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Abstract 
The aim of this paper is to present a numerical study of oscillatory motion of 
Oldroyd-B fluid in a uniform magnetic field through a small circular pipe. 
First, we derive the orientation stress tensor by considering the Brownian 
force. Then, the orientation stress tensor is incorporated by taking Hookean 
dumbbells on Brownian configuration fields in the Oldroyd-B model. The 
Oldroyd-B model is then reformulated coupled with the momentum equation 
and the total stress tensor. Finally, we analyze the orientation stress tensor in 
the pipe by the numerical simulations of the model and showed that the effect 
of orientation stress tensor is considerable although the Brownian force is suf-
ficiently small. 
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1. Introduction 

The theory of Newtonian fluids well enough describes the mechanical behavior 
of many real fluids. But still we have a lot of fluids which are not properly enter-
tained by Newtonian fluid such as ketchup, blood, paints, shampoo, pulps, ho-
ney, oil and drilling mud etc. In general, these fluids are known as non Newto-
nian fluids. As we know, these fluids are commonly used in daily life and have 
many applications toward industries as well as to academics. Many researchers 
have attempted to develop a single model which represents all these fluids but 
they haven’t found any success in their struggle. Consequently, different fluids 
model have been proposed for these fluids. Which are commonly divided into 
three main classes namely, fluids of differential type, integral type and rate type. 
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The rate type models are considered to be much more practical and important. 
One of the famous rate type model is Maxwell fluids [1], considered to be the 
first rate type model. This model is still very attractive for the researchers. Raja-
gopal [2] formulated a formal thermodynamic framework based on the seminal 
work of Maxwell, for different class of fluids. Among them is Oldroyd-B model, 
which is considered to be the more generalized fluid model as it deals with re-
laxation as well as retardation times. Most of the fluids are particular cases of 
Oldroyd-B fluid. 

In the last few decades, oscillating bodies have widely studied due to impor-
tance in practical fields and experiments. They are considered in various biolog-
ical and industrial processes, for example in nuclear reactor, oil exploitation, the 
periodicity of blood flow [3], food industry, bio-engineering and chemistry, cel-
lulose and soap solutions etc. Also, magnetohydrodynamics (MHD) flows plays 
an important role in development of energy generation and in the dynamics of 
geophysical and astrophysical fluid. In the last few years researchers contribute 
alot on MHD flow, see [4] [5] [6] [7] and reference therein. 

In this paper, we developed an Oldroyd-B model by taking a total stress tensor 
which consists of the shear stress tensor, the orientation stress tensor (OST) and 
isotropic pressure stress tensor. The model deals with the dynamics of oscillatory 
flow of Oldroyd-B fluid inside a circular pipe. Continuity and momentum equa-
tions along with Oldroyd-B model have been taken under consideration. The 
whole system is then reformulated along with the total stress tensor. Finally, we 
solve numerically by employing the finite-difference scheme for the Oldroyd-B 
model and orientation stress tensor. Our numerical results show that in spite the 
Brownian force is very small still the effect of the orientation stress tensor on the 
Oldroyd-B model is considerable.   

2. Reformulation of Oldroyd-B Model 

In this section, we incorporate a Brownian force when MHD flow of Oldroyd-B 
fluid is passing through a pipe. To do this we consider the orientation stress 
tensor S  for time-dependent incompressible flow [3]: 

( ) ( ) ( )
( )

T
2

1 ,
6π

t
I

t a

α
υ

τ η

 ∂  + ⋅∇ − ∇ − ∇ = − −
 ∂  

S S S S Sυ υ          (1) 

for some ( ) 0tα ≥ , here 3 12 πk aη τ −Γ =  is the dumbbell inverse relaxation 
time, a is the radius of bead, 37 CΓ =   is the temperature,  

( )23 2 2 11.38 10 m kg s Kk − − −= × ⋅ ⋅ ⋅  is the Boltzmann constant, η  is the viscosity 
of fluid and υ  is the velocity. Equation (1) will be used to reformulate the 
Oldroyd-B model. Many researchers [8] [9] [10] [11] have developed their 
models by taking a total stress tensor which consists of the shear and isotropic 
pressure stress tensors without considering the orientation stress tensor. Here, 
we extend our model by taking the shear and isotropic pressure stress tensors as 
well as orientation stress tensor with a constant g (the elastic modulus). Let σ  
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be the total stress tensor and ( )1 2 3, ,v v v=υ  be the velocity of the MHD flow. 
For the unsteady incompressible flow the continuity and the momentum 
equations are given by:  
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g p
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where oN δβ= , in which the magnitude of a uniform magnetic field is denoted 
by oβ  and the direction of uniform magnetic field is normal to the motion of 
fluid, δ  is the fluid electrical conductivity, ρ  is the density of fluid, η  is the 
fluid viscosity, identity matrix is represented by I , S  is the orientation stress 
tensor, elastic modulus is represented by g and- pI  represents the isotropic 
pressure stress tensor. 

Now, we reformulate the Oldroyd-B model by supposing = ∇L υ , 
T= +A L L , gη= +D A S  and combining it with the momentum equation and 

Equation (1)  
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where d dt  is the material derivative, 1α  and 2α  represents the material 
constants. 

Let ( )1 2 3, ,x x x=x , ( ) ( )1 2 3, , ,t v v v=v x  is the velocity and  

( )
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, t
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is the orientation stress tensor which is considered to be symmetric [12]-[20]. 
The total stress tensor consists of nine components are given by  

,  for , 1, 2,3.s t
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To obtain the components of the OST S , first we determine all the nine 
components of the OST S  from Equation (4) then we solve the reformulated 
Oldroyd-B model to get all these nine components:  
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Here, Kronecker delta is represented by ijδ . Pressure p will be obtained by 
substituting all those nine components of S  in the momentum equation.  
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Then we substitute the OST S  and the pressure p in Equation (4a) to get the 
total stress tensor σ .  

3. Total Stress Tensor  

To find the numerical solution we use an iterative method. Several mixed and 
semi-implicit methods have been proposed to get more efficient solvers while 
preserving stability. We take velocity as  

( ) ( )( )1, cos ,0,0 ,t u t xω=υ x  

where u  is the amplitude of the velocity and ω  is the frequency. The 
appropriate conditions of velocity are:  
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where r is the radius of the pipe. For the sake of simplification we neglect some 
of the components of the OST by taking 22 33 23 0= = S S S . Thus, Equation (6) 
becomes  
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Similarly Equation (7) becomes  
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To get solution of Equation (6), we need to find the component 11S  of OST 
and pressure p with and without OST.  
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To solve the above system we use the following values for different 
parameters: 

3 31.024 10 kg cmρ −= × ⋅ , 2 20.5 kg cm su − −= ⋅ ⋅ , 1.13616 dyn-cmg = ,  
5.0380Pη = , 12.53 N s cmN −= ⋅ ⋅  and 7.2 Hzω = . The components of total 

stress tensor σ  can be obtained from the pressure and from the corresponding 
components of OST. All the nine components of the total stress tensor are given 
by  

( ) ( ) ( )
( )
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12 13 21 31 12 1 32 23

, 2 cos , ,   ,

, ,  0 .

p t x u t g t x p

g t x
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S

S
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4. Numerical Results and Discussion  

Some 3D surfaces are presented here to show the components of OST and the 
effect of OST on total stress tensor. Figure 1 and Figure 2 shows the 
components of orientation stress tensor. The component 11S  with the 
configuration of Brownian force is depicted in Figure 1. The components 12S   
 

 
Figure 1. 11S  component of the orientation stress tensor. 
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and 13S  are similar and since S is symmetric so 21 12 13 31= = =S S S S . In Figure 
2 we have shown the components 12 13=S S . All the remaining components of S 
are taken to be zero. Figure 1 and Figure 2 shows that all the components of 
OST are not similar. Figure 3 shows the component 11σ  of total stress tensor 
with the OST 11S , which is the numerical result of the system (11). We solve 
system (11) numerically for component 11S  and for pressure p with the OST, 
and then by putting 11S  and p in Equation (5) we get the component 11σ  of  
 

 
Figure 2. 12 13=S S  component of the orientation stress tensor. 

 

 
Figure 3. 11σ  component of total stress tensor with 11S . 
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total stress tensor with OST. In system (11) in the absence of OST we solve for p, 
and by substituting it in Equation (5) we get the component 11σ  of total stress 
tensor without the OST component 11S  and is depicted in Figure 4. In Figure 
5 we show the total stress tensor with and without the OST. From the figure it is 
obvious that inspite the Brownian force is very small still the effect of the OST is  
 

 
Figure 4. 11σ  component of total stress tensor without 11S . 

 

 
Figure 5. 11σ  with (dotted) and without (solid) 11S  at 1 0.5x = . 
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considerable. Note that we take only the 1x -axis of velocity for numerical 
results, which shows that the magnitudes of all of the components of stress are 
not similar. Hence, from these figures we can examine all the results and can 
find the impact of total and OST as well as the effect of pressure quantitatively 
on the phenomena of flow in order to confirm the validity of the said Oldroyd-B 
model.  

Special Cases. The similar solutions for Newtonian, Maxwell and second 
grade fluids performing the same motion are obtained here as limiting cases of 
the solutions. In the absence of the OST the Oldroyd-B model in the system (6) 
is reduced to the following model:  

1) Taking 1 0α =  and 2 0α ≠ , model for Newtonian fluid is obtained.  
2) Taking 1 0α →  and 2 0α ≠ , then the model is simplified to Maxwell 

model.  
3) Taking 1 0α ≠  and 2 0α → , the model reduced to second-order fluid.  

5. Conclusion  

In this article, we presented oscillatory motion of Oldroyd-B fluid in a uniform 
magnetic field using numerical scheme. The fluid is passing through a small 
circular pipe. Taken into consideration the Brownian force, we derive the 
orientation stress tensor. Then, the orientation stress tensor is incorporated by 
taking Hookean dumbbells on Brownian configuration fields in the Oldroyd-B 
model. The reformulated Oldroyd-B model has been obtained with the help of 
momentum equation and the total stress tensor equation. At the end, the 
orientation stress tensor has been analyzed by the numerical simulations of the 
model which shows that the effect of orientation stress tensor is considerable 
although the Brownian force is sufficiently small.  
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