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Abstract 
In this paper, the parameter estimation problem is investigated for the conti-
nuous time stochastic logistic diffusion system. A new continuous process is 
built based on the likelihood ratio scheme, the Radon-Nikodym derivative 
and the explicit expressions of the error of estimation are given under this 
new continuous process. By using the random time transformations, law of 
large numbers for martingales, law of iterated logarithm and stationary dis-
tribution of solution, the consistency property are proved for the estimation 
error. Finally, a numerical simulation is presented to demonstrate the effec-
tiveness of the proposed method in this paper. 
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1. Introduction 

In the past few decades, parameter estimation problem for the stochastic 
differential equation have been studied by many scholars whose results mostly 
base on the discrete observation. In order to get more accurate estimators, we 
should observe through continuous time. Deterministic model, which 
parameters are deterministic irrespective of environmental fluctuations, are 
usually used to describe the overall impact of changes between different factors. 
these models obviously impose limitations in mathematical modeling of whole 
real systems. However, in the real world, many random factors (i.e. earthquakes, 
typhoons, car accidents and other unforeseen factors) may make the parameters 
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into random variables. Therefore, it is more reasonable to use the stochastic 
differential equation with to describe the real systems disturbed by random 
noises. For example, the stochastic logistic diffusion model has been widely used 
in the field of social life, application of stochastic logistic diffusion model has 
been used in the field of applied economics [1] [2] [3], biology [4] [5] [6] [7], 
power engineering [8] [9] [10] and so on. Very recently, considerable research 
results have been reported on the parameter estimation based on discrete 
observation. To be special, [11] used the least squares method to estimate the 
parameters, also obtained the point estimators and confidence intervals as well as 
joint confidence regions. [12] used conditional least squares and weighted 
conditional least squares method to study the parameter estimation of two-type 
continuous-state branching processes with immigration based on low frequency 
observations at equidistant time points. [13] studied the asymptotic behaviour of 
parametric estimator for nonstationary reflected Ornstein-Uhlenbeck process by 
applying maximum likelihood estimation. For the stochastic logistic diffusion 
model, [14] worked out the optimization problem with respect to stationary 
probability density and provide a new equivalent, an ergodic method is used to 
show the almost surely equivalency between the time averaging yield and 
sustainable yield. [15] considered a stochastic logistic growth model involving 
both birth and death rates in the drift and diffusion coefficients and the 
associated complete Fokker-Planck equation is also established to describe the 
law of the process. [16] focused on stochastic dynamics involve continuous states 
as well as discrete events, and obtain weak convergence of the underlying system, 
and utilized the structure of limit system as a bridge to invest stochastic 
permanence of original system driving by a singular Markov chain with a large 
number of states. [17] presented some basic aspects of adequate numerical 
analysis for the random extensions such as numerical regularity and mean 
square convergence. [18] improved two mathematically tractable cases: at the 
limit of the number of individuals and at the limit of basic reproduction ratio. In 
the discrete observations, we let the time interval tends to 0 to get more accurate 
result. Therefore, this means that parametric inference based on continuous time 
observation is much more accurate in dealing with parameter estimation 
problem. During the estimation processing, two important theories have been 
used to estimate parameters based on continuous observation in the existing 
literature. One is denoting Radon-Nikodym derivative with likelihood ratio and 
the other one is by using stationary distribution of solution. 

The stochastic logistic diffusion model can be described by the following 
stochastic differential equation: 

( )2
0d d d ,t t t t tX X X t X W X xα β ε= − + =

            
(1.1) 

where tX  represents the population capacity at time t, 0α >  represents the  

natural birth rate, 0β >  represents mortality, α
β

 represents load capacity,  

usually also represents the largest population that environmental resources can 
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support. 0ε >  represents the dynamic effect of noise on tX . tW  is a Wiener 
process modelling the random factor. [19] studied the existence, uniqueness and 
global attractively of positive solutions for model (1.1), and established a 
maximum likelihood estimator for the parameters. [20] proved that no matter 
how small 0σ > , the solution will not explode in a limited time. 

In this paper, the continuous observations shall be used to obtain more 
accurate results than discrete observations, and the likelihood ratio will be 
employed to get Radon-Nikodym derivative which can be used to solve the 
parameter estimation problem for logistic diffusion model. As we all know that 
logistic diffusion model is a diffusion process, for a general diffusion model 

( ) ( )d | |t t tX X Xµ θ σ θ= + , the parameter θ  enter into the description of tX  
through µ  or σ  or both. However, the nature of diffusions allows us to 
evaluate σ  exactly under a given continuous record, from the formula 

( )( ) ( )
22 2

1 0
2 1 2 d

n sn n
j uj X s X j s X sσ− −

=
− − →∑ ∫  a.s. as n → +∞  (a.s. means 

almost surely) as pointed out in [21]. This result can be rewritten descriptively as 
( ) ( )2 2

0 0
d d

t s
u uX X sσ→∫ ∫  a.s. as n → +∞ . Thus we could consider a parameter 

involved in σ  as being know a single realization which means we should only 
consider the estimation of θ  in ( )|sXµ µ θ= . Then the likelihood ratio as 
Radon-Nikodym derivative and the expressions of all estimators would be 
obtained. As [19] have studied the stationary distribution of tX , based on the 
result and strong law of large numbers of martingales the law of iterated 
logarithm, the consistency property and the normality of asymptotic shall be 
proved for the estimation error. 

This paper is organized as follows. In Section 2, a new method of estimating 
parameters is given and estimators are obtained. In Section 3, the strong 
consistency properties of estimators and estimation of asymptotic normality of 
error are proved. In Section 4, a numerical example for the estimators and error 
of estimation between estimators and trues is given to demonstrate the 
effectiveness of the proposed results. The conclusion is given in Section 5. 

2. Preliminaries 

In this paper, the parameter estimation problem shall be studied for the logistic 
diffusion model described by a stochastic differential equation as given in (1.1). 
In this model α , β  are unknown parameters. We can calculate ε  use the 
method in [21] and this means that ε  is also a known parameter. Because of 
the complication of the transitional density function for this model, it is difficult 
to obtain commonly used expression for the unknown parameters. Therefore, 
we will calculate the likelihood ratio (with respect to ,Pα β , α  and β  are the 
true parameters) for a finite set of time points 0 10 nt t t t= < < ⋅ ⋅ ⋅ < = , and then 
let the number of time points tend to infinity to get the likelihood function. 
From now on we shall work under the assumptions below.  

Assumption 1: , α β  and ε  are positive, 0X  is positive and independent 
with tW .  
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Assumption 2: 22α ε> , which implies that tX  cannot reach zero.  
Assumption 3: 0X  is a positive random variable, and there is a 2Q >  such 

that 0
QE X  < ∞   hold. 

Next, the specific steps with respect to derivations of the likelihood function 
and parameter estimators are given below. 

Assume that 2ε  is known for all tX . tX  can be observed continuously 
throughout the time interval 0 s t≤ ≤ . For observations in this detail enable the 
true diffusion parameter 2ε  to be determinate through following result  

( )( ) ( )
2 2 2

0
1

2 1 2 d . . as .
n

sn n
j u

j
X s X j s X s a s nσ− −

=

− − → → +∞∑ ∫  

For all [ ]0,s t∈ , above equation can be rewritten descriptively as follows:  

( ) ( )2 2

0 0
d d . ..

t t
s sX X s a sε=∫ ∫  

Then, 2ε  may there be assumed know as:  

( )2

2 0

2
0

d
.

d

t
s

t
s

X

X s
ε = ∫

∫                        

(2.1) 

The parameter α  and β  enter into the description of tX  of (1.1), we can 
get ε  exactly by (2.1). We begin with a class of probability ( ),, ,Pα βΩ F , 
where the real stochastic process ; 0sX X s= ≥  on ( ),Ω F  evolves according 
to one of probability laws ,Pα β . For each 0t ≥  define  

( ): 0 , ,t sX s t Nσ= ≤ ≤F                    (2.2) 

with σ-field generated by sets ( ): s sw X X w B∈Ω = ∈ , and B is a Borel set on R 
and the class N is ,Pα β -null set of F . 

Define  

( ) ( )2

0
d , 0

t
st X s tρ ε= ≥∫                   

(2.3) 

and  

( ) , 0.ttY X tρ = ≥
                      

(2.4) 

From the theory of random time transformations, we have  

( )

2

2d d dt t
t t

t

Y YY t W
Y

α β
ε
− ′= +

                   
(2.5) 

where tW ′  is a standard Brownian motion(or its measure). (1.1) with the initial 
distribution µ . tW  is a Brownian motion with respect to the filtration tF  
and 0X x=  is a 0F -measurable random variable with distribution µ . Then, 
for the process of option times (2.3), we can create the inverse process that is 

( )t tX Yρ=  with filtration ( )t tρ=G F , and we can find a Brownian motion tW ′  
with respect to G . For more details please see reference [22], the existence and 
uniqueness of tW ′  will be found. From Kailath and Zakai’s [23], we know  
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( ) ( ) ( ) ( )

( ) ( )
( )

22 2
,

2 2 2 40 0

22 2

2 2 2 40 0

d 1exp d d
d 2

1exp d d
2

t
t ts s s s

s
t s s

t ts s s s
s

s s

Y Y Y YP
Y s

W Y Y

X X X X
X s

X X

ρ ρα β α β α β

ε ε

α β α β
ρ

ε ε

 − − = − ′   
 − − = − 
  

∫ ∫

∫ ∫
    

(2.6) 

by substituting ( )sρ  for s,  

( ) ( )22 2

2 2 2 20 0

1exp d d .
2

t ts s s s
s

s s

X X X X
X s

X X

α β α β

ε ε

 − − = − 
  
∫ ∫

        

(2.7) 

Similarly, we can get,  

( ) ( )22 2
ˆˆ ,

2 2 2 20 0

ˆ ˆˆ ˆd 1exp d d .
d 2

t
t s s t s s

s
t s s

X X X XP
X s

W X X
α β

α β α β

ε ε

 − − = − ′  
 
∫ ∫

     

(2.8) 

Thus,  

ˆ ˆˆ ˆ, , ,

,

d d d
.

d dd

t t t

t
t t

P P P
W WP

α β α β α β

α β

   
=    ′ ′                        

(2.9) 

Writing ,
tPα β  for the restriction of ,Pα β  to tF , and we can now define 

following likelihood function as a Radon-Nikodym derivative:  

( ) ( ) ( )

( ) ( )

2 2
ˆˆ ,

2 20
,

2 22 2

2 20

ˆˆdˆˆ, exp d
d

ˆˆ1 d , 0.
2

t
t s s s s

t st
s

t s s s s

s

X X X Xp
L X

p X

X X X X
s t

X

α β

α β

α β α β
α β

ε

α β α β

ε

 − − −= = 


− − − − ∀ >



∫

∫
   

(2.10) 

Let ( ) ( )ˆ ˆˆ ˆ, log ,t tl Lα β α β= , (the “log()” function has the basement “e”) 
solving following equation  

( )

( )

ˆˆ ,
0

ˆ
ˆˆ ,

0,ˆ

t

t

l

l

α β

α
α β

β

∂
 =
 ∂

∂

=
∂                       

(2.11) 

we can obtain the estimators as follows:  

( )

( )
( )

( )

2
00 0 0

2
2

0 0

00 0

2
2

0 0

d d d
ˆ ,

d d

d d
ˆ .

d d

t t ts
s t s

s

t t
s s

t ts
s t

s

t t
s s

X X s X X X s
X

t X s X s

X X s t X X
X

t X s X s

α

β

 − −
 =
 −

 − −


=
 −


∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫
            

(2.12) 
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3. Main Results and Proofs 

In this section, we shall give the asymptotic distribution of the estimated errors 
and the corresponding proof. It’s easy to konow the solution of Equation (1.1) 
has following expression:  

2

2

0

exp
2

.
exp d

2

t

t
t

s

t W
X

x s W s

εα ε

εβ α ε

   − +  
   =
   + − +  
   

∫
             

(3.1) 

Firstly, let us give following four lemmas.  
Lemma 1 (The law of iterated logarithm) [24]  

lim sup 1 . ..
2 log log

t

t

W a s
t t→+∞

=
                 

(3.2) 

Lemma 2 [19] Assume that there is a positive number C such that  

( ) ( ) 2
max

, 1
: 2 sup 2 0.

t t
t

X R X
C C Xλ λ β β

+

+

∈ =
− = − = − <

           
(3.3) 

Then, for any given initial value x +∈ , the solution tX  of equation 

( )2d d dt t t t tX X X t X Wα β ε= − +  has following properties  

( )
2

1 2

2

4
lim sup d 1 ,

t

tt

C C
X s s

C
α α

λ
+

→+∞

 
≤ + 

 
∫ 

           
(3.4) 

2 2

2
1

2 6
lim sup 1 1 ,sup st t s t

C C C C C
X

C C C C
α α ε α α

λ→+∞ ≤ ≤ +

     ≤ + + +        


 

(3.5) 

and  

( )( )log
lim sup 1 . ..

logt

X t
a s

t→+∞
≤

                 
(3.6) 

Lemma 3 [19] If the conditions ( )max 2 0Cλ β+ − <  and 
2

2
ε

α >  hold. Then, 

for any given initial value x +∈ , the solution ( )X t  of  

( )2d d dt t t t tX X X t X Wα β ε= − +  has the property that  

( )( )
( )

2

2

log
lim inf . ..

log 2t

X t
a s

t
ε

α ε→+∞
≥ −

−               
(3.7) 

Lemma 4 Assume that tX  is a solution to the stochastic differential 
Equation (1.1) and Assumptions 1 - 3 hold. Then, we have  

2

0

1 2lim d .
t

st
X s

t

εα

β→+∞

−
=∫

                    
(3.8) 

proof: It is known from lemma 2 that the solution (3.1) obeys  

( )log
lim sup . ..

log
t

t

X
t a s

t→+∞
≤  
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While, from Assumption 2 we have 22α ε> . Then, by the properties in 
lemma 2, the solution (3.1) satisfies  

( ) 2

2

log
lim inf . ..

log 2
t

t

X
a s

t
ε

α ε→+∞
≥ −

−
 

Consequently,  

( )1lim log 0 . ..tt
X a s

t→+∞
=  

By the Itô formula, it is easy to know that  

( ) ( )
2

0
log log d .

2
t

t s tX x t X s Wε
α β ε
 

= + − − + 
 

∫  

Dividing both side by t and then letting t → +∞ , we obtain  
2

0

1 2lim d . ..
t

st
X s a s

t

εα

β→+∞

−
=∫

                  
(3.9) 

The proof is complete. 
Remark: (The one-dimensional Itô formula) Let ( )x t  be an Itô process on 
0t ≥  with the stochastic differential  

( ) ( ) ( ) ( )d d d ,x t f t t g t B t= +                  (3.10) 

where ( )1 ;f R R+∈L  and ( )2 ;g R R+∈L . Let ( )2,1 ;V C R R R+∈ × .Then 
( )( ),V x t t  is again an Itô process with the stochastic differential given by  

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

21d , , , , d
2

, d . ..

t x xx

x t

V x t t V x t t V x t t f t V x t t g t t

V x t t g t B a s

 = + +  
+

 

(3.11) 

Theorem 1 Let tX  be a solution to the stochastic differential Equation (1.1) 
and Assumptions 1-3 hold. Then, we have  

2
2

2
20

1 2lim d .
t

st
X s

t

αεα

β→+∞

−
=∫

                  
(3.12) 

proof: It follows from (1.1) that 2
0 0 0

d d d
t t t

t s s s sX x X s X s X Wα β ε− = − +∫ ∫ ∫ , 
dividing both sides by t and then letting t → +∞ , one has  

2
0 0 0

lim lim d lim d lim d .
t t tt

s s s st t t t

X x X s X s X W
t t t t

α β ε
→+∞ →+∞ →+∞ →+∞

−
= − +∫ ∫ ∫  

Since  

[ ]

[ ]

[ ]

0 0

0

0

d d

d |

d

0,

t t
s s s s

t
s s s

t
s s

X W X W

X W

X W

  =  

 =  

 =  
=

∫ ∫

∫

∫

 

 

 

F  

and  
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[ ]
0 0

0

0

d | d d |

d d

d .

t t t
s s t s s s s tt

t t
s s s st

t
s s

X W X W X W

X W X W

X W

−

− −−

−

−

−

   = +      

= +

=

∫ ∫ ∫

∫ ∫

∫

 F F

 

0
d

t
s sX W−

∫  is a matingale with zero mean with respect to the σ-algebra t−
F . 

Moreover, according to (1.1), ( )1 1 1 1

2
i i i i i it t t t t tX X X X Xα β ε

− − − −
− = − ∆ + ∆ . The 

equation ( ) ( )2f x x x xα β= + − ∆  (among them 1max i it t −∆ = − , 0 it t≤ ≤ ,  

( )~ 0,1
it

N ) gets maximum when 
1

2
x α

β
∆ +

= , thus,  

( )21
.

4tX
α

β
∆ +

≤ < ∞  

Therefore, ( )2 2ds s sX W X   =      is bounded. It then follows that  
2

0
d

lim sup . ..
t

s

t

X s
a s

t→+∞
< ∞∫

                  
(3.13) 

By the strong law of large numbers of martingales, we have  

0
d

lim 0 . ..
t

s s

t

X W
a s

t→+∞
=∫  

Together with (3.1) and Lemma 1, we obatain  
2

2
1

0

exp 2 log log
2

0 lim lim .
exp 2 log log d

2

tt t t

t t t
X

x s s s s

εα

εβ α
→+∞ →+∞

−

   − +  
   < =

   + − +  
   

∫
   

(3.14) 

By LHospital rule, we get  
2

2

2
1

0

exp 2 log log
2 2lim .

exp 2 log log d
2

t t

t t t

x s s s s

ε εα α

βεβ α
→+∞

−

   − +   −    =
   + − +  
   

∫
 

Then,  

lim 0 . ..t

t

X a s
t→+∞
=  

According to (3.10), we get  
2

2

2
20

1 2lim d . ..
t

st
X s a s

t

αεα

β→+∞

−
=∫

                
(3.15) 

The proof is now complete. 
Remark: (LHospital rule) The general form of LHospital rule covers many 

cases. Let c and L be extended real numbers.The real valued function f and g are 
assumed to be differentiable on an open interval with endpoint c, and additionally  
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( ) 0g x′ ≠  on the interval. It is also assumed that ( )
( )

limx c
f x

L
g x→

′
=

′
. Thus the  

rule applies to situations in which the ratio of the derivatives has a finite or 
infinite limit, and not to situations in which that ratio fluctuates permanenty as x 
gets closer and closer to c.  

If either  

( ) ( )lim lim 0
x c x c

f x g x
→ →

= =
                   

(3.16) 

or  

( ) ( )lim lim ,
x c x c

f x g x
→ →

= = ∞
                 

(3.17) 

then  

( )
( )

lim .
x c

f x
L

g x→
=

                       
(3.18) 

Theorem 2 Under Assumptions 1-3, α̂  and β̂  are strongly consistent.  
Proof: Substituting (1.1) into the expression of α̂  yields  

( )
2

0 0 0
2

2
0 0

d d d
ˆ .

d d

t t t
t s s s s

t t
s s

W X s X W X s

t X s X s

ε ε
α α

−
− =

−

∫ ∫ ∫

∫ ∫
             

(3.19) 

Letting t → +∞ , and according to Lemma 4 and Theorem 1, we have  
2

0
0 0

2
2

0 0

2 2
2

2

22
2

2 2

0

d 1d d
ˆ

1 1d d

2 2

lim
2

22

d2 2lim lim .

t
t tst

s s s

t t
s s

t

t

t
s st

t t

X sW X W X s
t t t t

X s X s
t t

W
t t

X WW
t t

ε ε

α α

αε εα αε ε
ββ

εαε αα

β β

α β
ε ε

→+∞

→+∞ →+∞

−
− =

 −  
 

− −
−

=
 

− −
 −

= −

∫
∫ ∫

∫ ∫

∫

 

It follows from (3.12) that  

ˆ 0 . ..a sα α− →                      (3.20) 

Substituting (1.1) into the expression of β̂  yields  

( )
0 0

2
2

0 0

d dˆ .
d d

t t
t s s s

t t
s s

W X s t X W

t X s X s

ε ε
β β

−
− =

−

∫ ∫

∫ ∫
               

(3.21) 

Similarly, we have  
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2

0
00

2 22
2

2
0 0

2 2

2
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It is easy to get from (3.12) that  
ˆ 0 . ..a sβ β− =                       (3.22) 

Thus, α̂  and β  are strongly consistent. The proof is complete. 
Theorem 3 Under Assumptions 1-3, we have  
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Proof: It follows from (3.15) that  
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Substituting (3.9) and (3.11) into the above expression and then letting 
t → +∞ , we have  
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According to (3.13), one has  
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(3.24) 

 Similarly, it follows easily from (3.17) that  
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Substituting (3.9) and (3.11) into the above expression and then letting 
t → +∞  yields  
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Therefore,  
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(3.26) 

The proof is complete. 

4. Simulation 

In this section, a numerical simulation example shall be presented to 
demonstrate the effectiveness of the approach results.  

The simulation is based on (2.6) (2.7) and (2.12). First according to (2.6) and 
(2.7), for given values of , α β  and t  such as 0.3, 0.6α β= =  and 500t = , 
we can get the sample values based on the likelihood ratio estimation and 
MATLAB. Then, for substituting the sample values into (2.12), the values of 

( )ˆˆ, α β  can be obtained. Subsequently, we calculate the average values of the 
estimators. Finally, the average errors between estimators can also be calculated. 
Simulation results are shown in Table 1. In Table 1, the time is represented as “t” 
and likelihood ratio estimator is shown as “LR”. Table 1 lists the values of 
“ ˆ LRα − “, “ ˆ LRβ −  “ and the average errors of “LR”. Table 1 illustrates that the 
average errors of , α β  depended on the size of given value of , α β . But under 
the hypothesis of normal distribution, obvious difference can not be found 
between estimators and true values, estimators are good. From the Table 1 we 
can see clearly that the estimators become more and more close to the true value 
by increasing the time t. The was of continuous time estimation is better than 
the discrete observation [25]. (Those data comes from web of Statistical Data 
and I use MATLAB to simulate those data to get the result. The confidence 
intervals is [ ]0.3 0.01,0.3 0.01− +  for 0.3α = , [ ]0.6 0.01,0.6 0.01− +  for β =
0.6 ; [ ]0.4 0.01,0.4 0.01− +  for 0.4α = , [ ]0.7 0.01,0.7 0.01− +  for 0.7β = ; 
[ ]0.5 0.01,0.5 0.01− +  for 0.5α = , [ ]0.8 0.01,0.8 0.01− +  for 0.8β = ; 
[ ]0.6 0.01,0.6 0.01− +  for 0.6α = , [ ]0.9 0.01,0.9 0.01− +  for 0.9β = ;)  

https://doi.org/10.4236/ojs.2017.76072


Z. W. Zheng et al. 
 

 

DOI: 10.4236/ojs.2017.76072 1050 Open Journal of Statistics 
 

Table 1. Likelihood ratio estimator simulation results of ,α β .  

True value 
( ,α β ) 

Average value Absolute value 

t  ˆ LRα −  ˆ LRβ −  α̂  β̂  

 500 0.2989 0.5992 0.0037 0.0013 

(0.3, 0.6) 1000 0.2992 0.5997 0.0027 0.0005 

 1500 0.2998 0.5999 0.0006 0.0001 

 500 0.3991 0.6989 0.0023 0.0016 

(0.4, 0.7) 1000 0.3995 0.6992 0.0013 0.0011 

 1500 0.3999 0.6998 0.0003 0.0003 

 500 0.4991 0.7992 0.0018 0.0011 

(0.5, 0.8) 1000 0.4994 0.7995 0.0012 0.0006 

 1500 0.4998 0.7998 0.0004 0.0003 

 500 0.5991 0.8991 0.0015 0.0012 

(0.6, 0.9) 1000 0.5995 0.8994 0.0008 0.0006 

 1500 0.5999 0.8998 0.0001 0.0002 

5. Conclusion 

In this paper, parameter estimation problem has been studied for the continuous 
time stochastic logistic diffusion model by using likelihood ratio. The explicit 
expressions for the estimation errors have been given and the according 
asymptotic properties have been proved by applying the he law of iterated 
logarithm, random time transformations, stationary distribution of solutions of 
stochastic differential equations and the law of large numbers for martingales. 
To get more accurate results, we use continuous observation method, and the 
proposed estimators are closer to the true value that be demonstrated by a 
simulation example. In the future research, we will consider the state estimation 
problem for non-linear systems with incomplete observation [26] and 
non-linear systems with random disturbance caused by Levy jump or Poisson 
jump [27]. 
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