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Abstract 
Let p be a prime. For any finite p-group G, the deep transfers 

, : / /H GT H H G G′ ′ ′ ′′→  from the maximal subgroups H of index ( : )G H p=  

in G to the derived subgroup G′  are introduced as an innovative tool for 
identifying G uniquely by means of the family of kernels 

, ( : )( ) (ker( ))d H G G H pG T ′ == . For all finite 3-groups G of coclass cc( ) 1G = , the 
family ( )d G  is determined explicitly. The results are applied to the Galois 

groups ( )
3Gal( / )G F F∞=  of the Hilbert 3-class towers of all real quadratic 

fields ( )F d=  with fundamental discriminants 1d > , 3-class group 

3 3 3Cl ( )F C C× , and total 3-principalization in each of their four unramified 
cyclic cubic extensions /E F . A systematic statistical evaluation is given for 
the complete range 71 10d< < , and a few exceptional cases are pointed out 
for 81 10d< < . 
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1. Introduction 

The layout of this paper is the following. Deep transfers of finite p-groups G, 
with an assigned prime number p, are introduced as an innovative supplement 
to the (usual) shallow transfers [[1], p. 50], [[2], Equation (4), p. 470] in §2. The 
family , ( : )( ) (ker( ))d H G G H pG T ′ ==  of the kernels of all deep transfers of G is 
called the deep transfer kernel type of G and will play a crucial role in this paper. 
For all finite 3-groups G of coclass cc( ) 1G = , the deep transfer kernel type 
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, 1 4( ) (ker( ))
id H G iG T ′ ≤ ≤=  is determined explicitly with the aid of commutator 

calculus in §3 using a parametrized polycyclic power-commutator presentation 
of G [3] [4] [5]. In the concluding §4, the orders of the deep transfer kernels are 
sufficient for identifying the Galois group ( )

3 3: Gal( / )G F F F∞ ∞=  of the maximal 
unramified pro-3 extension of real quadratic fields ( )F d=  with 3-class 
group 3 3 3Cl ( )F C C× , and total 3-principalization in each of their four 
unramified cyclic cubic extensions 1 4, ,E E . 

2. Shallow and Deep Transfer of p-Groups 

With an assigned prime number 2p ≥ , let G be a finite p-group. Since our 
focus in this paper will be on the simplest possible non-trivial situation, we 
assume that the abelianization /G G′  of G is of elementary type ( , )p p  with 
rank two. For applications in number theory, concerning p-class towers, the 
Artin pattern has proved to be a decisive collection of information on G. 

Definition 2.1. The Artin pattern AP( ) : ( ( ), ( ))G G Gτ=   of G consists of 
two families  

1 1 , 1 1( ) : ( / ) and ( ) : (ker( ))
ii i i p G H i pG H H G Tτ ≤ ≤ + ≤ ≤ +′= =           (2.1) 

containing the targets and kernels of the Artin transfer homomorphisms 

, : / /
iG H i iT G G H H′ ′→  [[5], Lem. 6.4, p. 198], [[2], Equation (4), p. 470] from G 

to its 1p +  maximal subgroups iH  with {1, , 1}i p∈ + . Since the maximal 
subgroups form the shallow layer 1Lyr ( )G  of subgroups of index ( : )iG H p=  
of G, we shall call the , iG HT  the shallow transfers of G, and ( ) : ( )s G G=   the 
shallow transfer kernel type (sTKT) of G.  

We recall [[2], §2.2, pp. 475-476] that the sTKT is usually simplified by a 
family of non-negative integers, in the following way. For 1 1i p≤ ≤ + ,  

,

,

if ker( ) / for some {1, , 1},
( ) :

0 if ker( ) / .
i

i

G H j
s i

G H

j T H G j p
G

T G G

′= ∈ +=  ′=



     (2.2) 

The progressive innovation in this paper, however, is the introduction of the 
deep Artin transfer. 

Definition 2.2. By the deep transfers we understand the Artin transfer 
homomorphisms , : / /

iH G i iT H H G G′ ′ ′ ′′→  [[5], Lem. 6.1, p. 196], [[6], Dfn. 3.3, 
p. 69] from the maximal subgroups 1 1, , pH H +  to the commutator subgroup 
G′  of G, which forms the deep layer 2Lyr ( )G  of the (unique) subgroup of 
index 2( : )G G p′ =  of G with abelian quotient /G G′ . Accordingly, we call the 
family  

, 1 1( ) (#ker( ))
id H G i pG T ′ ≤ ≤ +=                     (2.3) 

the deep transfer kernel type (dTKT) of G.  
We point out that, as opposed to the sTKT, the members of the dTKT are only 

cardinalities, since this will suffice for reaching our intended goals in this paper. 
This preliminary coarse definition is open to further refinement in subsequent 
publications (See the proof of Theorem 3.1.). 
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3. Identification of 3-Groups by Deep Transfers 

The drawback of the sTKT is the fact that occasionally several non-isomorphic 
p-groups G share a common Artin pattern AP( ) : ( ( ), ( ))sG G Gτ=   [[7], Thm. 
7.2, p. 158]. The benefit of the dTKT is its ability to distinguish the members of 
such batches of p-groups which have been inseparable up to now. After the 
general introduction of the dTKT for arbitrary p-groups in §2, we are now going 
to demonstrate its advantages in the particular situation of the prime 3p =  
and finite 3-groups G of coclass ( ) 1cc G = , which are necessarily metabelian 
with second derived subgroup 1G′′ =  and abelianization 3 3/G G C C′ × , 
according to Blackburn [8]. 

For the statement of our main theorem, we need a precise ordering of the four 
maximal subgroups 1 4, ,H H  of the group ,G x y= 〈 〉 , which can be 
generated by two elements ,x y , according to the Burnside basis theorem. For 
this purpose, we select the generators ,x y  such that  

2
1 2 3 4, , , , , , , ,H y G H x G H xy G H xy G′ ′ ′ ′= 〈 〉 = 〈 〉 = 〈 〉 = 〈 〉      (3.1) 

and 1 2 ( )H Gχ= , provided that G is of nilpotency class cl( ) 3G ≥ . Here we 
denote by  

2 4( ) : { | ( ) [ , ] ( )}G g G h G g h Gχ γ′= ∈ ∀ ∈ ∈              (3.2) 

the two-step centralizer of G′  in G, where we let 1( ( ))i iGγ ≥  be the lower 
central series of 1: ( )G Gγ=  with 1( ) [ ( ), ]i iG G Gγ γ −=  for 2i ≥ , in particular, 

2 ( )G Gγ ′= . 
The identification of the groups will be achieved with the aid of parametrized 

polycyclic power-commutator presentations, as given by Blackburn [3], Miech 
[4], and Nebelung [5]:  

2 1 2 3 1 2 1
1 3 3 3 3 3 3 3 3
3 1 2 3 1 2 1 2 2 1

( , ) : , , , , | , , ( ) [ , ], 1, [ , ] ,

( ) [ , ] 1, , , ( ) 1, 1 ,

n n a
a n i i i n n

n w z n
i i n n i i i i n n

G z w x y s s s y x s s x s y s s

y s x s y s s s s s s s s
− = − −

− −
= − − = + + − −

= 〈 … = ∀ = = =

∀ = = = ∀ = = = 〉
 (3.3) 

where {0,1}a∈  and , { 1,0,1}w z∈ −  are bounded parameters, and the index 
of nilpotency 3cl( ) 1 cl( ) cc( ) log (ord( )) : lo( )n G G G G G= + = + = =  is an  
unbounded parameter. 

Lemma 3.1. Let G be an arbitrary group with elements ,x y G∈ . Then the 
second and third power of the product xy  are given by  

1) 2 2 2
2 3( )xy x y s t= , where 2 : [ , ]s y x= , 3 2: [ , ]t s y= ,  

2) 3 3 3 2 2 2
2 3 4 3 4 5 2 3( ) ( )xy x y s t t s u u s t= , where 3 2[ , ]s s x= , 4 3[ , ]t t y= , 4 3[ , ]u s y= , 

5 4[ , ]u u y= .  
If ( , )n

aG G z w , then 2 2 2
2 1( ) a

nxy x y s s−−=  and 3 3 3 3 2
2 3 1( ) a

nxy x y s s s−−= , and the 
second and third power of 2xy  are given by 2 2 2 4 2 2

2 1( ) a
nxy x y s s−−=  and 

2 3 3 6 6 2 2
2 3 1( ) a

nxy x y s s s−−= .  
Proof. We prepare the calculation of the powers by proving a few preliminary 

identities: 
1 1 1 1

21 [ , ]yx yx xyy x yx xy y x yx xy y x xys− − − −= ⋅ = ⋅ = ⋅ = ⋅ = , and similarly 

2 2 2 2 3[ , ]s y ys s y ys t= ⋅ =  and 2 2 2 2 3[ , ]s x xs s x xs s= ⋅ =  and  
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3 3 3 3 4[ , ]t y yt t y yt t= ⋅ =  and 3 3 3 3 4[ , ]s y ys s y ys u= ⋅ =  and  

4 4 4 4 5[ , ]u y yu u y yu u= ⋅ = . Furthermore,  
2 2 2

2 2 2 3 2 3 2 2 3 2 3yx yx x xys x xy s x xy xs s x yx s s x xys s s x ys s= ⋅ = ⋅ = ⋅ = ⋅ = ⋅ ⋅ = ⋅ ⋅ = ,
2 2 2

2 2 2 3 2 3 2 3 4 2 3 4 2 3 3 4 2 3 4s y s y y ys t y ys t y ys yt t y s y t t y ys t t t y s t t= ⋅ = ⋅ = ⋅ = ⋅ = ⋅ ⋅ = ⋅ ⋅ = ,
2

3 3 3 4 3 4 3 4 5
2 2

3 4 5 3 4 4 5 3 4 5

s y s y y ys u y ys u y ys yu u

y s y u u y ys u u u y s u u

= ⋅ = ⋅ = ⋅ = ⋅

= ⋅ ⋅ = ⋅ ⋅ =
. 

Now the second power of xy  is 
2 2 2 2 2

2 2 2 3 2 3( )xy xyxy x yx y x xys y x y s y x y ys t x y s t= = ⋅ ⋅ = ⋅ ⋅ = ⋅ = ⋅ =  

and the third power of xy  is 
3 2 2 2 2 2 2 2 2

2 3 2 3 2 3 2 3
3 2 2 3 2 2 2 3 2 2

2 3 2 3 2 3 4 5 2 3 2 2 3 4 5 2 3
3 2 2 2 3 2 2 2

2 2 3 4 3 4 5 2 3 2 2 3 4 3 4 5 2 3
3 2 2 2

2 3 4 2 3 4 3

( ) ( )xy xy xy xy x y s t x yx y s t x x ys s y s t

x ys s y s t x ys y s u u s t x ys s y s u u s t

x ys y s t t s u u s t x y s y s t t s u u s t

x y y s t t s t t s u

= ⋅ = ⋅ = ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ 2 3 3 2 2 2
4 5 2 3 2 3 4 3 4 5 2 3( )u s t x y s t t s u u s t=

. 

If ( , )n
aG G z w , then 4 4 5 1t u u= = = , 3 1

a
nt s−−= , 3 3

3 1 1a
nt s−−= = , and G′  is 

abelian.                                                          □ 
Theorem 3.1. (3-groups G of coclass cc(G) = 1.) Let G be a finite 3-group of 

coclass cc( ) 1G =  and order ord( ) 3nG =  with an integer exponent 2n ≥ . 
Then the shallow and deep transfer kernel type of G are given in dependence on 
the relational parameters , , ,a n w z  of ( , )n

aG G z w  by Table 1.  
Proof. The shallow TKT ( )s G  of all 3-groups G of coclass cc( ) 1G =  has 

been determined in [2], where the designations a.n of the types were introduced 
with {1,2,3}n∈ . Here, we indicate a capable mainline vertex of the tree 

1( )R  with root 3 3R C C= ×  [7] by the type a.1* with a trailing asterisk. As usual, 
type a.3* indicates the unique 3-group 3 9SylG A  with 3( ) (3,3,3), (3,3)Gτ = . 
Now we want to determine the deep TKT ( )d G , using the presentation of 

( , )n
aG G z w  in Formula (3.3). For this purpose, we need expressions for the 

images of the deep Artin transfers ,: : /
ii H G i iT T H H G′ ′ ′= → , for each 1 4i≤ ≤ . 

(Observe that 3p =  implies 1G′′ =  by [8].) Generally, we have to distinguish 
outer transfers, 3( )i iT g H g′⋅ =  if \ig H G′∈  [[2], Equation (4), p. 470], and 
inner transfers,  

21 3 3( ) [ , ] [[ , ], ]h h
i iT g H g g g h g h h+ +′⋅ = = ⋅ ⋅  if g G′∈  and h is selected in \iH G′  

[[2], Equation (6), p. 486]. 
First, we consider the distinguished two-step centralizer 1 2 ( )H Gχ=  with 
1i = . Then 1 ,H y G′= 〈 〉  and 1 1H ′ =  if 0a =  ( 1H  abelian), but  

1 1 1( )n nH G sγ − −′ = = 〈 〉  if 1a =  ( 1H  non-abelian) [[2], Equation (3), p. 470]. 
The outer transfer is determined by 3 3 1

1 1 2 3 1( ) z
nT y H y s s s− −
−′⋅ = = . For the inner 

transfer, we have 
21 3 3 3 3 3

1 1( ) [ , ] [[ , ], ] 1 [1, ]y y
j j j j j j jT s H s s s y s y y s y s+ +′⋅ = = ⋅ ⋅ = ⋅ ⋅ =  

for all 3j ≥ , but 3 3 3
1 2 1 2 1 1 2( ) [ , ]a a

n nT s H s s s y s− −
− −′⋅ = ⋅ ⋅ =  for 2j = , since  

1 1 1 1( ) ( )a
n n ns s G Gγ ζ−
− − −∈〈 〉 = =  lies in the centre of G. The first kernel equation 
3 1

2 3 1 1z
ns s s− −
− =  is solvable by either 3n = , where 0z = , 3 1s = , 3

2 1s = , or 4n = , 
1z = , where 3

2 1s = , 1 3
z
ns s− = . The second kernel equation 3 1is =  is solvable by  
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Table 1. Shallow and deep TKT of 3-groups G with cc( ) 1G = . 

G   n Type ( )s G  ( )d G  

0 (0,0)nG  =2 a.1* (0,0,0,0)  (3,3,3,3)  

0 (0,0)nG  ≥3 a.1* (0,0,0,0)  (9,9,9,9)  

1 (0,0)nG  ≥5 a.1 (0,0,0,0)  (3,9,3,3)  

1 (0, 1)nG −  ≥5 a.1 (0,0,0,0)  (3,3,9,9)  

1 (0,1)nG  ≥5 a.1 (0,0,0,0)  (3,3,3,3)  

0 (0,1)nG  ≥4 a.2 (1,0,0,0)  (9,3,3,3)  

0 ( 1,0)nG −  ≥4 even a.3 (2,0,0,0)  (9,9,3,3)  

0 (1,0)nG  ≥5 a.3 (2,0,0,0)  (9,9,3,3)  

0 (1,0)nG  =4 a.3* (2,0,0,0)  (27,9,3,3)  

0 (0,1)nG  =3 A.1 (1,1,1,1)  (9,3,3,3)  

 
either 1i n= −  or 2i n= − . Thus, the deep transfer kernel is given by  

1 2 3 3

1 2 3 3 3 3 3 9
1

2 2 1 3 3

2 1 2 3 1

, if 3 ( extra special),
, , if 4, 1 ( Syl ),

ker( )
( ) = , if 4, 1or 5, 0,
( ) / ( ) if 5, 1 ( non-abelian).

n n n

n n n

H y s C C n G
H y s s C C C n z G A

T
G s s C C n z n a
G G s C n a H

γ
γ γ

− − −

− − −

= 〈 〉 × =
 = 〈 〉 × × = ==  〈 〉 × = ≠ ≥ =
 〈 〉 ≥ =



 



 

 (3.4) 

Second, we put 2i = . Then 2 ,H x G′= 〈 〉  and 2 3 3 1( ) , , nH G s sγ −′ = = 〈 … 〉 . 
The outer transfer is determined by 3

2 2 1( ) w
nT x H x s −′⋅ = = . The inner transfer is 

given by 
21 3 3 3 3

2 2 1 2( ) [ , ] [[ , ], ] 1x x
j j j j j j j jT s H s s s x s x x s s s+ +

+ +′⋅ = = ⋅ ⋅ = = , for all 2j ≥ , 
independently of , , ,a n w z . Consequently, the deep transfer kernel is given by  

2 2 2 1 3 1 2 3 3
2

2 2 1 3 1 2 3

/ , , , / , , , if 0,
ker( )

/ , , / , , if 1.
n n

n n

H H x s s s s x s C C w
T

G H s s s s s C w
− −

− −

′ = 〈 〉 〈 〉 〈 〉 × =
=  ′ ′ = 〈 〉 〈 〉 〈 〉 = ±

   

   

 (3.5) 

Next, we put 3i = . Then 3 ,H xy G′= 〈 〉  and 3 3 3 1( ) , , nH G s sγ −′ = = 〈 … 〉 . The 
outer transfer is determined by 3 3 3 3 2 2

3 3 2 3 1 1( ) ( ) a w z a
n nT xy H xy x y s s s s− + −
− −′⋅ = = = . For 

the inner transfer, we have  
21 ( ) 3 3 3 3

3 3 1 2( ) [ , ] [[ , ], ] 1xy xy
j j j j j j j jT s H s s s xy s xy xy s s s+ +

+ +′⋅ = = ⋅ ⋅ = = , for all 3j ≥ , 
independently of , , ,a n w z . The first kernel equation 2

1 1w z a
ns + −
− =  ⇔  

2 0(mod 3)w z a+ − ≡  is solvable by either 0a w z= = =  or 1a = , 1w = − . 
Therefore, the deep transfer kernel is given by  

3 3 2 3 3
3

3 2 3

/ , if either 0 or 1, 1,
ker( )

/ otherwise.
H H xy s C C a w z a w

T
G H s C

′ 〈 〉 × = = = = = −
=  ′ ′ 〈 〉

 

 

 (3.6) 

Finally, we put i = 4. Then 2
4 ,H xy G′= 〈 〉  and 4 3 3 1( ) , , nH G s sγ −′ = = 〈 … 〉 . The 

outer transfer is determined by 2 2 3 3 6 6 2 2 2 2
4 4 2 3 1 1( ) ( ) a w z a

n nT xy H xy x y s s s s− + −
− −′⋅ = = = . 

The inner transfer is given by  
2 2 21 ( ) 3 23 2 2 3 3

4 4 1 2( ) [ , ] [[ , ], ] 1xy xy
j j j j j j j jT s H s s s xy s xy xy s s s+ +

+ +′⋅ = = ⋅ ⋅ = = , for all 3j ≥ , 
independently of , , ,a n w z . The first kernel equation 2 2

1 = 1w z a
ns + −
−  ⇔  

2 2 0(mod3)w z a+ − ≡  is solvable by either 0a w z= = =  or 1a = , 1w = − . 
Thus, the deep transfer kernel is given by  
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2
4 4 2 3 3

4
4 2 3

/ , if either 0 or 1, 1,
ker( )

/ otherwise.
H H xy s C C a w z a w

T
G H s C
 ′ 〈 〉 × = = = = = −=  ′ ′ 〈 〉

 

 

  

(3.7) 

These finer results are summarized in terms of coarser cardinalities in Table 
1. 

□ 

4. Arithmetical Application to 3-Class Tower Groups 
4.1. Real Quadratic Fields 

As a final highlight of our progressive innovations, we come to a number 
theoretic application of Theorem 3.1, more precisely, the unambiguous 
identification of the pro-3 Galois group ( )

3 3Gal( / )G F F F∞ ∞=  of the maximal 
unramified pro-3 extension ( )

3F ∞ , that is the Hilbert 3-class field tower, of 
certain real quadratic fields ( )F d=  with fundamental discriminant 1d > , 
3-class group 3Cl ( )F  of elementary type (3,3) , and shallow transfer kernel 
type a.1, ( ) (0,0,0,0)s F = , in its ground state with 3( ) ~ (9,9), (3,3)Fτ  or in a 
higher excited state with 3( ) ~ (3 ,3 ), (3,3)e eFτ , 3e ≥ . 

The first field of this kind with 62501d =  was discovered by Heider and 
Schmithals in 1982 [9]. They computed the sTKT ( ) (0,0,0,0)s F =  with four 
total 3-principalizations in the unramified cyclic cubic extensions /iE F , 
1 4i≤ ≤ , on a CDC Cyber mainframe. The fact that 62501d =  is a triadic 
irregular discriminant (in the sense of Gauss) with non-cyclic 3-class group 

3 3 3Cl ( )F C C×  has been pointed out earlier in 1936 by Pall [10] already. The 
second field of this kind with 152949d =  was discovered by ourselves in 1991 
by computing ( )s F  on an AMDAHL mainframe [11]. In 2006, there followed 

252977d =  and 358285d = , and many other cases in 2009 [12] [13]. 
Generally, there are three contestants for the group 3G G F∞= , for any 

assigned state 3( ) ~ (3 ,3 ), (3,3)e eFτ , 2e ≥ , and the following Main Theorem 
admits their identification by means of the deep transfer kernel type (See their 
statistical distribution at the end of Section 4.1.). 

Theorem 4.1. (3-class tower groups G of coclass cc(G) = 1 and type a.1.) 
Let ( )F d=  be a quadratic field with fundamental discriminant d, 3-class 
group 3 3 3Cl ( )F C C× , and shallow transfer kernel type a.1,  

( ) (0,0,0,0)s F = . 
Then F is real with 1d > , the 3-class tower group 3G G F∞=  of F has coclass 

cc( ) 1G = , and the relational parameters 5n ≥  and { 1,0,1}w∈ −  of 

1 (0, )nG G w  are given in dependence on the deep transfer kernel type ( )d F  
as follows:  

2( 1)
1
2( 1)

1
2( 1)

1

(0,0) with 2( 1), 0 ( ) ~ (3,9,3,3),
(0, 1) with 2( 1), 1 ( ) ~ (3,3,9,9),
(0,1) with 2( 1), 1 ( ) ~ (3,3,3,3),

e
d

e
d

e
d

G G n e w F
G G n e w F
G G n e w F

+

+

+

= + = ⇔
− = + = − ⇔

= + = ⇔











 (4.1) 

where we suppose that the state of type a.1 is determined by the transfer target 
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type 3( ) ~ (3 ,3 ), (3,3)e eFτ  with 2e ≥ .  
Proof. Let ( )F d=  be a quadratic field with 3-class group  

3 3 3Cl ( )F C C× , denote by 1 4, ,E E  its four unramified cyclic cubic 
extensions and by / 3 3: Cl ( ) Cl ( )

iE F iT F E→  (1 4)i≤ ≤  the transfer  
homomorphisms of 3-classes. 

If the 3-principalization is total, that is / 3ker( ) Cl ( )
iE FT F= , for each 1 4i≤ ≤ , 

then F must be a real quadratic field with positive fundamental discriminant 
1d > , since the order of the principalization kernels /ker( )

iE FT  of an imaginary 
quadratic field F is bounded from above by /( : ) : 1 3 3

i iF E F E iU N U E F⋅ = ⋅ = , 
according to the Theorem on the Herbrand quotient of the unit groups 

iEU . 
By the Artin reciprocity law of class field theory [1] [14], the principalization 

type ( ) (0000)F =  of the field F corresponds to the shallow transfer kernel 
type ( ) (0000)s G =  of the 3-class tower group ( )

3Gal( / )G F F∞=  of F, and 
the abelian type invariants 2

3Cl ( ) 1F   of the 3-class group of F correspond to 
the abelian quotient invariants 2/ 1G G′

  of G. 
According to [2], a finite 3-group G with 2/ 1G G′

  and ( ) (0000)s G =  
must be of coclass cc( ) 1G = . Table 1 shows that either 0 (0,0)nG G  of type 
a.1* with 2n ≥  or 1 (0, )nG G w  of type a.1 with 5n ≥  and 1 1w− ≤ ≤ . 

For a real quadratic field F, the relation rank 
32 2 3( ) dim ( , )d G H G=    of the 

3-class tower group ( )
3G G F∞=  is bounded by 2 ( ) 3d G ≤  [[15], Thm. 1.3, pp. 

75-76]. Consequently, G cannot be a non-abelian mainline vertex 0 (0,0)nG  
with 3n ≥  of the coclass-1 tree 1( )R  with root 3 3R C C= × , since all these 
vertices have the relation rank 4. According to [[12], Thm. 4.1 (1), p. 486], G 
cannot be the abelian root 2

0 (0,0)R G=  either, and we must have 

1 (0, )nG G w  with 5n ≥  and { 1,0,1}w∈ − . 
Now the claim is a consequence of Theorem 3.1 and Table 1.            □ 
Table 2 shows that the ground state 3( ) (9,9), (3,3)Fτ =  of the sTKT 
( ) (0,0,0,0)s F =  has the nice property that the smallest three discriminants 

already realize three different 3-class tower groups 3 729,G G F i∞= 〈 〉  with 
{99,100,101}i∈ , identified by their dTKT ( ) ( )d dF G=  . 

In Table 3, we see that the first excited state 3( ) (27,27), (3,3)Fτ =  of the 
sTKT ( ) (0,0,0,0)s F =  does not behave so well: although the smallest two 
discriminants [12] [13] [16] [17] already realize two different 3-class tower 
groups 3 6561,G G F i∞= 〈 〉  with {2225,2227}i∈ , we have to wait for the 
seventh occurrence until 6561,2226〈 〉  is realized, as the dTKT ( ) ( )d dF G=   
shows. The counter 7 is a typical example of a statistic delay. 

The second excited state 3( ) (81,81), (3,3)Fτ =  of the sTKT  
 
Table 2. Deep TKT of 3-class tower groups G with 3( ) (9,9), (3,3)Gτ = . 

G ( )d G  MD 
6

1729,99 (0,0)G〈 〉   (3,9,3,3)  62,501 

6
1729,100 (0, 1)G〈 〉 −  (3,3,9,9)  152,949 

6
1729,101 (0,1)G〈 〉   (3,3,3,3)  252,977 
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Table 3. Deep TKT of 3-class tower groups G with 3( ) (27, 27), (3,3)Gτ = . 

G ( )d G  MD further discriminants 
8
16561,2225 (0,0)G〈 〉   (3,9,3,3)  10,399,596 16,613,448 
8
16561,2226 (0, 1)G〈 〉 −  (3,3,9,9)  27,780,297  

8
16561,2227 (0,1)G〈 〉   (3,3,3,3)  2,905,160 14,369,932, 15,019,617, 21,050,241 

 
( ) (0,0,0,0)s F = , however, is well-behaved again: the smallest three 

discriminants already realize three different 3-class tower groups  
10

3 1 (0, )G G F G w∞=   with {0, 1,1}w∈ − , identified by their dTKT  
( ) ( )d dF G=  . (For logarithmic orders 9≥ , no SmallGroup identifiers exist.) 

See Table 4. 
In all tables, the shortcut MD means the minimal discriminant [[7], Dfn. 6.2, 

p. 148]. 
The diagram in Figure 1 visualizes the initial eight branches of the coclass tree 
1( )R  with abelian root 3 39, 2R C C= 〈 〉 × . Basic definitions, facts, and 

notation concerning general descendant trees of finite p-groups are summarized 
briefly in [[18], §2, pp. 410-411] [19]. They are discussed thoroughly in the 
broadest detail in the initial sections of [20]. Descendant trees are crucial for 
recent progress in the theory of p-class field towers [15] [21] [22], in particular 
for describing the mutual location of the second p-class group 2G p F  and the 
p-class tower group G p F∞  of a number field G. Generally, the vertices of the 
coclass tree in the figure represent isomorphism classes of finite 3-groups. Two 
vertices are connected by a directed edge G H→  if H is isomorphic to the last 
lower central quotient / ( )cG Gγ , where cl( ) 1c G n= = −  denotes the nilpotency 
class of G, and | | 3 | |G H= , that is, 3( )c G Cγ   is cyclic of order 3. See also 
[[18], §2.2, p. 410-411] and [[20], §4, p. 163-164]. 

The vertices of the tree diagram in Figure 1 are classified by using various 
symbols:  

1) big contour squares  represent abelian groups,  
2) big full discs • represent metabelian groups with at least one abelian 

maximal subgroup,  
3) small full discs • represent metabelian groups without abelian maximal 

subgroups.  
The groups of particular importance are labelled by a number in angles, which 

is the identifier in the SmallGroups Library [23] [24] of MAGMA [25]. We omit 
the orders, which are given on the left hand scale. The sTKT s  [[2] Thm. 2.5, 
Tbl. 6-7], in the bottom rectangle concerns all vertices located vertically above. 
The first component (1)τ  of the TTT [[26] [27], Dfn. 3.3, p. 288] in the left 
rectangle concerns vertices G on the same horizontal level containing an abelian 
maximal subgroup. It is given in logarithmic notation. The periodicity with 
length 2 of branches, ( ) ( 2)j j +   for 4j ≥ , sets in with branch (4) , 
having a root of order 34. 

3-class tower groups 3G G F∞=  with coclass cc( ) 1G =  of real quadratic  
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Table 4. Deep TKT of 3-class tower groups G with 3( ) (81,81), (3,3)Gτ = . 

G ( )d G  MD 
10
1 (0,0)G  (3,9,3,3)  63,407,037 

10
1 (0, 1)G −  (3,3,9,9)  62,565,429 

10
1 (0,1)G  (3,3,3,3)  40,980,808 

 

 
Figure 1. Distribution of minimal discriminants for 3G F∞  on the coclass-1 tree 1( 9, 2 )〈 〉  
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fields ( )F d=  are located as arithmetically realized vertices on the tree 
diagram in Figure 1. The minimal fundamental discriminants d, i.e. the MDs, 
are indicated by underlined boldface integers adjacent to the oval surrounding 
the realized vertex [6] [24] [25]. 

The double contour rectangle surrounds the vertices which became 
distinguishable by the progressive innovations in the present paper and were 
inseparable up to now. 

In Table 5, we give the isomorphism type of the 3-class tower group 

3G G F∞=  of all real quadratic fields ( )F d=  with 3-class group 

3 3 3Cl ( )F C C×  and shallow transfer kernel type a.1, (0,0,0,0)s = , in its 
ground state 3( ) (9,9), (3,3)Fτ = , for the complete range 71 10d< <  of 150 
fundamental discriminants d. It was determined by means of Theorem 4.1, 
applied to the results of computing the (restricted) deep transfer kernel type 

(1)
3

2 4/
( ) (#ker( ))

i
d iF E

F T ≤ ≤= , consisting of the orders of the 3-principalization 
kernels of those unramified cyclic cubic extensions iE , 2 4i≤ ≤ , in the Hilbert 
3-class field (1)

3F  of F whose 3-class group 3Cl ( )iE  is of type (3,3) . These 
trailing three components of the TTT 3( ) (9,9), (3,3)Fτ =  were called its stable 
part in [[6], Dfn. 5.5, p. 84]. The computations were done with the aid of the 
computational algebra system MAGMA [25]. The 3-principalization kernel of 
the remaining extension 1E  with 3-class group 3 1Cl ( )E  of type (9,9)  does 
not contain essential information and can be omitted. This leading component 
of the TTT 3( ) (9,9), (3,3)Fτ =  was called its polarized part in [[6], Dfn. 5.5, p. 
84]. For more details on the concepts stabilization and polarization, see [[6], §6, 
pp. 90-95]. 

A systematic statistical evaluation of Table 5 shows that, with respect to the 
complete range 71 10d< < , the group 729,99G 〈 〉  occurs most often with a 
clearly elevated relative frequency of 44%, whereas 729,100G 〈 〉  and 

729,101G 〈 〉  share the common lower percentage of 28%, although the 
automorphism group Aut( )G  of all three groups has the same order. However, 
the proportion 44 : 28 : 28  for the upper bound 107 is obviously not settled yet, 
because there are remarkable fluctuations, as Table 6 shows. According to 
Boston, Bush and Hajir [28] [29], we have to expect an asymptotic limit 
33: 33: 33  of the proportions for d →∞ . 

4.2. Totally Real Dihedral Fields 

In fact, we have computed much more information with MAGMA than 
mentioned at the end of the previous Section 4.1. To understand the actual scope 
of our numerical results it is necessary to recall that each unramified cyclic cubic 
relative extension /iE F , 1 4i≤ ≤ , gives rise to a dihedral absolute extension 

/iE   of degree 6, that is an 3S -extension [[12], Prp. 4.1, p. 482]. For the trailing 
three fields iE , 2 4i≤ ≤ , in the stable part of the TTT 3( ) (9,9), (3,3)Fτ = , i.e. 
with 3Cl ( )iE  of type (3,3) , we have constructed the unramified cyclic cubic 
extensions , /i j iE E , 1 4j≤ ≤ , and determined the Artin pattern AP( )iE  of  
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Table 5. Statistics of 3-class tower groups G with 3( ) (9,9), (3,3)Gτ = . 

No. d G No. d G No. d G 

1 62,501 729,99〈 〉  51 3,995,004 729,101〈 〉  101 7,313,928 729,99〈 〉  

2 152,949 729,100〈 〉  52 4,045,265 729,101〈 〉  102 7,391,212 729,99〈 〉  

3 252,977 729,101〈 〉  53 4,183,205 729,100〈 〉  103 7,406,249 729,101〈 〉  

4 358,285 729,101〈 〉  54 4,196,840 729,100〈 〉  104 7,415,841 729,101〈 〉  

5 531,437 729,99〈 〉  55 4,199,901 729,101〈 〉  105 7,447,697 729,100〈 〉  

6 586,760 729,101〈 〉  56 4,220,977 729,100〈 〉  106 7,502,501 729,100〈 〉  

7 595,009 729,100〈 〉  57 4,233,608 729,99〈 〉  107 7,601,081 729,101〈 〉  

8 726,933 729,99〈 〉  58 4,252,837 729,100〈 〉  108 7,623,320 729,101〈 〉  

9 801,368 729,100〈 〉  59 4,409,313 729,100〈 〉  109 7,630,645 729,100〈 〉  

10 940,593 729,100〈 〉  60 4,429,612 729,101〈 〉  110 7,634,065 729,100〈 〉  

11 966,489 729,99〈 〉  61 4,533,032 729,99〈 〉  111 7,643,993 729,100〈 〉  

12 1,177,036 729,99〈 〉  62 4,586,797 729,100〈 〉  112 7,683,308 729,101〈 〉  

13 1,192,780 729,101〈 〉  63 4,662,917 729,100〈 〉  113 7,704,653 729,100〈 〉  

14 1,313,292 729,99〈 〉  64 4,680,701 729,99〈 〉  114 7,713,961 729,99〈 〉  

15 1,315,640 729,99〈 〉  65 4,766,309 729,99〈 〉  115 7,804,828 729,100〈 〉  

16 1,358,556 729,100〈 〉  66 4,782,664 729,99〈 〉  116 7,936,316 729,100〈 〉  

17 1,398,829 729,101〈 〉  67 4,783,697 729,100〈 〉  117 8,037,645 729,100〈 〉  

18 1,463,729 729,101〈 〉  68 4,965,009 729,100〈 〉  118 8,101,277 729,101〈 〉  

19 1,580,709 729,100〈 〉  69 5,039,692 729,99〈 〉  119 8,235,965 729,101〈 〉  

20 1,595,669 729,100〈 〉  70 5,048,988 729,99〈 〉  120 8,248,953 729,99〈 〉  

21 1,722,344 729,99〈 〉  71 5,111,669 729,100〈 〉  121 8,263,020 729,99〈 〉  

22 1,751,909 729,101〈 〉  72 5,119,637 729,99〈 〉  122 8,320,764 729,99〈 〉  

23 1,831,097 729,99〈 〉  73 5,154,385 729,100〈 〉  123 8,375,228 729,99〈 〉  

24 1,942,385 729,101〈 〉  74 5,226,941 729,100〈 〉  124 8,501,541 729,101〈 〉  

25 2,021,608 729,99〈 〉  75 5,226,941 729,99〈 〉  125 8,523,385 729,101〈 〉  

26 2,042,149 729,101〈 〉  76 5,350,569 729,100〈 〉  126 8,578,617 729,99〈 〉  

27 2,076,485 729,99〈 〉  77 5,353,240 729,99〈 〉  127 8,623,704 729,101〈 〉  

28 2,185,465 729,101〈 〉  78 5,362,136 729,101〈 〉  128 8,637,717 729,99〈 〉  

29 2,197,669 729,101〈 〉  79 5,400,712 729,101〈 〉  129 8,674,397 729,99〈 〉  

30 2,314,789 729,99〈 〉  80 5,478,321 729,99〈 〉  130 8,723,237 729,99〈 〉  

31 2,409,853 729,99〈 〉  81 5,827,564 729,99〈 〉  131 8,737,913 729,101〈 〉  

32 2,433,221 729,101〈 〉  82 5,891,701 729,101〈 〉  132 8,748,764 729,99〈 〉  

33 2,539,129 729,101〈 〉  83 5,909,217 729,99〈 〉  133 8,816,389 729,99〈 〉  

34 2,555,249 729,100〈 〉  84 5,982,269 729,101〈 〉  134 8,957,485 729,101〈 〉  

35 2,710,072 729,100〈 〉  85 6,105,693 729,100〈 〉  135 8,993,409 729,100〈 〉  

36 2,851,877 729,99〈 〉  86 6,155,861 729,99〈 〉  136 9,006,397 729,101〈 〉  

37 2,954,929 729,99〈 〉  87 6,337,340 729,99〈 〉  137 9,051,665 729,99〈 〉  

38 3,005,369 729,101〈 〉  88 6,429,997 729,100〈 〉  138 9,058,892 729,101〈 〉  

39 3,197,864 729,100〈 〉  89 6,618,085 729,99〈 〉  139 9,130,973 729,99〈 〉  
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Continued 

40 3,197,944 729,101〈 〉  90 6,658,973 729,100〈 〉  140 9,185,153 729,101〈 〉  

41 3,258,120 729,101〈 〉  91 6,792,365 729,99〈 〉  141 9,195,769 729,101〈 〉  

42 3,323,065 729,99〈 〉  92 6,806,152 729,99〈 〉  142 9,328,597 729,99〈 〉  

43 3,342,785 729,99〈 〉  93 6,882,737 729,99〈 〉  143 9,379,849 729,100〈 〉  

44 3,644,357 729,99〈 〉  94 6,927,452 729,101〈 〉  144 9,380,744 729,99〈 〉  

45 3,658,421 729,100〈 〉  95 6,953,513 729,99〈 〉  145 9,419,704 729,99〈 〉  

46 3,692,717 729,99〈 〉  96 6,974,609 729,99〈 〉  146 9,511,580 729,100〈 〉  

47 3,721,565 729,99〈 〉  97 7,010,133 729,101〈 〉  147 9,615,813 729,100〈 〉  

48 3,799,597 729,100〈 〉  98 7,019,717 729,99〈 〉  148 9,645,393 729,99〈 〉  

49 3,821,244 729,99〈 〉  99 7,075,740 729,101〈 〉  149 9,801,773 729,99〈 〉  

50 3,869,909 729,99〈 〉  100 7,263,365 729,99〈 〉  150 9,834,557 729,99〈 〉  

 
Table 6. Proportions of 3-class tower groups 729,G i〈 〉  with {99,100,101}i∈ . 

G 
for 

610d < ×  
1 2 3 4 5 6 7 8 9 10 

729,99〈 〉   36% 38% 41% 43% 40% 42% 45% 41% 43% 44% 

729,100〈 〉   36% 29% 24% 24% 31% 31% 30% 32% 29% 28% 

729,101〈 〉   27% 33% 35% 33% 29% 27% 25% 27% 28% 28% 

 

iE , in particular, the 3-principalization type of iE  in the fields ,i jE . The 
dihedral fields iE  of degree 6 share a common polarization (1)

,1 3iE F= , the 
Hilbert 3-class field of F, which is contained in the relative 3-genus field 
( / )iE F ∗ , whereas the other extensions ,i jE  with 2 4j≤ ≤  are non-abelian 
over F, for each 2 4i≤ ≤ . Our computational results suggest the following 
conjecture concerning the infinite family of totally real dihedral fields iE  for 
varying real quadratic fields F. 

Conjecture 4.1. (3-class tower groups   of totally real dihedral fields.) 
Let ( )F d=  be a real quadratic field with fundamental discriminant 1d > , 
3-class group 3 3 3Cl ( )F C C× , and shallow transfer kernel type a.1,  

( ) (0,0,0,0)s F = , in the ground state with transfer target type  
3( ) ~ (9,9), (3,3)Fτ . Let 2 3 4, ,E E E  be the three unramified cyclic cubic relative 

extensions of F with 3-class group 3Cl ( )iE  of type (3,3) . 
Then /iE   is a totally real dihedral extension of degree 6, for each 

2 4i≤ ≤ , and the connection between the component (1)
3 /

( ) # ker( )
i

d i F E
F T=  

of the deep transfer kernel type ( )d F  of F and the 3-class tower group 
( )

3 3Gal(( ) / )i i i iG E E E∞ ∞= =  of iE  is given in the following way:  

( ) 3 243,27 with ( ) (1,0,0,0),
( ) 9 243,26 with ( ) (0,0,0,0).

d i i s i

d i i s i

F
F

= ⇔ 〈 〉 =
= ⇔ 〈 〉 =





   
   

       (4.2) 

Remark 4.1. The conjecture is supported by all 3 150 450⋅ =  totally real 
dihedral fields iE  which were involved in the computation of Table 5. A 
provable argument for the truth of the conjecture is the fact that 
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(1)
3

1 1/
( ) = #ker( ) # ( ) = # ( )

i
d i s i s iF E

F T E=    , for 2 4i≤ ≤ , but it does not 
explain why the sTKT ( )s i   is a.2 with a fixed point if ( ) 3d iF = . It is 
interesting that a dihedral field iE  of degree 6 is satisfied with a non-σ group, 
such as 243,27〈 〉 , as its 3-class tower group. On the other hand, it is not 
surprising that a mainline group, such as 243,26〈 〉  with sTKT a.1* and relation 
rank 2 4d = , is possible as 3i iG E∞= , since the upper Shafarevich bound for 
the relation rank of the 3-class tower group of a totally real dihedral field iE  of 
degree 6 with 3 3 3Cl ( )iE C C×  is given by 1 2 1 2 6 0 1 7 4r rρ + + − = + + − = >  
[[15], Thm. 1.3, p. 75].  

Assuming an asymptotic limit 33: 33: 33  of the proportion of the real 
quadratic 3-class tower groups { 729,99 , 729,100 , 729,101 }G∈ 〈 〉 〈 〉 〈 〉  for the 
ground state of sTKT a.1, we can also conjecture an asymptotic limit 33: 66  of 
the corresponding totally real dihedral 3-class tower groups  

{ 243,26 ,{ 243,27 }i ∈ 〈 〉 〈 〉 , since the restricted dTKTs (9,3,3) , (3,9,9) , 
(3,3,3)  together contain three times the 9 and six times the 3 in Equation (4.2). 
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