Study on the Existence of Sign-Changing Solutions of Case Theory Based a Class of Differential Equations Boundary-Value Problems

Hongwei Ji
Department of Mathematics and Physics, Nantong Normal College, Jiangsu, China
Email: hwj0606@163.com

How to cite this paper: Ji, H.W. (2017)
Study on the Existence of Sign-Changing Solutions of Case Theory Based a Class of Differential Equations Boundary-Value Problems. Advances in Pure Mathematics, 7, 686-691.
https://doi.org/10.4236/apm.2017.712042

Received: May 22, 2017
Accepted: October 15, 2017
Published: December 21, 2017

Copyright © 2017 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known.

Keywords

Case Theory, Boundary-Value Problems, Fixed Point Theorem, Sign-Changing Solutions

1. Introduction

The existence of nonlinear three-point boundary-value problems has been studied [1]-[6], and the existence of sign-changing solutions is obtained. In the past, most studies were focused on the cone fixed point index theory [7] [8] [9], just a few took use of case theory to study the topological degree of non-cone mapping and the calculation of fixed point index, and the case theory was combined with the topological degree theory to study the sign-changing solutions. Recent study Ref. [10] [11] have given the method of calculating the topological degree under the case structure, and taken use of the fixed point theorem of non-cone mapping to study the existence of nontrivial solutions for the nonlinear Sturm-Liouville problems. Relevant studies as [12] [13] [14].

Inspired by the Ref. [8]-[13] and by using the new fixed point theorem under the case structure, this paper studies three-point boundary-value problems for A
class of nonlinear second-order equations

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+f(u(t))=0,0 \leq t \leq 1 ; \tag{1}\\
u^{\prime}(0)=0, u(1)=\alpha u(\eta)
\end{array}\right.
$$

Existence of the sign-changing solution, constant $0<\alpha<1,0<\eta<1$, $f \in C(R, R)$.
Boundary-value problem (1) is equivalent to Hammerstein nonlinear integral equation hereunder

$$
\begin{equation*}
u(t)=\int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s, 0 \leq t \leq 1 \tag{2}
\end{equation*}
$$

Of which $G(t, s)$ is the Green function hereunder

$$
G(t, s)=\frac{1}{1-\alpha}\left\{\begin{array}{l}
(1-s)-\alpha(\eta-s), 0 \leq s \leq \eta, 0 \leq t \leq s \\
(1-s), \eta \leq s \leq 1,0 \leq t \leq s \\
(1-\alpha \eta)-t(1-\alpha), 0 \leq s \leq \eta, s \leq t \leq 1 \\
(1-\alpha y)-t(1-\alpha), \eta \leq s \leq 1, s \leq t \leq 1
\end{array}\right.
$$

Defining linear operator K as follow

$$
\begin{equation*}
(K u)(t)=\int_{0}^{1} G(t, s) u(s) \mathrm{d} s, u \in C[0,1] . \tag{3}
\end{equation*}
$$

Let $F u(t)=f(u(t)), t \in[0,1]$, obviously composition operator $A=K F$, i.e.

$$
\begin{equation*}
(A u)(t)=\int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s, 0 \leq t \leq 1 \tag{4}
\end{equation*}
$$

It's easy to get: $u \in C^{2}[0,1]$ is the solution of boundary-value problem (1), and $u \in C[0,1]$ is the solution of operator equation $u=A u$.

We note that, in Ref. [9] [10], an abstract result on the existence of signchanging solutions can be directly applied to problem (1). After the necessary preparation, when the non-linear term f is under certain assumptions, we get the existence of sign-changing solution of such boundary-value problems. Compared with the Ref. [8], we can see that we generalize and improve the nonlinear term f, and remove the conditions of strictly increasing function, and the method is different from Ref. [8].

For convenience, we give the following conditions.
$\left(\mathrm{H}_{1}\right) \quad f(u): R \rightarrow R$ continues, $f(u) u>0, \forall u \in R, u \neq 0$, and $f(0)=0$.
$\left(\mathrm{H}_{2}\right) \lim _{u \rightarrow 0} \frac{f(u)}{u}=\beta$, and $n_{0} \in N$, make $\lambda_{2 n_{0}}<\beta<\lambda_{2 n_{0}+1}$, of which $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\lambda_{n+1}<\cdots$ is the positive sequence of $\cos \sqrt{x}=\alpha \cos \eta \sqrt{x}$.
$\left(\mathrm{H}_{3}\right)$ exists $\varepsilon>0$, make $\lim _{|u| \rightarrow+\infty} \sup \frac{f(u)}{u} \leq \lambda_{1}-\varepsilon$.

2. Knowledge

Provided P is the cone of E in Banach space, the semi order in E is exported by cone P. If the constant $N>0$, and $\theta \leq x \leq y \Rightarrow\|x\| \leq N\|y\|$, then P is a normal
cone; if P contains internal point, i.e. int $P \neq \varnothing$, then P is a solid cone.
E becomes a case when semi order \leq, i.e. any $x, y \in E, \sup \{x, y\}$ and $\inf \{x, y\}$ is existed, for $x \in E, x^{+}=\sup \{x, \theta\}, x^{-}=\sup \{-x, \theta\}$, we call positive and negative of x respectively, call $|x|=x^{+}+x^{-}$as the modulus of x. Obviously, $x^{+} \in P, x^{-} \in(-P),|x| \in P, x=x^{+}-x^{-}$.

For convenience, we use the following signs: $x_{+}=x^{+}, x_{-}=-x^{-}$. Such that $x=x_{+}+x_{-},|x|=x_{+}-x_{-}$.

Provided Banach space $E=C[0,1]$, and E s norm as $\|\cdot\|$, i.e.
$\|u\|=\max _{0 \leq t \leq 1}|u(t)|$. Let $P=\{u \in E \mid u(t) \geq 0, t \in[0,1]\}$, then P is the normal cone of E, and E becomes a case under semi order \leq.

Now we give the definitions and theorems
Def 1 [10] provided $D \subset E, A: D \rightarrow E$ is an operator (generally a nonlinear). If $A x=A x_{+}+A x_{-}, \forall x \in E$, then A is an additive operator under case structure; if $v^{*} \in E$, and $A x=A x_{+}+A x_{-}+v^{*}, \forall x \in E$, then A is a quasi additive operator.

Def 2 provided x is a fixed point of A, if $x \in(P \backslash\{\theta\})$, then x is a positive fixed point; if $x \in((-P) \backslash\{\theta\})$, then x is a negative fixed point; if $x \notin(P \cup(-P))$, then x is a sign-changing fixed point.

Lemma 1 [6] $G(t, s)$ is a nonnegative continuous function of $[0,1] \times[0,1]$, and when $t, s \in[0,1], G(t, s) \geq \gamma G(0, s)$, of which $\gamma=\frac{\alpha(1-\eta)}{1-\alpha \eta}$.

Lemma $2 K: P \rightarrow P$ is completely continuous operator, and $A: E \rightarrow E$ is completely continuous operator.

Lemma $3 A$ is a quasi additive operator under case structure.
Proof: Similar to the proofs in Lemma 4.3.1 in Ref. [10], get Lemma 3 works.
Lemma 4 [6] the eigenvalues of the linear operator K are
$\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \cdots, \frac{1}{\lambda_{n}}, \frac{1}{\lambda_{n+1}}, \cdots$. And the sum of algebraic multiplicity of all eigenvalues is 1, of which λ_{n} is defined by $\left(\mathrm{H}_{2}\right)$.

The lemmas hereunder are the main study bases.
Lemma 5 [10] provided E is Banach space, P is the normal cone in E, $A: E \rightarrow E$ is completely continuous operator, and quasi additive operator under case structure. Provided that

1) There exists positive bounded linear operator B_{1}, and B_{1} 's $r\left(B_{1}\right)<1$, and $u^{*} \in P, u_{1} \in P$, get

$$
-u^{*} \leq A x \leq B_{1} x+u_{1}, \forall x \in P
$$

2) There exists positive bounded linear operator B_{2}, B_{2} 's $r\left(B_{2}\right)<1$, and $u_{2} \in P$, get

$$
A x \geq B_{2} x-u_{2}, \forall x \in(-P) ;
$$

3) $A \theta=\theta$, there exists Frechet derivative A_{θ}^{\prime} of A at $\theta, 1$ is not the eigenvalue of A_{θ}^{\prime}, and the sum μ of algebraic multiplicity of A_{θ}^{\prime} 's all eigenvalues in the range $(1, \infty)$ is a nonzero even number,

$$
A(P \backslash\{\theta\}) \subset \stackrel{\circ}{P}, A((-P) \backslash\{\theta\}) \subset-\stackrel{\circ}{P}
$$

Then A exists three nonzero fixed points at least: one positive fixed point, one negative fixed point and a sign-changing fixed point.

3. Results

Theorem provided $\left(\mathrm{H}_{1}\right)\left(\mathrm{H}_{2}\right)\left(\mathrm{H}_{3}\right)$ works, boundary-value problem (1) exists a sign-changing solution at least, and also a positive solution and a negative solution.

Proof provided linear operator $B=\left(\lambda_{1}-\frac{\varepsilon}{2}\right) K$, Lemma 2 knows $B: C[0,1] \rightarrow C[0,1]$ is a positive bounded linear operator. Lemma 4 gets K s $r(K)=\frac{1}{\lambda_{1}}$, so $r(B)=\left(\lambda_{1}-\frac{\varepsilon}{2}\right) r(K)=1-\frac{\varepsilon}{2 \lambda_{1}}<1$.
$\left(\mathrm{H}_{3}\right)$ knows $m>0$ and gets

$$
\begin{align*}
& f(u) \leq\left(\lambda_{1}-\frac{\varepsilon}{2}\right) u+m, \forall t \in[0,1], u \geq 0 \tag{5}\\
& f(u) \geq\left(\lambda_{1}-\frac{\varepsilon}{2}\right) u-m, \forall t \in[0,1], u \leq 0 \tag{6}
\end{align*}
$$

Let $u_{0}(t)=m \int_{0}^{1} G(t, s)$ ds, obviously, $u_{0} \in P$. Such that, for any $u(t) \in P$, there

$$
\begin{aligned}
(A u)(t) & =\int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s \\
& \leq \int_{0}^{1} G(t, s)\left(\left(\lambda_{1}-\frac{\varepsilon}{2}\right) u+m\right) \mathrm{d} s \\
& \leq\left(\lambda_{1}-\frac{\varepsilon}{2}\right) \int_{0}^{1} G(t, s) u(s) \mathrm{d} s+m \int_{0}^{1} G(t, s) \mathrm{d} s \\
& =\left(\lambda_{1}-\frac{\varepsilon}{2}\right) K u(t)+u_{0}(t) \\
& =B u(t)+u_{0}(t)
\end{aligned}
$$

And for any $u^{*} \in P$, from $\left(H_{1}\right)$, obviously gets $(A u)(t) \geq-u^{*}(t)$.
For any $u(t) \in-P$, there

$$
\begin{aligned}
(A u)(t) & =\int_{0}^{1} G(t, s) f(u(s)) \mathrm{d} s \\
& \geq \int_{0}^{1} G(t, s)\left(\left(\lambda_{1}-\frac{\varepsilon}{2}\right) u-m\right) \mathrm{d} s \\
& \geq\left(\lambda_{1}-\frac{\varepsilon}{2}\right) \int_{0}^{1} G(t, s) u(s) \mathrm{d} s-m \int_{0}^{1} G(t, s) \mathrm{d} s \\
& =\left(\lambda_{1}-\frac{\varepsilon}{2}\right) K u(t)-u_{0}(t) \\
& =B u(t)-u_{0}(t)
\end{aligned}
$$

Consequently (1) (2) in lemma 5 works.

We note that $f(0)=0$ can get $A \theta=\theta$, from $\left(\mathrm{H}_{2}\right)$, we know $\forall \varepsilon>0$, and $\exists r>0$ gets

$$
|f(u)-\beta u| \leq \varepsilon u,|u| \leq r
$$

Then

$$
\begin{gathered}
|(F u)(t)-\lambda u(t)|=|f(u(t))-\beta u(t)| \leq \varepsilon\|u\|, \forall\|u\| \leq r \\
\|A u-A \theta-\beta K u\|=\|K(F u)-\beta K u\| \leq \varepsilon\|K\|\|u\|, \forall\|u\| \leq r
\end{gathered}
$$

Such that

$$
\lim _{\|u\| \rightarrow 0} \frac{\|A u-A \theta-\beta K u\|}{\|u\|}=0
$$

i.e. $A_{\theta}^{\prime}=\beta K$, from lemma 4 we get linear operator K s eigenvalue is $\frac{1}{\lambda_{n}}$, then A_{θ}^{\prime} 's eigenvalue is $\frac{\beta}{\lambda_{n}}$. Because $\lambda_{2 n_{0}}<\beta<\lambda_{2 n_{0}+1}$, let μ be the sum of algebraic multiplicity of $A_{\theta}^{\prime \prime}$'s all eigenvalues in the range $(1, \infty)$, then $\mu=2 n_{0}$ is an even number.

From $\left(\mathrm{H}_{1}\right) \quad f(u) u>0, u \in R \backslash\{0\}$, there

$$
\begin{gathered}
f(u(t))>0, \forall t \in[0,1], u(t)>0 \\
f(u(t))<0, \forall t \in[0,1], u(t)<0
\end{gathered}
$$

Easy to get

$$
F(P \backslash\{\theta\}) \subset P \backslash\{\theta\}, F((-P) \backslash\{\theta\}) \subset(-P) \backslash\{\theta\}
$$

Lemma (1) for any $u(t) \in P$,
$(K u)(t)=\int_{0}^{1} G(t, s) u(s) \mathrm{d} s \geq \gamma \int_{0}^{1} G(0, s) u(s) \mathrm{d} s$,
consequently $K(P \backslash\{\theta\}) \subset P$. Such that

$$
A(P \backslash\{\theta\}) \subset \stackrel{\circ}{P}, A((-P) \backslash\{\theta\}) \subset-\dot{P}
$$

Such that (3) in lemma 5 works. According to lemma 5, A exists three nonzero fixed points at least: one positive fixed point, one negative fixed point and one sign-changing fixed point. Which states that boundary-value problem (1) has three nonzero solutions at least: one positive solution, one negative solution and one sign-changing solution.

4. Conclusion

Provided that all conditions of the theorem are satisfied, and $f(u)$ is an odd function, then boundary-value problem (1) has four nonzero solutions at least: one positive solution, one negative solution and two sign-changing solutions.

Note

By using case theory to study the topological degree of non-cone mapping and
the calculation of fixed point index, it's an attempt to combine case theory and topological degree theory, the author thinks it's an up-and-coming topic and expects to have further progress on that.

References

[1] Ma, Y.H. and Ma, R.Y. (2002) Positive Downward Convex Positive Solutions of a Class of Second-Order Three-Point Boundary-Value Problems. (Natural Science Edition) Journal of Northwest Normal University, 38, 8-13.
[2] Sun, J.P. and Zhang, X.L. (2012) Existence of Positive Solutions of Nonlinear Third-Order Three-Point Boundary-Value Problems. (Natural Science Edition) Journal of Northwest Normal University, 48, 1-5.
[3] Zhou, S.L., Wu, H.P. and Han, X.L. (2014) Existence of Positive Solutions of a Class of Four-Order Three-Point Boundary-Value Problems. (Natural Science Edition) Journal of Sichuan University, 51, 11-15.
[4] Ma, Y.H. and Ma, R.Y. (2003) Positive Solutions of a Class of Singular Nonlinear Three-Point Boundary-Value Problems. Journal of Mathematical Physics, 23A, 583-588.
[5] Shen, W.G. and Song, L.A. (2007) Existence of Positive Solutions of Singular Second-Order Ordinary Differential Equations Three-Point Boundary Value Problems under Superlinear Condition. (Science Edition) Journal of Shandong University, 42, 91-94.
[6] Xie, C. and Luo, Z.G. (2009) Existence of Multiple Positive Solutions of a Class of Second-Order Ordinary Differential Equations Multi-Point Boundary-Value Problems. (Natural Science Edition) Journal of Inner Mongolia Normal University, 38, 647-652.
[7] Liu, J.S. and Qiao, J. (2007) Existence of Sign-Changing Solutions of a Class of Second-Order Three-Point Boundary-Value Problems. Journal of Taiyuan University of Technology, 38, 374-376.
[8] Xu, X.A. (2006) Sign-Changing Solutions of Impulsive Three-Point Boun-dary-Value Problems. Applied Mathematics, 19, 606-612.
[9] Cui, Y.J., Zou, Y.M. and Li, H.Y. (2009) Sign-Changing Solutions and Applications of Nonlinear Operator Equations. Systems Science and Mathematics, 29, 1094-1101.
[10] Sun, J.X. and Liu, X.Y. (2008) Computation of Topological Degree for Nonlinear Operators and Application. Nonlinear Analysis, 69, 4121-4130. https://doi.org/10.1016/j.na.2007.10.042
[11] Sun, J.X. (2008) Nonlinear Functional Analysis and Its Applications. Science Press-CSPM, Beijing.
[12] Wang, Y.P. and Zhao, Z.Q. (2014) Existence of Sign-Changing Solutions of a Class of Nonlinear Third-Order Differential Equations Two-Point Boundary-Value Problems. Journal of Qufu Normal University, 40, 29-32.
[13] Zhang, X. and Sun, J. (2010) On Multiple Sign-Changing Solutions for Some Second-Order Integral Boundary Value Problems. Electronic Journal of Qualitative Theory of Differential Equations, No. 44, 1-15. https://doi.org/10.14232/ejqtde.2010.1.44
[14] Li, H. and Liu, Y. (2011) On Sign-Changing Solutions for a Second-Order Integral Boundary Value Problem. Computers \& Mathematics with Applications, No. 62, 651-656. https://doi.org/10.1016/j.camwa.2011.05.046

