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Abstract 
Crossed cubes network is a kind of interconnection structure as a basis for 
distributed memory parallel computer architecture. Reliability takes an im-
portant role in fault tolerant computing on multiprocessor systems. Connec-
tivity is a vital metric to explore fault tolerance and reliability of network 
structure based on a graph model. Let ( , )G V E=  be a connected graph. The 

k-conditional edge connectivity ( )k Gλ  is the cardinality of the minimum 
edge cuts F , if any, whose deletion disconnects G  and each component of 
G F−  has property of minimum degree kδ ≥ . The k-conditional connec-

tivity ( )k Gκ  can be defined similarly. In this paper, we determine the k- 
conditional (edge) connectivity of crossed cubes nCQ  for small k. And we 
also prove other properties of nCQ .  
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1. Introduction 

With the development of VLSI technology and software technology, multipro-
cessor systems with hundreds of thousands of processors have become available. 
With the continuous increase in the size of multiprocessor systems, the com-
plexity of a system can adversely affect its fault tolerance and reliability. To the 
design and maintenance purpose of multiprocessor systems, appropriate meas-
ures of reliability should be found. 

A network is often modeled by a graph ( , )G V E=  with the vertices 
representing nodes such as processors or stations, and the edges representing 
links between the nodes. One fundamental consideration in the design of net-
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works is reliability [1] [2]. An edge cut of a connected graph G  is a set of edges 
whose removal disconnects G . The edge connectivity ( )Gλ  or connectivity 

( )Gκ  of G  is the minimum cardinality of an edge cut or vertex cut S  of G . 
The edge connectivity ( )Gλ  or connectivity ( )Gκ  is an important feature 
determining reliability and fault-tolerance of the network. In the definitions of 

( )Gλ  or ( )Gκ , no restrictions are imposed on the components of G S− . To 
compensate for this short coming, it would seem natural to generalize the notion 
of the classical connectivity by imposing some conditions or restrictions on the 
components of G S− . Following this idea, conditional connectivity were pro-
posed in [3] by Harary. 

Let G  be a connected graph and P  be graph-theoretic property. The con-
ditional edge connectivity ( , )G Pλ  or conditional connectivity ( , )G Pκ  is the 
minimum cardinality of a set of edges or vertices, if it exists, whose deletion dis-
connects G  and each remaining component has property P . In particular, we 
focus on that each component has the property of minimum degree kδ ≥ . The 
k-conditional edge connectivity ( )k Gλ  is the cardinality of the minimum edge 
cuts F , if any, whose deletion disconnects G  and each component of G F−

has property of minimum degree kδ ≥ . The k-conditional connectivity 
( )k Gκ  can be obtained similarly. In recent years, numerous results about many 

kind of connectivities on networks have been reported [4]-[20]. 
Let ( , )G V E=  be a connected graph, ( )GN v  the neighbors of avertex v  

in G  (simply ( )N v ), ( )E v  the edges incident to v . Moreover, for S V⊂ , 
[ ]G S  is the subgraph induced by S , ( ) ( )G v SN S N v S∈= ∪ − ,  

( ) ( ) ( [ ])G v SE S E v E G S∈= ∪ − , [ ] ( )G GN S N S S= ∪  and G S−  denotes the 
subgraph of G  induced by the vertex set of V S . If ,u v V∈ , ( , )d u v  de-
notes the length of a shortest ( , )u v -path. For ,X Y V⊂ , denote by [ , ]X Y  the 
set of edges of G  with one end in X  and the other in Y . For graph-theo- 
retical terminology and notation not defined here we follow [21]. All graphs 
considered in this paper are simple, finite and undirected. 

Two binary strings 1 0x x x=  and 1 0y y y=  are pair-related, denoted ~x y , 
if and only if ( , ) {(00,00), (10,10), (01,11), (11,01)}x y ∈ ; if x  and y  are not 
pair-related, we write x y . 

The crossed cube nCQ  with 2n  vertices was introduced by Efe [22]. It can 
be defined inductively as follows: 1CQ  is 2K , the complete graph with labels 0 
and 1. For 1n > , nCQ  contains 0

1nCQ −  and 1
1nCQ −  joined according to the 

following rule: the vertex 2 00 nu u u−=   from and the vertex 2 01 nv v v−=   
from 1

1nCQ −  are adjacent if and only if 
1) 2 2n nu v− −=  if n  is even, and 
2) for 2 1 2 2 1 20 ( 1) / 2 , ~i i i ii n u u v v+ +≤ < −   . 
From the definition, we can see that each vertex of nCQ  with a leading 0 bit 

has exactly one neighbor with a leading 1 and vice versa. It is an n-regular graph. 
In fact, some pairs of parallel edges are changed to some pairs of cross edges. 
Furthermore, nCQ  can be obtained by adding a perfect matching M  between
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0
1nCQ −  and 1

1nCQ − . Hence nCQ  can be viewed as 0 1
1 1( , , )n nG CQ CQ M− −  or 

0 1
1 1n nCQ CQ− −  briefly. For any vertex ( ), ( )n Mu V CQ e u∈  is the edge incident 

to u  in M . 
The crossed cube is an attractive alternative to hypercubes nQ . The diameter 

of nCQ  is approximately half that of nQ . For more references, we can see 
[23]-[29] (Figure 1).  

In this paper, we obtain that: 2 ( ) 4 8( 4)nCQ n nλ = − ≥ , and we also prove 
other properties of nCQ . 

2. Conditional Connectivity of Crossed Cubes 

The crossed cube nCQ  has an important property as follows. 
Lemma 2.1. Any two vertices of nCQ  have at most two common neighbors 

for 2n ≥  if they have. 
Proof: By induction. If 2n = , then the result holds. We assume that it is true 

for n k< . Suppose n k=  and any , ( )nu v V CQ∈  such that ,u v  have at 
most two common neighbors. 

If 1, ( )nu v V CQ −∈ , then the two common neighbors are in 1( )nV CQ −  ac-
cording to inductive hypothesis. And there is not a relation between the com-
mon neighbors of ,u v  and the perfect matching M  added to nCQ . Hence 

,u v  have at most two common neighbors in nCQ . 
By symmetry, we assume that 0 1

1 1( ), ( )n nu V CQ v V CQ− −∈ ∈ . The common 
neighbors must be obtained by adding the perfect matching M . Note that every 
vertex of 0

1nCQ −  has only one neighbor in 1
1nCQ −  and vice versa. Then we ob-

tain the result. 
Corollary 2.2. For any two vertices , ( )( 2)nx y V CQ n∈ ≥ , 
1) if ( , ) 2d x y = , then they have at most two common neighbors; 
2) if ( , ) 2d x y ≠ , then they do not have common neighbors. 

 

 
Figure 1. Crossed cube for 3, 4n = . 
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Corollary 2.3. The girth of nCQ  is 4( 2)n ≥ . 
According to the definition of nCQ , and similar to Lemma 2.1, we have 
Lemma 2.4. Let x  and y  be any two vertices of ( )( 2)nV CQ n ≥  such that 

have only two common neighbors. 
1) If 0 1

1 1( ), ( )n nx V CQ y V CQ− −∈ ∈ , then the one common neighbor is in 
0

1nCQ − , and the other one is in 1
1.nCQ −  

2) If 0
1, ( )nx y V CQ −∈  or 1

1( )nV CQ − , then the two common neighbors are in 
0

1nCQ −  or 1
1nCQ − . 

Lemma 2.5. Let A  be an induced subgraph of nCQ  and ( ) 2Aδ ≥ . 
1) | ( ) | 4V A ≥ . 
2) If 1( ) ( )i

nV A V CQ −∩ ≠ ∅ , then 1| ( ) ( ) | 2( 0,1)i
nV A V CQ i−∩ ≥ = . 

3) If | ( ) | 4V A = , then A  is a 4-cycle 4C  and 1| ( ) ( ) | 2( 0,1)i
nV A V CQ i−∩ = = . 

Proof: 
Because ( ) 2Aδ ≥  and The girth of nCQ  is 4, | ( ) | 4V A ≥ . If | ( ) | 4V A = , 

then A  is a 4-cycle 4C . 
Assume that 0

1| ( ) ( ) | 1nV A V CQ −∩ = . Let 0
1{ } ( ) ( )nx V A V CQ −= ∩ . Since 

( ) 2d x ≥ , x  has at least two neighbors in 1
1( )nV CQ − , which is a contracted to 

the definition of nCQ . Hence 1| ( ) ( ) | 2( 0,1)i
nV A V CQ i−∩ = = . If | ( ) | 4V A = , 

then 1| ( ) ( ) | 2( 0,1)i
nV A V CQ i−∩ = = . 

Theorem 2.6. 
2 ( ) 4 8( 4)nCQ n nλ = − ≥ . 

Proof: 
Take a 4-cycle 4C  in nCQ . Clearly, 4| ( ) | 4 8E C n= −  and 4( )nCQ E C−  is 

not connected and minimum degree of each component is at least two. Then 
2 ( ) 4 8nQ nCλ ≤ − . 
We will show 2 ( ) 4 8nCQ nλ ≥ −  by induction. It is easy to check that holds 

for 4n = . So we suppose 5n ≥ . Assume that it is true for n k< . Let n k= .  
Let ( )nF E CQ⊆  with | | 4 9F n≤ − . And nCQ F−  is not connected and 

minimum degree of each component is at least two. We have 
0

1| ( ) | 2 5nF E CQ n−∩ ≤ −  or 1
1| ( ) | 2 5nF E CQ n−∩ ≤ − . Without loss of generality, 

we set 0
1| ( ) | 2 5nF E CQ n−∩ ≤ − . And 0

1nCQ F− −  is connected from the induc-
tive hypothesis. We will show that every vertex of 1

1nCQ F− −  is connected to 
0

1nCQ F− − . 
If there is a vertex u  of 1

1nCQ F− −  with 1
1

( ) 1
nCQ F

d u
− −

= , then by the hypo-
thesis u  is connected to 0

1nCQ F− − , a contradiction. Hence for any vertex u  
of 1

1nCQ F− − , we have 1
1

( ) 2
nCQ F

d u
− −

≥ . Let H  be an any component of 
1

1nCQ F− − . Since ( ) 2Gδ ≥ , we have | ( ) | 4V H ≥  and ( )( 1, 2,3,4)iu V H i∈ =  
by Lemma 2.6. Suppose 1

1
{ ( ) : 1, 2,3, 4}

n
iCQ

C N u i
−

= =  and | | 4 12C n≥ − . Let x  
be a some vertex of C . Because of | | 4 9F n≤ − , at least one vertex of 

1 2 3 4{ , , , , }u u u u x  has a neighbor in 0
1nCQ F− − . Then H  is connected to 

0
1nCQ F− − . Moreover, nCQ F−  is connected, a contradiction. 

3. Conclusion 

The conditional connectivity is a generalization of classical connectivity of 
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graphs. We determined the r-conditional degree connectivity of nCQ  for the 
small r. In the future, we will study other properties of crossed cubes. 
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