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Abstract 
In this paper, based on the theory of fractional-order calculus, we obtain some 
sufficient conditions for the uniform stability of fractional-order fuzzy BAM 
neural networks with delays in the leakage terms. Moreover, the existence, 
uniqueness and stability of its equilibrium point are also proved. A numerical 
example is presented to demonstrate the validity and feasibility of the pro-
posed results.  
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1. Introduction 

Fractional-order calculus is an area of mathematics that deals with extensions of 
derivatives and integrals to noninteger orders and represents a powerful tool in 
applied mathematics to study a myriad of problems from different fields [1] [2] 
[3] [4]. Analogously, starting with a linear difference equation, we are led to a 
definition of fractional difference of an arbitrary order [5]. Nowadays, studying 
on fractional-order calculus has become an active research field. In recent years, 
fractional operator is introduced into artificial neural networks, and the frac-
tional-order formulation of artificial neural network models is also proposed in 
research results about biological neurons. 

The analysis of fractional-order artificial neural networks has received some 
attention, and some important and interesting results have been obtained 
[6]-[11]. For instances, the stability and multi-stability (coexistence of several 
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different stable states), bifurcations and chaos of fractional-order neural net-
works of Hopfield type were investigated in [6]. Finite-time stability in neural 
networks with delay has been discussed in [7]. Zhang and Yu [8] proposed frac-
tional-order Hopfield neural networks with discontinuous activation functions 
and investigated its stability through the Lyapunov functionals. In [9], authors 
considered the following fractional-order autonomous neural network: 
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where Dα  is the fractional derivative and 0 1α< < ; ( )ix t  corresponds to 
the state of the ith unit at time t; ( )jf ⋅  and ( )jg ⋅  denote the activation func-
tion of the jth neuron. A sufficient criterion ensuring the uniform stability of the 
system and the existence, uniqueness, and uniform stability of the equilibrium 
point is presented. 

Recently, a typical time delay called leakage delay which is the time delay in 
the leakage term of the systems and a considerable factor affecting dynamics for 
the worse in the systems, has a great impact on the dynamical behavior of neural 
networks. Since leakage delays can have a destabilizing influence on the dynam-
ical behaviors of neural networks, it is necessary to investigate leakage delay ef-
fects on the stability of neural networks (see [12] [13] [14] [15] [16]). Fuzzy 
theory is considered as a more suitable method for the sake of taking vagueness 
into consideration; as a kind of important neural networks, studies have shown 
that the fuzzy neural networks are a very useful paradigm for image processing 
problems [17] [18]. Subsequently, various interesting results on the stability and 
other behaviors of delayed fuzzy BAM neural networks have been derived (see 
[19] [20] [21] [22] and references cited therein). However, to the best of our 
knowledge, there are few results on the uniform stability analysis of fraction-
al-order fuzzy BAM neural networks with leakage delays. 

Motivated by the above, in this paper, we are concerned with the following 
fractional-order fuzzy BAM neural network with delays in the leakage terms: 
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where n and m correspond to the number of neurons in X-layer and Y-layer, 
respectively. cDα  is the Caputo’s fractional derivative and 0 1α< < ; ( )ix t  
and ( )jy t  are the activations of the ith neuron and the jth neuron, respective-
ly; 0, 0i ja b> >  denote the rate with which the ith neurons and the jth neurons 
will reset its potential to the resting state in isolation when disconnected from 
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the network and external inputs; , ,ij ij ija b T  and ijH  are the elements of fuzzy 
feedback MIN template and fuzzy feedback MAX template, fuzzy feed-forward 
MIN template and fuzzy feed-forward MAX template in X-layer, respectively; 

, ,ij ij ijp q K  and ijR  are the elements of fuzzy feedback MIN template and fuzzy 
feedback MAX template, fuzzy feed-forward MIN template and fuzzy 
feed-forward MAX template in Y-layer, respectively; ∧  and ∨  denote the 
fuzzy AND and fuzzy OR operation, respectively; jµ  and iν  denote external 
input of the ith neurons in X-layer and external input of the jth neurons in 
Y-layer, respectively; iI  and jJ  represent bias of the ith neurons in X-layer 
and bias of the jth neurons in Y-layer, respectively; ijc  and ijd  are the delayed 
feedback, ( )jf ⋅  and ( )jg ⋅  are the signal transmission functions, and  

1,2, , ; 1, 2, ,i n j m= = 
. 

Here, the initial conditions associated with system (1) are of the form 
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          (2) 

where it is usually assumed that ( )iφ ⋅  and ( )jϕ ⋅  denote real-valued conti-
nuous functions defined on [ ],0σ−  and [ ],0τ− , respectively. If the initial val-
ue 
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The main purpose of this paper is to obtain some sufficient conditions for the 
uniform stability of the system. Then we study the existence, uniqueness, uni-
form stability of the equilibrium point. 

This paper is organized as follows: In Section 2, we introduce some notations 
and definitions and state some preliminary results which are needed in later sec-
tions. In Section 3, we establish some sufficient conditions for the uniform sta-
bility of the system and the existence, uniqueness, and uniform stability of the 
equilibrium point. In Section 4, an example is given to illustrate that our results 
are feasible. The conclusion is made in Section 5. 

2. Preliminaries 

In this section, we shall recall some definitions and state some lemmas which 
will be used in the later section. 

Definition 1. ([1], [2]) The fractional integral (Riemann-Liouville integral) 

0 ,t tIα  with fractional order Rα +∈  of function ( )x t  is defined as 
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where ( )Γ ⋅  is the gamma function, ( ) 1
0

e dtt tαα
+∞ − −Γ = ∫ . 
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Definition 2. ([1], [2]) The Riemann-Liouville derivative of fractional order 
α  of function ( )x t  is given as 
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where 1n n Zα +− < < ∈ . 
Definition 3. ([1], [2]) The Caputo derivative of fractional order 𝛼𝛼 of func-

tion ( )x t  is defined as follows 
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where 1n n Zα +− < < ∈ . 
Lemma 1. ([1], [2]) If ( ) [ )0,nx t C∈ +∞  and 1n n Zα +− < < ∈ , then 
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Consider the initial value problem of the following fractional differential equ-
ation 
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where ( )T
1 2, , , m

mx x x x R= ∈
, 0 1α< < , [ ): 0, m mf R R+∞ × →  is conti-

nuous in t and locally Lipschitz in x. 
The equilibrium point of the Caputo’s fractional dynamic system has been de-

fined in earlier work [23] [24]. We shall employ the following definitions of the 
equilibrium point and uniformly stable of the Caputo’s fractional dynamic sys-
tem: 

Definition 3. The constant x∗  is an equilibrium point of the Caputo’s frac-
tional dynamic system (3) if and only if ( ), 0f t x∗ =  for any [ )0,t∈ +∞ . 

Definition 4. The solution of system (1) is said to be stable if for any 0ε >
there exists ( )0 , 0tδ ε >  such that 0 0 00,t t x y δ≥ ≥ − <  imply  

( ) ( )0 0 0 0, , , ,y t t y x t t x ε− <  for any two solutions ( )0 0, ,x t t x  and ( )0 0, ,y t t y . 
It is uniformly stable if the above δ  independent of 0t . 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )T

1 2 1 2, , , , , , ,n mz t x t x t x t y t y t y t∗ ∗ ∗ ∗ ∗ ∗ ∗=    with initial values  
( ) ( ) ( ) ( ) ( ) ( ) ( )( )T

1 2 1 2, , , , , , ,n mt t t t t t tψ φ φ φ ϕ ϕ ϕ∗ ∗ ∗ ∗ ∗ ∗ ∗=    of system (1) is said to 
be uniformly stable if for any 0ε >  and ( ) 0δ ε >  for any solution 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
1 2 1 2, , , , , , ,n mz t x t x t x t y t y t y t=    

of (1) with initial value ( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
1 2 1 2, , , , , , ,n mt t t t t t tψ φ φ φ ϕ ϕ ϕ=   , 

where 

( ) [ ]( ) ( ) [ ]( )1 2 1 2, , , ,0 , , , , , , ,0 ,n m
n mC R C Rφ φ φ σ ϕ ϕ ϕ τ∈ − ∈ − 

 

https://doi.org/10.4236/am.2017.812129


P. Wang, J. W. Shen 
 

 

DOI: 10.4236/am.2017.812129 1812 Applied Mathematics 
 

and  

( ) ( )0 0, 0 0, 1,2, , ; 1, 2, , ,i j i n j mφ ϕ= = = =   

such that ( ) ( )0 0t tψ ψ δ∗ − <  imply ( )( ) ( )( )0 0 0 0, , , ,z t t t z t t tψ ψ ε∗ ∗ − < . 
In order to obtain the main results, here, we make the following assumptions: 
(H1) The neuron activation functions [ ], ,j if g C R R∈   

( )1,2, , , 1, 2, ,i n j m= =   satisfy the Lipschitz condition. That is, there exist 
positive constants ,j iF G  such that 

( ) ( ) ( ) ( ), , ,j j j i i if u f v F u v g u g v G u v u v R− < − − < − ∀ ∈  

Lemma 2. ([25]) Suppose that , nx y R∈  be the two states of the system (1). 
Then, one has 
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3. Uniform Stability of Fractional-Order Neural Networks 

In this section, a sufficient condition for uniform stability of a class of fraction-
al-order delayed neural networks on time scale, and the existence and unique-
ness, uniform stability of equilibrium point are proposed, respectively. 

Theorem 3. Let (H1) holds. Suppose further that, for 1,2, , ; 1, 2, ,i n j m= = 
, 

(H2) , , , , , , , ,i j ji ji ji ij ij ij ja b c d p q Fα β  and iG  satisfy the following condition: 
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then the system (1) is uniformly stable. 
Proof: Assume that 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
1 2 1 2, , , , , , ,n mz t x t x t x t y t y t y t=    

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )T

1 2 1 2, , , , , , ,n mz t x t x t x t y t y t y t∗ ∗ ∗ ∗ ∗ ∗ ∗=    

are two solutions of system (1) with different initial values 
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Now, we will show that Θ  is a contraction mapping on n mR +  endowed 
with the norm 
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It follows from (H2) that 

( ) ( ) ,z z z zΘ −Θ < −  

which implies that Θ  is a contraction mapping on n mR + . Hence, there exists a 

unique fixed point u∗  such that ( ) ( )T

1 2 1 2, , , , , , ,n mz z u u u v v v∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗Θ = =   , i.e. 
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which implies that x∗  is an equilibrium point of the system (1). Moreover, it 
follows from Theorem 3 that x∗  is uniformly stable. This completes the proof. 

4. Numerical Example 

In this section, a numerical example is presented to illustrate our results. Con-
sider the following fractional-order fuzzy BAM neural network: 
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 (7) 

where  
1 1, , 1, 1, 2,
2 5j iF G m nτ σ= = = = = =  

( )( ) ( )( ) ( )( ) ( )( )1 1sin , cos ,
2 5j j j i i if y t y t g x t x tτ τ σ σ− = − − = −  

1 2 1 2 11 12 21 220.45;  0.4;  0.5;  0.4; 0.01;a a b b c c c c= = = = = = = =  

11 12 21 22 11 12 21 220.02; 0.03; 0.02; 0.02;d d d d α α α α= = = = = = = =  

11 12 21 22 11 12 21 220.05; 0.02; 0.03; 0.04;p p p pβ β β β= = = = = = = =  

11 12 21 220.01;  0.03;  1;ji ji ij ijq q q q T H K R= = = = = = = =  

1; 2.j i i jI Jµ ν= = = =  
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When 0t ≥ , we have 

0.45, 0.5, 0.4, 0.16, 0.2.a b a b A B= = = = = =  

Then 

{ } ( ) ( ){ }min 1 , ,1 , 0.4, max , 0.24.C a a b b K b A a B= − − = = + + <  

It is very easy to verify that (H2) holds, according to Theorem 4, system (7) 
has a unique equilibrium point { }1 2 1 2, , ,z x x y y∗ ∗ ∗ ∗ ∗= , which is uniformly stable. 

5. Conclusion 

As is widely known, the leakage delay has a great impact on the dynamical beha-
vior of neural networks. Thus, it is necessary and rewarding to study the leakage 
delay effects to the dynamic behaviors of neural networks. In this paper, we have 
derived some sufficient conditions ensuring the existence, uniqueness, and uni-
form stability of equilibrium point for fractional-order fuzzy BAM neural net-
works with delays in the leakage terms. We have also given an example to illu-
strate the feasibility and effectiveness of the obtained results. In addition, when 
the fractional-order differential system is equivalent to an integral one, then it is 
possible to extend the method to many other fractional-order fuzzy neural net-
works within commensurate order and fractional neutral-type fuzzy neural net-
works with time-varying delay in the leakage terms, which can be a good topic 
for further investigation. 
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