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Abstract 
Hydrocephalus is a neurological condition characterized by altered cerebros-
pinal fluid (CSF) flow leading to an accumulation of CSF inside the cranial 
vault. Neuropathogenesis associated with hydrocephalus has been elucidated 
by pathological studies of human brains and through experimental and genet-
ic animal models. Experimental animal models have been developed in nu-
merous species using a variety of methods and agents to induce hydrocepha-
lus or through genetic mutations in rodents. Each of these animal models has 
been described briefly in this review, along with the basic strengths and 
weaknesses of each model. Although none of these models can fully mimic the 
human condition, they each provide fundamental knowledge contributing to 
understanding more about the pathogenesis of hydrocephalus and its under-
lying causes. 
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1. Introduction 

The pathogenesis of brain damage in hydrocephalus has been elucidated by pa-
thological studies of human brains and through the use of experimental animal 
models. Experimental animal models have been developed in a range of species 
using a variety of methods to induce hydrocephalus or through genetic muta-
tions in rodents. These models have been assessed in different reviews [1]-[6]. 
The following discussion will briefly describe each of the experimental models, 
along with the basic advantages and disadvantages of each model. Although 
none of these models can fully mimic the human condition, they each provide 
important contributions of understanding more about the pathogenesis of hy-
drocephalus and how to potentially treat it effectively.  
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2. Kaolin Injection 

The most common method of inducing experimental hydrocephalus is the 
intracisternal kaolin injection model [1]. This model was introduced in the 
1930s [7] [8]. A dose of 0.01 - 0.2 mL of 20% - 25% suspension of kaolin clay 
(aluminum silicate) is injected into the cisterna magna either through surgical 
exposure of the cistern and brainstem or by inserting a needle tip percutaneous-
ly. Kaolin deposited at the base of the fourth ventricle spreads in the subarach-
noid space, where it induces an inflammatory reaction and fibrous scarring in 
the meninges. This resembles the scarring that develops following meningitis or 
hemorrhage and leads to an obstruction of the CSF pathways close to the fourth 
ventricle apertures and ventricular enlargement ensues [4] [5] [7] [9]. The spe-
cies that have been examined include mice [10] [11], rats [12] [13] [14] [15] [16], 
guinea pigs [17] [18] [19], rabbits [20], cats [8] [21] [22] [23], ferrets [24] [25], 
dogs [9] [26] [27] [28], pigs [29], sheep [30] [31] [32], and monkeys [30] [32]. 
The main disadvantage of kaolin induction is that the inflammatory reaction, 
composed of macrophages and CD4- and CD8-positive lymphocytes [33], might 
confound interpretation of microglial reactions in these animal models. Second, 
if performing the percutaneous needle injection method, it is possible to cause 
damage by accidental punctures into brainstem structures, particularly in neo-
natal animals. Third, although the dose and concentration of kaolin injected 
likely play a role in the rate of ventriculomegaly and pathology, age of the animal 
and mode of inducing hydrocephalus, whether using kaolin or otherwise, are 
important factors in hydrocephalic pathological outcomes [3] [24] [34]. Even 
when using the same dose and concentration, there is variable dispersion of kao-
lin in the subarachnoid space, and this may account for the relatively unpredict-
able rate and magnitude of ventricular dilatation that transpires. However, these 
are outweighed by the practical matter that the kaolin model is a simple, inex-
pensive, and consistent way of inducing hydrocephalus in experimental animals 
[5] [34].  

3. Silicone Oil Injection 

Another method of inducing hydrocephalus in animal models is through an 
intracisternal injection of viscous silicone oil. This creates a purely mechanical 
obstruction for the outflow of CSF from the fourth ventricle to the subarachnoid 
space [20] [35]. The method has also been successfully used in a few animal spe-
cies including rats [36], rabbits [37] [38] [39] [40] [41], and dogs [35] [42] [43]. 
The silicone oil used in this model is apparently an inert substance, so it does not 
produce the same inflammation of the meninges and scarring that kaolin induc-
es [35] [41] [42]. It should be noted though that silicone oils do lead to some 
intraocular inflammatory response when used in the treatment of retinal de-
tachment [44], but it is not certain how this translates to the brain. Like kaolin, 
the silicone oil model is easy and inexpensive to perform [1] [5]; however, it 
does not produce severe ventricular expansion or sustained elevated intracranial 
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pressure [1] [5] [39], and thus, it is not an effective model of chronic infantile 
hydrocephalus. Some studies used a silastic elastomer solution that hardens 
quickly to improve the rate of ventriculomegaly attained [45] [46]. 

4. Mechanical Obstructions and Toxins 

Over the 20th and 21st centuries, various other substances/agents have been used 
to induce hydrocephalus by implanting a mechanical plug that leads to hydro-
cephalus. Some of these substances include cotton or cellophane cylinders im-
planted in the cerebral aqueduct of adult dogs [9] [47] [48]; India ink [49], small 
pieces of laminalia [6], and cyanoacrylate glue [50] [51] among others. These 
substances will typically cause an obstructive form of hydrocephalus either by 
blocking the fourth ventricle and/or access to the subarachnoid space through 
the apertures or by inducing aqueductal stenosis, which will in turn lead to ven-
triculomegaly. Cotton and cellophane plugs have successfully induced hydroce-
phalus in large animals, but they involve an invasive, major surgical procedure 
that likely damages brainstem structures, so they should only be limited to acute 
experiments [5]. Cyanoacrylate glue also induces obstructive hydrocephalus in 
the fourth ventricle, where it quickly cures, and this potentially prevents CSF 
leakage by adhering to the ependymal and pial layers of the brainstem and cere-
bellum without distorting surrounding brain tissues [5]. It has been shown to 
work in large animals (i.e., dogs) with gyrencephalic brains, like humans, but it 
is also expensive and involves a complicated technical procedure that has not 
always worked in other animal models [1] [5] [52]. Another issue is that these 
mechanical obstructions limit the experiments to have an acute nature, and thus 
may only represent trauma-induced clinical hydrocephalus in humans but not 
progressive forms of the condition. An additional implantation method is bal-
loon insertion in the ventricles of lambs [53] [54] [55]. Unlike the other tech-
niques described above, the balloon implantation method induces a form of 
communicating or non-obstructive hydrocephalus because there is no point of 
obstruction and does not change the mean CSF pressure [53] [54] [55]. Howev-
er, it elevates the pulse wave of the CSF in the ventricles [56], which could have 
other implications. 

Different toxins have been administered or fed to pregnant rats, which suc-
cessfully produced hydrocephalic offspring. Some of these substances include 
trypan blue [57] and tellurium [58] [59] [60]. These substances will lead to ob-
structive hydrocephalus by blocking the cerebral aqueduct or by closure of the 
subarachnoid space, and ventricular enlargement will follow in these rats. Unfor-
tunately, these toxins likely cause brain damage or alter normal developmental 
sequences to induce congenital defects that subsequently lead to ventriculomegaly, 
and often death will occur by the end of the second week of life [59] [61]. 

5. Molecular Fibrosis Manipulation 

Molecular agents associated with the fibrotic pathway have also been injected or 
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overexpressed in animal models to induce obstructive hydrocephalus. Basic fi-
broblast growth factor (FGF-2) [62] [63] has been injected/implanted in the cis-
terna magna of rats, rabbit, dogs, and/or marmosets. Intrathecal injection or 
transgenic overexpression of transforming growth factor-beta 1 (TGF-β1) has 
also successfully induced hydrocephalus in mice [64] [65] [66] [67] [68]. Basic 
FGF-2 and TGF-β1 injections are relatively easy procedures that both presuma-
bly create a fibrotic obstruction in the subarachnoid space [1] [5] [66] [69], but 
they are expensive procedures that might have a direct impact on different brain 
cells, including synapse formation and neuronal migration [1] [70] [71]. 

6. Blood and Blood-Related Injections 

More recently, several studies have established rodent models of post-hemorrhagic 
hydrocephalus through intraventricular injection of blood directly into the later-
al ventricles of rats [72] [73] [74]. Other studies have successfully performed the 
same intraventricular injection(s) with substances found in blood serum and/or 
plasma either alone or in conjunction with blood itself, including thrombin [75] 
[76] and FeCl3 [77] [78] in rats, along with lysophosphatidic acid (LPA) in mice 
[79]. All of these studies have also examined non-surgical therapeutic agents to 
treat the experimental hydrocephalus with varied efficacy, which sheds more 
light on the neuropathology associated with hydrocephalus along with the po-
tential neuroprotective effects of various pharmacological treatments. In addi-
tion, some of these models, such as the LPA model in mice [79], resemble dif-
ferent human fetal forms of the hydrocephalus caused by hemorrhage [80] [81]. 
However, blood-brain-barrier disruption could occur using these models [75], 
and hemorrhage is only one of the many causes of hydrocephalus. In addition, it 
is important to examine these blood injection models further without therapeu-
tic intervention to learn more about the neuropathology associated with chronic 
hydrocephalus. 

7. Genetic Models 

In humans, hydrocephalus manifests due to a variety of causes and can occur 
across the lifespan or be present at birth. Congenital hydrocephalus can be 
linked to genetic causes, yet until recently, there were only a few genes linked to 
the condition, including the X-linked L1 cell adhesion molecule (L1CAM) [82]. 
This recent study has shown that there may be increased genetic heterogeneity 
associated with hydrocephalus. There are also genetic models of hydrocephalus 
that have been discovered and studied over the last century, but very few are 
linked to the same genes as humans. The genetic models include the hydroce-
phalus Texas (H-Tx) rat, the LEW/Jms rat, the L1CAM mutant mouse model, 
the hydrocephalus-3 (hy-3) mouse, the hydrocephalus with hop gait (hyh) 
mouse, the SUMS/NP mouse, the hpy mouse, and a double transgenic mouse 
model, among others. The hydrocephalic H-Tx rat is a spontaneous neonatal 
hydrocephalus model that develops aqueductal stenosis and ventricular 
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enlargement beginning at approximately 18 days gestation [83] [84], while the 
LEW/Jms rat strain came from an inbred strain of Wistar-Lewis rats that exhibit 
a similar onset and pathophysiology to the H-Tx rat [85] [86]. The H-Tx rat has 
been studied extensively and displays adverse effects in the germinal epithelium 
(GE) including reduced cell proliferation, impaired cell cycling, and/or increased 
cell death and arrested migration of glial cells from the GE into the cerebrum, 
which are hypothesized to be associated with impaired signalling molecules car-
ried by the CSF [87]-[93]. Its phenotypic characterization is predictable, and 
surgical intervention can treat this inherited form of hydrocephalus [5] [94]. 
Additionally, research is uncovering the potential roles that folate imbalance 
plays in the defects associated with the early-onset of hydrocephalus, where ma-
ternal administration of folic acid increases the incidence of hydrocephalus, 
while combined folinic acid and tetrahydrofolate decrease the incidence [95]. 
Despite these breakthroughs, the underlying genetic cause of this partially pene-
trant disorder is still unknown [96] [97] [98], which raises issues about its appli-
cability. There is also concern that there are potential brain abnormalities in 
nonhydrocephalic “normal” H-Tx rats because they perform worse than Sprague- 
Dawley rats on behavioural tests [99]. It is also expensive to maintain the breed-
ing colony for these rats [1] [5]. 

As indicated, there are also spontaneous mutant mice that exhibit a hydroce-
phalic phenotype. The L1 CAM mutant mouse often displays ventricular expan-
sion, cerebral cortex pyramidal neuron defects, and shrunken hippocampus, 
corticospinal tract, and corpus callosum [100] [101]. Meanwhile, the hy-3 mouse 
was initially discovered in the 1940s and was suspected to be the result of a plei-
otropic gene [102]. Research in this model continued in the 1960s and 1970s, 
where the inheritance and pathogenesis were investigated, which revealed im-
pairment to the choroid plexus and ependymal layer [103] [104]. However, it 
was not until 2003 that the discovery of the autosomal-recessive frameshift mu-
tation in the Hydin gene caused this lethal form of perinatal onset communicat-
ing hydrocephalus [105], which may manifest due to impairment of ependymal 
ciliary motility [106]. With further understanding of the genetic cause of hy-3, it 
is becoming more feasible to investigate this model further. However, like the 
H-Tx rat, it is expensive to maintain the breeding colony [1] [5]. Another mu-
tant model is the hyh hydrocephalic mouse that is associated with a domed head, 
appreciably reduced cerebral cortex, and a lack of communication between the 
caudal aqueduct and fourth ventricle, which subsequently leads to ventricular 
enlargement that is typically lethal between a few weeks to 2 months of age 
[107]. However, the hyh mouse is a complex genetic model involving a hypo-
morphic missense mutation of the soluble N-ethylmalemide-sensitive factor 
(NSF) attachment protein alpha-S-nitroso-N-acetylpenicillamine (Napa α-SNAP) 
gene mapped to the proximal end of chromosome 7, which is associated with 
mRNA instability [107] [108] [109]. This is believed to disturb neural cell de-
termination by disrupting cortical progenitor pools and laminar organization, as 
well as the localization of several apical proteins implicated in regulating neural 
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cell fate. It has other effects on cell processes including disorganization and re-
duction of both proliferative and neural progenitor cells (NPCs) in the subven-
tricular zone (SVZ) [110], but the cause of these effects is not clearly understood. 
It also displays the hop gait phenotype, which is not necessarily associated with 
hydrocephalus. In addition, mutant mouse models are too small for surgical in-
terventions, and thus, there are concerns about their applicability to the human 
situation [5]. 

The SUMS/NP mouse is an inbred strain involving a recessive gene that is 
likely autosomal and develops congenital hydrocephalus with ventricle enlarge-
ment around E16 but is explicitly visible by P3-P4 in about 13% of matings be-
tween heterozygous parents [111] [112]. These animals develop progressively 
severe hydrocephalus with expanded lateral and third ventricles and reduced or 
absent cerebral aqueduct, and they die shortly after weaning. The hydrocephalus 
associated with polydactyly (hpy) mice involves a recessive mutation on chro-
mosome 6 where homozygous mice exhibit a hopping gait, male sterility, scoli-
osis, and develop non-obstructive hydrocephalus postnatally around P6 and 
most die by P14 [113] [114] [115]. The hpy mice were also originally observed as 
offspring of X-irradiated mice [114] [116], but the specific factors associated 
with hydrocephalus development are unknown [117]. The unique double trans-
genic mouse model of communicating hydrocephalus shows severe ventricular 
enlargement and ependymal denudation and can be induced at any age because 
of doxycycline, which binds to tet-transactivator (tTA) and regulates astrocyte 
activation [118] [119]. It involves crossing of the G1-coupled Ro1 receptor acti-
vated solely by synthetic ligands (RASSL) in astrocytes mouse line with a tTA 
mouse line that has a fragment of human glial fibrillary acidic protein (GFAP) 
promoter that enables expression of Ro1 in astrocytes only. Despite the benefits 
of these mouse models in understanding the neuropathology of hydrocephalus, 
these models are limited because of the difficulties in incorporating surgical 
treatment, such as ventricular shunts, primarily due to the small size [120]. 

8. Summary 

Researchers have unveiled different spontaneous mutant models of hydroce-
phalus, while others have induced experimental hydrocephalus using numerous 
agents with some successfully working in different animal models. All of these 
studies have imparted important information to understand the causes of and 
potential treatments for hydrocephalus. Because of them, much has been dis-
covered about the neuropathology of this condition. However, the above discus-
sion has made it evident that none of them are perfect in mimicking the human 
condition, for which there is still no definitive cure. 
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Abbrevations 

CSF—cerebrospinal fluid  
FGF—fibroblast growth factor 
GE—germinal epithelium 
GFAP—glial fibrillary acidic protein 
H-Tx—hydrocephalus Texas 
hpy—hydrocephalus associated with polydactyly 
hy-3—hydrocephalus-3 
hyh—hydrocephalus with hop gait 
L1 CAM—L1 cell adhesion molecule 
LPA—lysophosphatidic acid 
Napa α-SNAP—N-ethylmalemide-sensitive factor (NSF) attachment protein al-
pha-S-nitroso-N-acetylpenicillamine 
NPCs—neuronal progenitors cells 
RASSL—receptor activated solely by synthetic ligands 
SVZ—subventricular zone 
TGF-β1—transforming growth factor-beta 1 
tTA—tet-transactivator 
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