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Abstract 
In this article we study the estimation method of nonparametric regression 
measurement error model based on a validation data. The estimation proce-
dures are based on orthogonal series estimation and truncated series approx-
imation methods without specifying any structure equation and the distribu-
tion assumption. The convergence rates of the proposed estimator are de-
rived. By example and through simulation, the method is robust against the 
misspecification of a measurement error model. 
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1. Introduction 

Let Y be a scalar response variable and X be an explanatory variable in 
regression. We consider the nonparametric regression model  

( )Y g X ε= +                          (1) 

where ( )g ⋅  is an unknown nonparametric regression function, ε  is a noise 
variable, and given X the errors ( )Y g Xε = −  are assumed to be independent 
and identically distributed. We consider the model (1) with explanatory variable 
X measured with error and Y measured exactly. That is, instead of the true X, the 
surrogate variable W is observed. Throughout we assume  

[ ]| 0 with probability1E Wε =                   (2) 

which is always satisfied if, for example, W is a function of X and some 
independent noise (see e.g. [1]). 
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Nonparametric regression model (1) in presence of errors in covariables has 
attracted considerable attention in the literature, and is by now well understood. 
See Carroll et al. [2] for an excellent source of references for various approaches. 
However, all these works mostly focus on specifying error model structure 
between the true variables X and the surrogate variables W (e.g. the classical 
error structure and the Berkson error structure). In practice, the relationship 
between the surrogate variables and the true variables can be rather complicated 
compared to the classical or Berkson error structural equations usually assumed. 
This situation presents serious difficulties in making valid statistical inferences. 
Common solution is to use the help of validation data to infer the missing 
information about relationship between W and X. 

We consider settings where some validation data are available for relating X 
and W. To be specific, we assume that independent validation data ( ),j jW X , 

1N j N n+ ≤ ≤ +  are available in addition to the independent primary data 
( ){ } 1

,
N

i i i
Y W

=
. Recently, several approaches to statistical inference based on 

surrogate data and a validation sample are available (see, for example, [1], 
[3]-[12] and among others). But these approaches do not applicable for handling 
nonparametric regression measurement error model with the availability of a 
validation data set. Actually, the models considered by the above referenced 
authors are some parametric or semiparametric models, and the model (1) is a 
nonparametric one. With the help of validation data, [13], [14] and [15] 
developed estimation methods for the nonparametric regression model (1) with 
measurement error. However, [13] assumes that the response Y but not the 
covariable X is measured with error; The method proposed by [14] cannot be 
extended to the subject assume explanatory variable X is a vector; The approach 
proposed by [15] is too complicated to calculate. 

In this paper, without specifying any structural equations, an orthogonal 
series method is proposed to estimate g with the help of validation data. As 
explained in Section 2, we estimate g by solving the following Fredholm 
equation of the first kind,  

Tg m=                             (3) 

Here, we propose orthogonal series estimator of T using the validation data. 
Using a similar approach, we estimate m based on primary data set. Then an 
estimator of g is obtained by Tikhonov regularization method. 

This paper is arranged as follows. In Section 2, we define an orthogonal series 
estimation method. In Section 3, we state the convergence rates of the proposed 
estimator. Simulation results are reported in Section 4 and a brief discussion is 
given in Section 5. Proofs of the theorems are presented in Appendix. 

2. Model and Series Estimation 
2.1. Model 

Recall model (1) and the assumptions below it. Assume that in addition to the 
primary data set consisting of N independent and identically distributed obser- 
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vations ( ){ } 1
,

N
i i i

Y W
=

 from model (1), validation consisting of n independent and 
identically distributed observations ( ){ }

1
,

N n

j j j N
X W

+

= +
 are available. Furthermore, 

we suppose that X and W are both real-valued random variables. The extension 
to random vectors complicates the notation but does not affect the main ideas 
and results. Without loss of generality, let the supports of X and W both be 
contained in [ ]0,1  (otherwise, one can carry out monotone transformations of 
X and W). 

Let XWf  and Wf  denote respectively the joint density of ( ),X W  and 
marginal density of W. Then, according to (2), we have  

( ) ( ) ( ) ( )
( )

,
| | dXW

W

f x w
E Y W w E g X W w g x x

f w
= = = =   ∫         (4) 

Let ( ) ( ) ( )| Wm w E Y W w f w= =  and  

[ ]( ) [ ] ( )( )1 22
2 0,1 : 0,1 , s.t. dL x xϕ ϕ ϕ = → = < ∞ 

 ∫  

Define the operator [ ]( ) [ ]( )2 2: 0,1 0,1T L L→  as  

( )( ) ( ) ( ), dXWT w x f x w xϕ ϕ= ∫  

So that Equation (4) is equivalent to the operator equation  

( ) ( )( )m w Tg w=                          (5) 

According to Equation (5), the function g is the solution of a Fredholm 
integral equation of the first kind, and this inverse problem is known to be 
ill-posed and needs a regularization method. A variety of regulation schemes are 
available in the literature (see e.g. [16]) but we focus in this paper on the 
Tikhonov regularized solution:  

2 2arg min
g

g Tg m gα α = − +                   (6) 

where the penalization term 0α >  is the regularization parameter. 
We define the adjoint operator T ∗  of T   

( )( ) ( ) ( ), dXWT x w f x w wψ ψ∗ = ∫  

where ( ) [ ]( )2 0,1w Lψ ∈ . Then the regularized solution (6) is equivalently: 

( ) 1
g I T T T mα α

−∗ ∗= +                      (7) 

2.2. Orthogonal Series Estimation 

In order to estimate the solution (7), we need to estimate T , T ∗  and m . In 
this paper, we consider the orthogonal series method. Under some regularity 
conditions in Section 4.1, the density function ( ),XWf x w  and ( )m w  may be 
approximated with any wished accuracy by a truncated orthogonal series,  

( ) ( ) ( ) ( ) ( )
1 1 1

, and
K K K

K K
XW kl k l k k

k l k
f x w d x w m w m wφ φ φ

= = =

= =∑∑ ∑  

where  
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( ) ( ) ( ) ( ) ( ), d d and dkl XW k l k kd f x w x w x w m m w w wφ φ φ= =∫∫ ∫  

Here, { }kφ  is an orthonormal basis of [ ]( )2 0,1L  which may be trigonome- 
tric, polynomial, spline, wavelet, and so on. A discussion of different bases and 
their properties can be found in the literature (see e.g. [17]). Only to be specific, 
here and in what follows we are considering the normalized Legendre 
polynomials on [ ]0,1 , which can be obtained through the Rodrigues’ formula 

( ) ( )21 d
d! 2 1

k k
k kx x x

xk k
φ  = −  +

                 (8) 

The integer K is a truncation point which is the main smoothing parameter in 
the approximating series, and kld  and km  represent the generalized Fourier 
coefficients of XWf  and m, respectively. 

Note that ( ) ( )kl k ld E X Wφ φ=     and ( )k km E Y Wφ=    . Intuitively, we can 
obtain the estimators of kld , ( ),XWf x w , km  and ( )m w  by  

( ) ( ) ( ) ( ) ( )
1 1 1

1ˆ ˆ ˆ,   ,
N n K K

kl k j l j XW kl k l
j N k l

d X W f x w d x w
n

φ φ φ φ
+

= + = =

= =∑ ∑∑  

( ) ( ) ( )
1 1

1ˆ ˆ ˆand
N K

k i k i k k
i k

m Y W m w m w
N

φ φ
= =

= =∑ ∑  

respectively. The operators T  and T ∗  can then be consistently estimated by  

( )( ) ( ) ( ) ( )( ) ( ) ( )ˆ ˆˆ ˆ, d and , dXW XWT w x f x w x T x w f x w wϕ ϕ ψ ψ∗= =∫ ∫  

Conclude that, the estimator of ( )g x  is obtained by  

( ) 1ˆ ˆ ˆˆ ˆg I T T T mα α
−∗ ∗= +                        (9) 

3. Theoretical Properties 

The main objective of this section is to derive the statistical properties of the 
estimator proposed in Section 2.2. For this purpose, we assume:  

Assumption 1. 1) The support of ( ),X W  is contained in [ ]20,1 ; 2) The 
joint density of ( ),X W  is square integrable w.r.t the Lesbegue measure on 
[ ]20,1 .  

This is sufficient condition for T to be a Hilbert-Schmidt operator and 
therefore to be compact (see [18]). As a result of compactness, there exists a 
singular values decomposition. Let , 0k kλ ≥  be the sequence of the nonzero 
singular values of T and the two orthonormal sequences , 0k kϕ ≥ , and 

, 0l lψ ≥  such that (see [16]):  
* * 2 * 2, ;  , , for 0k k k k k k k k k k k kT T T T TT kϕ λψ ψ λ ϕ ϕ λ ϕ ψ λ ψ= = = = ≥  

We define βΦ  as a β-regularity space for 0β > :  

[ ]( )2 2
0

,
0,1  such that  k

k k

Lβ β

ϕ ϕ
ϕ

λ≥

 
Φ = ∈ < +∞ 

 
∑  

Here and blow, we denote by ,⋅ ⋅  the scalar product in [ ]( )2 0,1L .  
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Assumption 2. We have g β∈Φ  for some 0β > .  
We then obtain the following result (see [18]).  
Proposition 3.1. Suppose Assumptions 1 and 2 hold, then we have 

( )2 2g g Oα βα ∧− = , where { }2 min ,2β β∧ = . 
In order to obtain the rate of convergence for 

2
ĝ gα − , we impose the 

following additional conditions:  
Assumption 3. 1) The joint density XWf  is r-times continuously differen- 

tiable on [ ]20,1 ; 2) The function ( )m ⋅  is s-times continuously differentiable 
on [ ]0,1 .  

Assumption 4. The function ( )2 |E Y W w=  is bounded uniformly on 
[ ]0,1 .  

Assumption 5. 1) [ )lim 0,n N µ= ∈ ∞ ; 2) 0α → , ( ),N nK K= →∞ , 
0K N → , 2 0K n →  as ∞→n , N →∞ .  

Theorem 3.1. Suppose Assumptions 1 - 5 hold. Let { }min ,r sγ = , then we 
have  

22 2
2

1 1ˆ P
K Kg g O
N K n

α β
γ α

α
∧  

− = × + + +  
  

          (10) 

In (10), the term 2K γ−  arises from the bias of ĝ  caused by truncating the 
series approximation of XWf  and m . The truncation bias decreases as γ  
increases. The terms 1N K−  and 1 2n K−  are respectively induced by random 
surrogate sampling errors and random validation sampling errors in the 
estimates of the generalized Fourier coefficients km  and kld . By Theorem 3.1, 
it is easy to obtain the following corollary. 

Corollary 3.1. Suppose the assumptions of Theorem 3.1 are satisfied. Let 
( )( )1 2 2K O n γ +=  and ( )( )( )1 2 1O n γ γ βα − + ∧ +  = , then we have 

2
2 2 1ˆ Pg g O n

βκ
α β

∧
−

∧ +
 

− =   
 

 

where ( )1κ γ γ= + .  
The proofs of all the results are reported in the Appendix. 

4. Simulation Studies 

In this section, we conducted simulation studies of the finite-sample perfor- 
mance of the proposed estimators. First, for comparison, we consider the 
standard Nadaraya-Watson estimator base on the primary dataset ( ){ } 1

,
N

i i i
Y W

=
 

(denoted as ˆNg ). It should be pointed out that ˆNg  can serve as a gold 
standard in the simulation study, even though it is practically unachievable due 
to measurement errors. Second, The performance of estimator estg  is assessed 
by using the square root of average square errors (RASE)  

( ) ( )
1 2

2

1

1RASE
M

est
s s

s
g u g u

M =

  = −   
∑  

where , 1, ,su s M=  , are grid points at which ( )est
sg u  is evaluated. 
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We considered model (1) with the regression function being 
1) ( ) ( ) ( ) ( ) ( )0,1.5 1,2 2,54 4 4 , ~ 0,0.2g x x x x Nφ φ φ ε= + + ,  
2) ( ) ( ) ( ) ( )25sin 2 exp 16 50 , ~ 0,0.2g x x x Nε= − ,  

where ,µ σφ  is the density of an ( )2Normal ,µ σ  variable. To perform this 
simulation, we generate W from Wf  and δ  from fδ , and put X W δ= + . 
The densities Wf  and fδ , chosen in the beta family, are 

( ) ( )
( ) [ ]( )

21 4
2,2

2 1 2,2W

w
f w I w

B
−

= ∈ −  

( ) ( )
( ) [ ]( )

21
1,1

1 2, 1
u

f u I u
B

δρ

δ
δρ

−
= ∈ −

+
 

where we chose 1δρ = , 3δρ =  and 5δρ =  (in fact, the greater the value of 

δρ , the smaller the variance of δ ). Simulations were run with different 
validation and primary data sizes ( ),n N  ranging from ( )20,60  to ( )50,250  
according to the ratio 3N nκ = =  and 5N nκ = = , respectively. For each 
case, 500 simulated data sets were generated for each sample size of ( ),n N . 

To implement our method (9), the regularization parameter α  and 
truncating parameter K should be chosen. Here, we estimate α  and K by 
minimizing the following two-dimensional cross-validation score selection 
criterion  

( ) ( ) ( )
2

1 1
ˆCV ,

N K
i

i k k i
i k

K Y g Wα φ−

= =

 = − 
 

∑ ∑  

where ( )ˆ i
kg −  are the solutions based on (9), after deleting the ith primary 

observation ( ),i iY W . In addition, for the naive estimator ˆNg , we used the 
standard normal kernel, and the bandwidth was selected by leave-one-out CV 
approach. In all graphs, to illustrate the performance of an estimator, we show 
the estimated curves corresponding to the first (Q1), second (Q2) and third (Q3) 
quartiles of the ordered RASEs. The target curve is always represented by a solid 
curve. 

Figure 1 shows the regression function curve, the quartile curves of 500 
estimates ( )ĝ xα  under different values of δρ  for sample size ( ) ( ), 90,30N n = , 
in the example (a). From this figure, we clearly see that the proposed estimator 

( )ĝ xα  appeared to perform very well in this study. Taking the measurement 
error levels into account, as the variances of δ  decrease, ( )ĝ xα  tends to have 
smaller bias at the peaks of the regression curve.  

Figure 2 illustrates the way in which the estimator improves as sample size 
increases. We compare the results obtained when estimating curve (b) under 
different settings of sample size ( ),N n  for 3δρ = . We see clearly that, as the 
sample size increases, the quality of the estimators improves significantly. 

Table 1 compares, for various sample sizes, the results obtained for estimating 
curves (a) and (b) when 1δρ = , 3δρ =  and 5δρ = . The estimated RASEs 
which were evaluated at 27 grid points of x are presented. Our results show that  
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Figure 1. Estimation of regression function (a) for samples of size ( ) ( ), 90,30N n = , when 1δρ =  (left panel), 3δρ =  (middle 

panel) and 5δρ =  (right panel). The solid curve is the target curve. 

 
Table 1. The RASE comparison for the estimators ( )ĝ xα  and ( )ˆNg x . Let N nκ = . 

(a) 

Curve κ  ( ),n N  
1δρ =  3δρ =  5δρ =  

( )ĝ xα  ( )ˆNg x  ( )ĝ xα  ( )ˆNg x  ( )ĝ xα  ( )ˆNg x  

 3κ =  (20, 60) 1.2136 2.0637 1.0597 1.9101 1.0537 1.7948 

  (30 ,90) 0.9319 1.7127 0.8452 1.5598 0.8012 1.4746 

  (50, 150) 0.7002 1.3890 0.6397 1.3086 0.5590 1.2341 

 5κ =  (20, 100) 0.8332 1.5661 0.7981 1.4378 0.7266 1.3667 

  (30, 150) 0.7511 1.3930 0.6546 1.3074 0.5635 1.2514 

  (50, 250) 0.5373 1.1940 0.4824 1.0696 0.3993 1.0033 

(b) 

Curve κ  ( ),n N  
1δρ =  3δρ =  5δρ =  

( )ĝ xα  ( )ˆNg x  ( )ĝ xα  ( )ˆNg x  ( )ĝ xα  ( )ˆNg x  

 3κ =  (20, 60) 9.1934 22.3251 8.5573 21.9729 7.2736 21.7931 

  (30, 90) 9.0040 20.7143 7.4141 20.0651 5.2429 19.9803 

  (50, 150) 8.5422 19.4815 6.5897 18.6286 3.7987 18.5734 

 5κ =  (20, 100) 9.1158 20.3010 6.8672 19.7296 4.4416 19.5391 

  (30, 150) 8.9352 19.3803 6.9529 18.6887 4.0148 18.5831 

  (50, 250) 7.7743 18.5282 5.3232 18.3610 2.5054 18.2475 
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Figure 2. Estimation of regression function (b) for 3δρ = , when ( ) ( ), 60,20N n =  (left panel), ( ) ( ), 90,30N n =  (middle panel) 

and ( ) ( ), 150,50N n =  (right panel). The solid curve is the target curve. 

 
the estimator ĝα  outperforms ˆNg . Also, the performance of ĝα  improves 
(i.e., the corresponding RASEs decrease) considerably as the sample sizes 
increases. For any nonparametric method in measurement error regression 
problem, the quality of the estimator also depends on the discrepancy of the 
observed sample. That is, the performance of the estimator depends on the 
variances of measurement error. Here, we compare the results for different 
values of δρ . As expected, Table 1 shows that the effect of the variances on the 
estimator performance is obvious. 

5. Discussion 

In this paper, we have proposed a new method for estimating non-parametric 
regression models when the explanatory variable is measured with error under 
the assumption that a proper validation data set is available. The validation data 
set allows us to estimate joint density XWf  of the true variable and the 
surrogate variable via an orthogonal series method. In practice, our proposed 
method can be extended to multidimensional cases in which X may be a 
p-variate explanatory variable. When the dimension of X and hence of W is 
large, the curse of dimensionality may occur because of the multivariate density 
estimation of XWf . In this case, exponential series estimator proposed by [19] 
ensures the positiveness of the estimated density. After obtaining the exponential 
series estimator of XWf , we can obtain results similar to those in the previous 
sections. Asymptotic theory in this setting still needs to be pursued in the further 
research. 
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Appendix 

Proofs of Theorem 3.1 and Corollary 3.1: 
We first present some Lemmas that are need to prove the main theorem. 
Lemma 7.1. Suppose Assumptions 1 and 3(1) hold. Then: 

1) ( )2 2 1 2ˆ r
PHS

T T O K n K− −− = + ; 

2) ( )2* * 2 1 2ˆ r
PHS

T T O K n K− −− = + .  

where HS⋅  denotes the Hilbert-Schmidt norm, i.e.: 

( ) ( )
22 ˆˆ , , d dXW XWHS

T T f x w f x w x w − = − ∫∫  

Proof of Lemma 7.1. According to Lemma A1 of Wu [19], we have  

( )2 2K r
XW XWf f O K −− =  

Note that the Legendre polynomials kφ  in (8) are orthonormal and complete 
on [ ]( )2 0,1L . Then  

( )2 2

1 1

ˆ ˆ
K K

K
XW XW kl kl

k l
f f d d

= =

− = −∑∑  

By ˆ
kl klEd d= , we have  

( ) ( )

( ) ( )

( ) ( )

( )

2

1 1 1 1

2

1 1

2

1 1

2

ˆ ˆ

1

1

K K K K

kl kl kl
k l k l

K K

k l
k l

K K

k l
k l

E d d Var d

E X W
n

O x w
n

O K n

φ φ

φ φ

= = = =

= =

= =

 
− = 

 

≤   

 =   

=

∑∑ ∑∑

∑∑

∑∑

 

where we have used the fact that XWf  is uniformly bounded on [ ]20,1 . 
By Chebyshev’s inequality, then we have ( )2 2ˆ K

XW XW Pf f O K n− = . Then the 
desired result follows immediately.  

Lemma 7.2. Suppose Assumptions 1, 3 and 4 hold. Let },{min= srγ , then 

( )2 1 2 1 2ˆˆ Pm Tg O N K K n Kγ− − −− = + +  

Proof of Lemma 7.2. Note that Tg m= . By the triangle inequality and 
Jensen inequality, we have  

( ) 22 2ˆ ˆˆ ˆ2m Tg m m T T g − ≤ − + −  
 

If [ ]( )2 0,1g L∈ , Lemma 7.1 gives ( ) ( )2
2 1 2ˆ r

PT T g O K n K− −− = + . 
According to the proof of Lemma 7.1, under Assumptions 3(2) and 4, we can 
show that ( )2 2 1ˆ s

Pm m O K N K− −− = + . Then we obtain the result in Lemma 
7.2.  

Proof of Theorem 3.1. Define ( ) 1*ˆ ˆ ˆA I T Tα α
−

= +  and ( ) 1*A I T Tα α
−

= + . 
Notice that *g A T Tgα

α= , then we have  
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( ) ( ) ( )* * * *ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆg g A T m T Tg A T Tg A T Tg g gα α
α α α− = − + − + −  

The second right-hand side term can itself be decomposed into two 
components:  

( ) ( )* * * * *ˆ ˆ ˆˆ ˆ ˆ ˆA T Tg A T Tg A T T T T g A A T Tgα α α α α− = − + −  

Actually, since in this case ( ) 1*ˆ ˆ ˆA I T Tα α
−

= +  and ( ) 1*A I T Tα α
−

= + , the 
identity ( )1 1 1 1B C B C B C− − − −− = −  gives:  

( )* *ˆ ˆ ˆ ˆA A A T T T T Aα α α α− = − −  

Thus,  

( )( )* * * *ˆ ˆˆ ˆ ˆ ˆA T Tg A T Tg A T T T T g gα
α α α− = − −  

From the properties of norm, we have  

( ) ( )( )2 22 2* * *ˆ ˆˆ ˆ ˆ ˆˆ ˆ3g g A T m Tg A T T T T g g g gα α α
α α

 − ≤ − + − − + −  
 

Let us consider the first term, we have  

( ) 2 2 2* *ˆ ˆˆ ˆ ˆ ˆˆ ˆA T m Tg A T m Tgα α− ≤ −  

The first norm ( )
22 1* * *ˆ ˆ ˆ ˆ ˆA T I T T Tα α

−
= +  is equal to the larger eigen value 

of the operator. These eigen values converges to ( )2
k kλ α λ+  and are then 

smaller than 1 α . It follows from Lemma 7.2 that  

( ) ( )2
* 1 1 2 1 2ˆ ˆ ˆˆ PA T m Tg O N K K n Kγ

α α − − − − − = + +          (11) 

Next, we consider the term ( )( ) 2
* *ˆ ˆ ˆA T T T T g gα

α − − . Note that  

( ) ( )* * * * *ˆ ˆ ˆ ˆ ˆT T T T T T T T T T− = − + −  

Then  

( )( )
( )

2
* *

22 22 22* * *

ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ2

A T T T T g g

A T T T g g A T T T g g

α
α

α α
α α

− −

 ≤ − − + − −  

 

We have ( )
2*ˆ ˆ 1PA T Oα α= , and ( )2 2ˆ 1PA Oα α=  (see [20]). According 

to Lemma 7.1, we have 
2

T̂ T−  or 
2* *T̂ T−  are ( )2 1 2r

PO K n K− −+ . 
By Proposition 3.1: 

( )2 2g g Oα βα ∧− =                      (12) 

The term ( )T g gα−  identical to *A T gαα , is the regularity bias of *T g  
equal to ( )( )1 2O βα + ∧ . 

Therefore, we have  

( )( ) ( ) ( )2 1 0* * 2 1 2ˆ ˆ ˆ r
PA T T T T g g O K n Kβα

α α − ∧ − − − − = +       (13) 

Combining (11), (12) and (13) gives the desired result of Theorem 3.1.  
Proof of Corollary 3.1. By Theorem 3.1, the proof of Corollary 3.1 is 

straightforward and is omitted. 
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