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Abstract 
In this paper, a class of operator-differential equation of the first order with 
multiple characteristics is considered, for which the initial boundary value 
problem on the semi-axis is well-posed and uniquely solvable in the Sobolev 
space. 
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Suppose that H is a separable Hilbert space with a scalar product ( ),x y , 
,x y H∈ , A is a self-adjoint non negative definite operator on H  

( * , 0A A cE c= ≥ > , E is the identity operator). By Hγ  ( 0γ ≥ ), we denote the 
scale of Hilbert spaces generated by the operator A, i.e. ( )H Dom Aγ

γ = ,  
( ) ( ), ,x y A x A yγ γ

γ
= , ( ),x y Dom Aγ∈ . For = 0γ  we consider that 0H H= , 

( ) ( )0, ,x y x y= , ,x y H∈ . 
By [ ]( )2 , ;L e b H  ( <e b−∞ ≤ ≤ +∞ ), we denote the space of measurable 

functions (see [1]) with values in H and the norm 

[ ]( ) ( )( )2

1 22

, ; d ,
b

L a b H e
f f t t= ∫  
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[ ]( )1
2 , ;W e b H  is the space of all functions with values in H such that ( )d

d
u t

t
,  

( ) [ ]( )2 , ;Au t L e b H∈  with the norm  

[ ]( )
[ ]( )

[ ]( )1
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L a b H
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For more details about the space [ ]( )1
2 , ;W e b H , see [[2], Ch.1]. We assume 

that 
For e = −∞ , b = +∞   

( )( ) ( ) ( )( ) ( ) ( )1 1
2 2 2 2, ; ; , , ; ; , , ,L H L R H W H W R H R−∞ +∞ ≡ −∞ +∞ ≡ = −∞ +∞  

For 0e = , b = +∞   

[ )( ) ( ) [ )( ) ( ) [ )1 1
2 2 2 20, ; ; , 0, ; ; , 0, .L H L R H W H W R H R+ + ++∞ ≡ +∞ ≡ = +∞  

For the whole article, all the derivatives are understood in the sense of 
distributions. 

Consider the following problem on the semiaxis R+ :  
( ) ( ) ( )d

, ,
d
u t

Au t f t t R
t ++ = ∈                    (1) 

( )0 0,u =                             (2) 

where * , 0A A cE c= ≥ > , ( ) ( )2 ;f t L R H+∈ , ( ) ( )1
2 ;u t W R H+∈ . 

Definition 1. If the vector function ( ) ( )1
2 ;u t W R H+∈  satisfies Equation (1) 

nearly everywhere in R+ , then it is called a regular solution of Equation (1).  
Definition 2. For any ( ) ( )2 ;f t L R H+∈  there exists a regular solution ( )u t  

of Equation (1) satisfying the boundary Conditions (2) in the sense of relation  

( )1 2

0
lim 0,
t

A u t
→

=  

and the following inequality holds:  

[ ]( ) ( )1
2 2, ; ;const ,W e b H L R Hu f

+
≤  

Then we say that say that problem (1), (2) is regularly solvable.  
In this paper, the regular solvability of the initial boundary value problem (1), 

(2) is established. 
In spite of the fact that, since 50th years of the last century, there are 

sufficiently many papers and books dedicated to the solvability of parabolic 
operator-differential equations in Banach spaces, in particular, Hilbert spaces, 
interest in such equations doesn’t abate until recently (see, for example, [3] [4] 
[5]). However, in the mathematical literature studies on the parabolic 
operator-differential equations with multiple characteristics are almost not 
mentioned, although they have a wide application in some problems in 
mechanics and mathematical physics. Note that Equation (1) is an abstract 
parabolic equation in Hilbert space that has multiple characteristics. 

We let  

( ) ( ) ( ) ( ) ( ){ }11
22 ; : ; , 0 0 .

o
R H u t u t W R H uW + += ∈ =  
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And denote by 0Q  the operator acting from the space ( )1
2 ;

o
R HW +  to the  

space ( )2 ;L R H+  as follows:  

( ) ( ) ( ) ( ) ( )1
0 2

d
, ; .

d

ou t
Q u t Au t u t R HW

t +≡ + ∈  

Then the following theorem holds 
Theorem 1. The operator 0Q  is an isomorphism between the spaces  
( )1

2 ;
o

R HW +  and ( )2 ;L R H+ .  
Proof. Obviously, the equation ( )0 0Q u t = , has only the trivial solution  

( ) ( )1
2 ;

o
u t R HW +∈ . Really, the equation ( )0 0Q u t =  has a solution in the space  

( )1
2 ;W R H+  of the form ( )0 e tAu t ϕ−= , where the vectors 1 2Hϕ∈ . Taking into 

account conditions (??), we have 0ϕ =  and ( )0 0u t = . Therefore, the equation  

( )0 0Q u t =  has only the trivial solution in the space ( )1
2 ;

o
R HW + . 

Now we shall show that the equation ( ) ( )0Q u t f t=  for any ( ) ( )2 ;f t L R H+∈   

has a solution in the space ( )1
2 ;

o
R HW + . We extend the function ( )f t  to  

zero for 0t < , then, applying the direct and inverse Fourier transform, it 
becomes clear that  

( ) ( ) ( )( )1
1 0

1 e d e d , ,
2π

i s i tu t i E A f s s t Rξ ξξ ξ
+∞ +∞− −

−∞
= + ∈∫ ∫  

Satisfies the equation ( ) ( )0Q u t f t=  almost everywhere in R. We show that 
( ) ( )1

1 2 ;u t W R H∈ . From Parseval’s equality we obtain:  
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  (3) 

where ( )1u ξ�  and ( )f ξ�  are the Fourier transforms of the functions ( )1u t  
and ( )f t , respectively. ( )Aσ  denotes the spectrum of the operator A. From 
the spectral decomposition of the operator A for Rξ ∈ , we have:  

( )
( )

( )
( ) ( )

1 1
1

2 2 2

sup sup 1,
A A

i i E A i i
µ σ µ σ

ξ
ξ ξ ξ ξ µ

ξ µ

− −

∈ ∈
+ = + ≤ ≤

+
       (4) 

( )
( )

( )
( )

1
2 21 1

2 2sup sup 1.
A A

A i E A i
µ σ µ σ

µ
ξ µ ξ µ

ξ µ
− −

∈ ∈

 
+ = + ≤ ≤ + 

       (5) 

Taking into account (4) and (5) into (3) we obtain:  
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[ ]( ) ( )
( )

( ) ( )1
2 22

2 22
1 , ; ;;

2 2 .W e b H L R HL R H
u f f tξ

+
≤ =�  

Therefore, ( ) ( )1
1 2 ;u t W R H∈ . Now we denote the restriction of the function 

( )1u t  to R+  by ( )v t . Obviously, ( ) ( )1
2 ;v t W R H+∈ . By the theorem on traces 

[[2], Ch.1] ( ) 1 20v H∈ . Then we will find a solution to the equation  
( ) ( )0Q u t f t=  of the form  

( ) ( ) e ,tAu t v t ψ−= +  

where the vectors 1 2Hψ ∈ . For a clear determination of ψ  from conditions 
(2) we obtain that ( )0 0v ψ+ = , 

We have  

( ) 1 20 ,v Hψ = − ∈  

Thus,  

( ) ( )1
2 ; .

o
u t R HW +∈  

It is clear that the operator 0Q  is bounded and acts from the space  
( )1

2 ;
o

R HW +  to the space ( )2 ;L R H+ . Indeed, taking into account the theorem 
on intermediate derivatives [[2], Ch.1], we have:  

( )
( ) ( )

( )

( )

22
2 2

1
2

0 ;;
; ;

;

d d
d d
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L R HL R H
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Thus, the operator ( ) ( )1
0 22: ; ;

o
Q R H L R HW + +→  is bijective and bounded. 

Hence, using the Banach inverse operator theorem, the operator  
( ) ( )1 1

0 2 2: ; ;
o

Q L R H R HW−
+ +→  is bounded. Therefore, the operator 0Q  is an 

isomorphism between the spaces ( )1
2 ;

o
R HW +  and ( )2 ;L R H+ . 

The theorem is proved.                                           □ 
Corollary 2. It follows from Theorem 1 that initial-boundary value problem 

(1), (2) is regularly solvable.  
Corollary 3. It follows from Theorem 1 that the norms ( )1

2 ;W R Hu
+

 and 

( )20 ;L R HQ u
+

 are equivalent on the space ( )1
2 ;

o
R HW + . 
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