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Abstract

This paper studies radiation from circumferential slots on cylindrical wave-
guide by Poynting’s vector method. It can help us to find mutual admittance
between two circumferential slots in an antenna array. The main advantage of
Poynting’s vector method is its accurate convergence to compute mutual ad-
mittance between two circumferential slots. The importance of this matter
will be more salient while we want to compare it with other mutual admit-
tances and also use it to optimize an antenna array.
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1. Introduction

Electromagnetic radiation from an aperture waveguide is one kind of classical
and practical problems which has been considered for several years. Because of
cylindrical waveguide and conformal antenna applications, same as aperture
waveguide radiation, electromagnetic radiation from slots on cylindrical wave-
guide is a prominent problem. To have a better analysis, desired pattern and also
to have a proper matching in input, electromagnetic radiation and mutual
coupling between slots present an equation to compute mutual admittance be-
tween apertures on cylindrical waveguide.

To compute mutual admittance, apart from aperture shape on cylindrical wa-
veguide, there are different methods which have been used but generally they are
divided into two general categories:

e The methods which are based on reciprocity (reaction) theorem that involve
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modal solution [1]-[7] and surface ray or GTD-Solutions [8]
e  The methods which are based on Poynting’s vector [9].

In modal analysis method we need to have several mode combinations to ob-
tain an accurate approach, if the mode numbers aren’t sufficient, analysis accu-
racy will be decreased. To have more mode numbers, radius of cylinder must be
increased, so this method is not useful for such a problem which the mode
numbers are insufficient. If the radius of cylinder be one or two times bigger
than wavelength units, surface ray method or GTD-Solution will be helpful. The
method which is used in here is based on Poynting’s vector method due to its
advantages for circumferential slot array designing.

This method has much more conformity with cylindrical waveguide to reach
convergence. The method which is used in here was suggested by Hill [10] to
find input impedance for dipole antenna. It also can be used to find mutual im-
pedance between axial slots on cylindrical waveguide [11]. So Poynting’s vector

method can be indicated such as following relation:

2m

,x H; -fir’singdéde (1

Which Y, is mutual impedance between two slots number 1 and 2, E, is
far electrical radiated field which is emerged from V, and H, is far conjugate
magnetic field which is emerged by V, in (1).

2. Computing Mutual Admittance

Far field radiation from circumferential slots [12] whereas voltage has cosine

distribution can be written as follows:
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where W =35mm and k :2/1—7[ which 1 is wavelength of propagated wave

with vacuum dielectric, a is radius of cylinder and V, is voltage which is
emerged from distributed field on ith slot and ¢; is slot length depending on
degree. In here I~ I’—ZikCOS(H) and ¢ 1is offset of i'th slot according to x
axis, 5 is intrinsic impedance of environment and r,0 and ¢ are spherical

coordinate (Figure 1).
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H,(nz)' (.) is derivative of second type of Henkel function. In above relations
time-dependent function (&) is neglected. Now, above relations must be con-
sidered for finding mutual impedance so according to (1) the result of E,x H,

can be presented as follows:

E,=E,d,+E,,a, (5)
H,=Hyd, +H,4a, (6)
E,xH, =(E,,d, +E,4,)x(Hy,a, +H,4,)
X L * E ). (7)
= (E29H1¢ - E2¢H19)ar _(Ezei"' EzlpT(p a,

Integration path C can be shown as Figure 2:

Suppose that in cylindrical coordination system, slot position of I and II are
(a.¢,,2,) and (a,9,,7,).

1
:‘_

‘=

Figure 1. Two circumferential slots on cylindrical
waveguide with their coordination.

A
I m(0)
-m/2
» Re(0)
/2
Figure 2. Integration path C.
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According to above coordination system, electric and magnetic far field radia-

tion is:

in Ne, | in(e-a)
ik i cos( 1je
£ Vie Z:-w[ 2 SinC[chos(H)J ®)

¥ jatsin(0) 7 (na,)’ |H (kasin(6)) 2n
Which 1, ~r-zkcos(6). For E,, we have:
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That I, ~r—2z,kcos(0).
Now the result of E,xH,; must be defined, so first of all the term of

%

E
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To simplify integral computation, it must be divided in to two parts then

compute any part separately and finally the results must be added:

Y, :#LITEZ x H, -Air?sin 6déde
271

n E’ E ). . )
i (Ezo_w*‘ Ezwﬂjar~arr25|n0d9d(p

:vv* Jo 7 .
2n Ew
VV jj' ( ]r singdédg
2n *
VV ( Jr sin@dade =Y, +Y,;
1 _ 1 2n Efg 2 -
YH_WICJ‘O EZH? r 5|n0d9d¢ (17)
2n
Y2 = o H [ “”Jr sinfddde (18)
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According to asymmetry of integration path and term of Y5, so integration
path can be assumed as:
So:
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After substitution of r, and r, in (20) and according to even symmetry

enen ™" cos(mg jcos(nglj
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with respect to ¢, integral can be simplify as:
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Which:
{1 m=0
E =
" 12 m=0
if m=n, term of cos(m (¢) -, ))cos(n ((0 - gol)) is an orthogonal function and

it has definite values.

So integral can be simplified such as following relations:
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Above relations can be simplified more, if integral be found in term of fol-

lowing relations:
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The integral can be divided to imaginary and real parts.

For real part we have:

k, =kcos(6), dk, =—ksinade, ez[o,ﬂ —k, =[k,0]

So result can be shown as follows:
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Now we consider imaginary part, for new path can be shown:

1_
le—
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k, =kcos(6) =kcos(Re(6)+ jIim(0))
= k[cos(Re(é’))cosh(Im(H))—sin(Re(&))sinh(lm(e))]
Re(9)=%, Im(6) =[0,00] =k, =[0,~joo]

It must be mentioned that k, =—jk;,k; =[0,00] so:
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After substitution and by following above steps, the result will be as (29):
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According to orthogonality property, “m” is equal to “n” so:
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Modified integral path is shown in Figure 3.
The integration in term of ¢ will result in (34):
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The integral must be divided in to real and imaginary part so for real part we have:
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Figure 3. Modified integration path C.
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Now imaginary part of path must be computed. At first of hand, path must be

modified i.e. for new path we have:
k, =kcos(@)=kcos(Re(6)+ jIm(6))

= k[cos(Re(@))cosh(lm(@))— jsin(Re(H))sinh(lm(H))]

Re(6) :%, Im(6) =[0,00] = k, = [0, joo]

(34)

Same as above relation: k, =—jk},k; =[0,00] so we have:
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3. Assessment of Parameters Effect on Convergence

The effect of first integral of (39) on total admittance is more than effect of other
integrals. Expression of (39) is strongly depended on the term of z, -z, so that
if its value increases, the convergence will not be occurred due to its cosine ex-
pression. So according to Kk, it must be noticed that the term of z, -2z, should
be less than wavelength which is propagated in waveguide. Also if the cylinder
radius increases so much, it can result in intense reduction of convergence,
therefore radius of cylinder must be less than one A. Susceptance has weak effect
on integral totality, so limitation of parameters according to (39) must be men-

tioned to enhance convergence.

4. Numerical Results

Now we want to compare analytical results which are came from Poynting’s
vector method with simulation results which are yielded by Ansoft HFSS (ver-
sion 13) software. For this comparison we consider expansion graph of (38) as
201log (|Y12|) in terms of dB. Integrals of graphs must be achieved by numerical
methods. Upper band Value of sigma is sufficient in (15) and desired result will

be achieved. Obviously if we increase upper band of sigma, better results will be
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achieved. Cylinder radius is 0.43244 and slot dimensions as same as each oth-
er are 0.3021x0.1071. For this paper, the operation frequency is chosen
9.2GHz and the radius of cylinder 14.1 mm.

In Figures 1-3 the range of admittance graph for angular offset variations of
two slots is between 0 to 400 and distances between slot z, —z, is constant and
it'sequalto 0.541.

In Figures 1-4 mutual admittance is z, =2, -2, and according to wave-
length range of distance is between 0.3064 to 1.384. The angular offset value
(Figure 5) is @, =@, —¢, =30deg. And slot aspects as same as each other are
0.3021x0.1071 . Because of cosine formic, the graph has some depth points.
These points are periodic and summation (in those points), are negligible,
therefore logarithmic form of them is consequently insignificant, in the rest of
points; graph is similar to simulation result which is yielded by Ansoft HFSS

software.

_60<

oy T "‘W\« )

a
A
L

-80 ~—
Theory
-90 — —€¢-HFSS

Admittance Y (dB)
i
o
o
\

-120 1

-130

_149.0 15 20 25 30 35 40 45
z d:(zz-zl) (mm)

Figure 4. Admittance graph for z, -2z, =0.544.

-70
—Theory
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7
— —— |
@ \\\ — |
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~ D
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§ \
©
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0 5 10 15 20 25 30 35 40

phid (Drgree)

Figure 5. Admittance graph for ¢, =¢, — ¢, =30 degree.
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5. Conclusion

In this paper mutual admittance between two circumferential slots on cylindrical

waveguide by extended Poynting’s vector is achieved. Analytical and simulation

results are compared the results show good similarity and formulas are pre-

sented according to aforesaid limitations on parameters can be useful to find

mutual admittance convergence in designing of circumferential slot antennas on

cylindrical wave guide.
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