.l 0
bifurcation from G(3,1)
to G(3,2)
depth 1
81 + 34 (21)
T’i\ (1) 7) (13)
82009 142097
(25) (28) (30) (29)
243 + 35 (22) , \ \ \
period length 2
(98)
729 4 36 (32) o |
494 236 252977
(391)
2187 + 37 (3%)
6561 1+ 38 (43)
10200108 2905 160
19 683 1 39 (42)
59049 + 310 (54)
GB(—1,0) ap(1,0)
TTT 208 540 653 37304664 62565429 63407037 40980808
infinit
y with abelian maximal subgroup y m .n] _e without abelian maximal subgroup
mainline
TH((9,2))
TKT a.3 a.3 a.2 a.l* a.l a.l a.l
x5 = (2000) (2000) (1000) (0000) (0000) (0000) (0000)

Figure 1. Distribution of minimal discriminants for G{F on the coclass-1 tree 7({9,2))
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fields F =@(JE ) are located as arithmetically realized vertices on the tree
diagram in Figure 1. The minimal fundamental discriminants d, i.e. the MDs,
are indicated by underlined boldface integers adjacent to the oval surrounding
the realized vertex [6] [24] [25].

The double contour rectangle surrounds the vertices which became
distinguishable by the progressive innovations in the present paper and were
inseparable up to now.

In Table 5, we give the isomorphism type of the 3-class tower group
G=G;F of all real quadratic fields F :Q(JE ) with 3-class group
Cl,(F)=C,xC, and shallow transfer kernel type a.l, s, =(0,0,0,0), in its
ground state 7(F)=(9,9),(3,3)°, for the complete range 1<d <10’ of 150
fundamental discriminants d. It was determined by means of Theorem 4.1,
applied to the results of computing the (restricted) deep transfer kernel type
sy (F) = (#ker(T FOE, ))scica» consisting of the orders of the 3-principalization
kernels of those unramified cyclic cubic extensions E;, 2<i<4, in the Hilbert
3-class field F® of F whose 3-class group Cl,(E;) is of type (3,3). These
trailing three components of the TTT 7(F)=(9,9),(3,3)° were called its stable
part in [[6], Dfn. 5.5, p. 84]. The computations were done with the aid of the
computational algebra system MAGMA [25]. The 3-principalization kernel of
the remaining extension E, with 3-class group CL(E,) of type (9,9) does
not contain essential information and can be omitted. This leading component
of the TTT z(F)=(9,9),(3,3)® was called its polarized partin [[6], Dfn. 5.5, p.
84]. For more details on the concepts stabilization and polarization, see [[6], §6,
pp- 90-95].

A systematic statistical evaluation of Table 5 shows that, with respect to the
complete range 1<d <10', the group G =(729,99) occurs most often with a
clearly elevated relative frequency of 44%, whereas G =(729,100) and
G =(729,101) share the common lower percentage of 28%, although the
automorphism group Aut(G) of all three groups has the same order. However,
the proportion 44:28:28 for the upper bound 10 is obviously not settled yet,
because there are remarkable fluctuations, as Table 6 shows. According to
Boston, Bush and Hajir [28] [29], we have to expect an asymptotic limit
33:33:33 of the proportions for d — .

4.2. Totally Real Dihedral Fields

In fact, we have computed much more information with MAGMA than
mentioned at the end of the previous Section 4.1. To understand the actual scope
of our numerical results it is necessary to recall that each unramified cyclic cubic
relative extension E,/F, 1<i<4, gives rise to a dihedral absolute extension
E, /Q of degree6, thatisan S, -extension [[12], Prp. 4.1, p. 482]. For the trailing
three fields E;, 2<i<4, in the stable part of the TTT 7(F)=(9,9),(3,3)°, ie
with Cl,(E;) of type (3,3), we have constructed the unramified cyclic cubic
extensions E; ;/Ej, 1<j<4, and determined the Artin pattern AP(E;) of
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Table 5. Statistics of 3-class tower groups Gwith 7(G) =(9,9),(3,3)*.

No. d G No. d G No. d G
1 62,501 (729,99) 51 3,995,004 (729,101) 101 7,313,928 (729,99)
2 152,949 (729,100) 52 4,045,265 (729,101) 102 7,391,212 (729,99)
3 252,977 (729,101) 53 4,183,205 (729,100) 103 7,406,249 (729,101)
4 358,285 (729,101) 54 4,196,840 (729,100) 104 7,415,841 (729,101)
5 531,437 (729,99) 55 4,199,901 (729,101) 105 7,447,697 (729,100)
6 586,760 (729,101) 56 4,220,977 (729,100) 106 7,502,501 (729,100)
7 595,009 (729,100) 57 4,233,608 (729,99) 107 7,601,081 (729,101)
8 726,933 (729,99) 58 4,252,837 (729,100) 108 7,623,320 (729,101)
9 801,368 (729,100) 59 4,409,313 (729,100) 109 7,630,645 (729,100)
10 940,593 (729,100) 60 4,429,612 (729,101) 110 7,634,065 (729,100)
11 966,489 (729,99) 61 4,533,032 (729,99) 111 7,643,993 (729,100)
12 1,177,036 (729,99) 62 4,586,797 (729,100) 112 7,683,308 (729,101)
13 1,192,780 (729,101) 63 4,662,917 (729,100) 113 7,704,653 (729,100)
14 1,313,292 (729,99) 64 4,680,701 (729,99) 114 7,713,961 (729,99)
15 1,315,640 (729,99) 65 4,766,309 (729,99) 115 7,804,828 (729,100)
16 1,358,556 (729,100) 66 4,782,664 (729,99) 116 7,936,316 (729,100)
17 1,398,829 (729,101) 67 4,783,697 (729,100) 117 8,037,645 (729,100)
18 1,463,729 (729,101) 68 4,965,009 (729,100) 118 8,101,277 (729,101)
19 1,580,709 (729,100) 69 5,039,692 (729,99) 119 8,235,965 (729,101)
20 1,595,669 (729,100) 70 5,048,988 (729,99) 120 8,248,953 (729,99)
21 1,722,344 (729,99) 71 5,111,669 (729,100) 121 8,263,020 (729,99)
22 1,751,909 (729,101) 72 5,119,637 (729,99) 122 8,320,764 (729,99)
23 1,831,097 (729,99) 73 5,154,385 (729,100) 123 8,375,228 (729,99)
24 1,942,385 (729,101) 74 5,226,941 (729,100) 124 8,501,541 (729,101)
25 2,021,608 (729,99) 75 5,226,941 (729,99) 125 8,523,385 (729,101)
26 2,042,149 (729,101) 76 5,350,569 (729,100) 126 8,578,617 (729,99)
27 2,076,485 (729,99) 77 5,353,240 (729,99) 127 8,623,704 (729,101)
28 2,185,465 (729,101) 78 5,362,136 (729,101) 128 8,637,717 (729,99)
29 2,197,669 (729,101) 79 5,400,712 (729,101) 129 8,674,397 (729,99)
30 2,314,789 (729,99) 80 5,478,321 (729,99) 130 8,723,237 (729,99)
31 2,409,853 (729,99) 81 5,827,564 (729,99) 131 8,737,913 (729,101)
32 2,433,221 (729,101) 82 5,891,701 (729,101) 132 8,748,764 (729,99)
33 2,539,129 (729,101) 83 5,909,217 (729,99) 133 8,816,389 (729,99)
34 2,555,249 (729,100) 84 5,982,269 (729,101) 134 8,957,485 (729,101)
35 2,710,072 (729,100) 85 6,105,693 (729,100) 135 8,993,409 (729,100)
36 2,851,877 (729,99) 86 6,155,861 (729,99) 136 9,006,397 (729,101)
37 2,954,929 (729,99) 87 6,337,340 (729,99) 137 9,051,665 (729,99)
38 3,005,369 (729,101) 88 6,429,997 (729,100) 138 9,058,892 (729,101)
39 3,197,864 (729,100) 89 6,618,085 (729,99) 139 9,130,973 (729,99)
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Continued
40 3,197,944 (729,101) 90 6,658,973 (729,100) 140 9,185,153 (729,101)
41 3,258,120 (729,101) 91 6,792,365 (729,99) 141 9,195,769 (729,101)
42 3,323,065 (729,99) 92 6,806,152 (729,99) 142 9,328,597 (729,99)
43 3,342,785 (729,99) 93 6,882,737 (729,99) 143 9,379,849 (729,100)
44 3,644,357 (729,99) 94 6,927,452 (729,101) 144 9,380,744 (729,99)
45 3,658,421 (729,100) 95 6,953,513 (729,99) 145 9,419,704 (729,99)
46 3,692,717 (729,99) 96 6,974,609 (729,99) 146 9,511,580 (729,100)
47 3,721,565 (729,99) 97 7,010,133 (729,101) 147 9,615,813 (729,100)
48 3,799,597 (729,100) 98 7,019,717 (729,99) 148 9,645,393 (729,99)
49 3,821,244 (729,99) 929 7,075,740 (729,101) 149 9,801,773 (729,99)
50 3,869,909 (729,99) 100 7,263,365 (729,99) 150 9,834,557 (729,99)

Table 6. Proportions of 3-class tower groups G =(729,i) with ie{99,100,101}.

for
G . 1 2 3 4 5 6 7 8 9 10
d <10° x
(729,99) 36% 38% 41% 43% 40% 42% 45% 41% 43% 44%
(729,100) 36% 29% 24% 24% 31% 31% 30% 32% 29% 28%
(729,101) 27% 33% 35% 33% 29% 27% 25% 27% 28% 28%

E,, in particular, the 3-principalization type of E, in the fields Ei,j' The
dihedral fields E; of degree 6 share a common polarization E,,=F", the
Hilbert 3-class field of £ which is contained in the relative 3-genus field
(E;/ F)", whereas the other extensions Ei, ; with 2<j<4 are non-abelian
over F, for each 2<i<4. Our computational results suggest the following
conjecture concerning the infinite family of totally real dihedral fields E, for
varying real quadratic fields F.

Conjecture 4.1. (3-class tower groups G of totally real dihedral fields.)
Let F = Q(\/a ) be a real quadratic field with fundamental discriminant d >1,
3-class group Cl,(F)=C,xC,, and shallow transfer kernel typea.l,
»#,(F)=1(0,0,0,0), in the ground state with transfer target type
7(F)~(9,9),(3,3)°. Let E,,E,,E, be the three unramified cyclic cubic relative
extensions of F with 3-class group Cl,(E;) oftype (3,3).

Then E;/Q is a totally real dihedral extension of degree 6, for each
2<i<4, and the connection between the component 4 (F), :#ker(TFg(l)/Ei)
of the deep transfer kernel type s,(F) of F and the 3-class tower group
G =GyE, =Gal(E){” /E;) of E; isgiven in the following way:

74(F), =3 < G =(243,27) with»,(G)=(1,0,0,0),

#,(F), =9 < G =(243,26) with »,(G)=(0,0,0,0). “2)

Remark 4.1. The conjecture is supported by all 3-150=450 totally real
dihedral fields E; which were involved in the computation of Table 5. A

provable argument for the truth of the conjecture is the fact that
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)=#x(E), =#x,(G),, for 2<i<4, but it does not

FY/E

sy (F), = #ker(T

explain why the 3sTKT 2#,(G) is a.2 with a fixed point if s, (F), =3. It is
interesting that a dihedral field E; of degree 6 is satistfied with a non-c group,
such as (243,27), as its 3-class tower group. On the other hand, it is not
surprising that a mainline group, such as (243,26) with sTKT a.1* and relation
rank d, =4, is possible as G =G, E;, since the upper Shafarevich bound for
the relation rank of the 3-class tower group of a totally real dihedral field E; of
degree 6 with Cl,(E;)=C,;xC, is given by p+r+r,-1=2+6+0-1=7>4
[[15], Thm. 1.3, p. 75].

Assuming an asymptotic limit 33:33:33 of the proportion of the real
quadratic 3-class tower groups G €{(729,99),(729,100),(729,101)} for the
ground state of STKT a.1, we can also conjecture an asymptotic limit 33:66 of
the corresponding totally real dihedral 3-class tower groups
G €{(243,26),{(243,27)} , since the restricted dTKTs (9,3,3), (3,9,9),
(3,3,3) together contain three times the 9 and six times the 3 in Equation (4.2).
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