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Abstract 
 
New tests for checking asymptotic stability of positive 1D continuous-time and discrete-time linear systems 
without and with delays and of positive 2D linear systems described by the general and the Roesser models 
are proposed. Checking of the asymptotic stability of positive 2D linear systems is reduced to checking of 
suitable corresponding 1D positive linear systems. It is shown that the stability tests can be also applied to 
checking the asymptotic stability of fractional discrete-time linear systems with delays. Effectiveness of the 
tests is shown on numerical examples. 
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1. Introduction 
 
A dynamical system is called positive if its trajectory 
starting from any nonnegative initial state remains forever 
in the positive orthant for all nonnegative inputs. An 
overview of state of the art in positive theory is given in 
the monographs [1,2]. Variety of models having positive 
behavior can be found in engineering, economics, social 
sciences, biology and medicine, etc.  

New stability conditions for discrete-time linear sys-
tems have been proposed by M. Busłowicz in [3] and next 
have been extended to robust stability of fractional dis-
crete-time linear systems in [4]. The stability of positive 
continuous-time linear systems with delays has been ad-
dressed in [5]. The independence of the asymptotic stabil-
ity of positive 2D linear systems with delays of the num-
ber and values of the delays has been shown in [6]. The 
asymptotic stability of positive 2D linear systems without 
and with delays has been considered in [7,8]. The stability 
and stabilization of positive fractional linear systems by 
state-feedbacks have been analyzed in [9,10]. The Hur-
witz stability of Metzler matrices has been investigated in  
[11] and some new tests for checking the asymptotic sta-
bility of positive 1D and 2D linear systems have been 
proposed in [12]. 

In this paper new tests for checking asymptotic stability 
of positive 1D continuous-time and discrete-time linear 

systems without and with delays and of positive 2D linear 
systems described by the general and the Roesser models 
will be proposed. It will be shown that the checking of the 
asymptotic stability of positive 2D linear systems can be 
reduced to checking of suitable corresponding 1D posi-
tive linear systems. 

The paper is organized as follows. In Section 2 new 
stability tests for positive continuous-time linear systems 
are proposed. An extension of these tests for positive dis-
crete-time linear systems is given in Section 3. Applica-
tion of these tests to checking the asymptotic stability of 
positive 1D linear systems with delays is given in Section 
4. In Section 5 the tests are applied to positive 2D linear 
systems described by the general and Roesser models and 
in Section 6 the fractional discrete-time linear systems 
with delays. Concluding remarks are given in Section 7. 

The following notation will be used: —the set of 
real numbers, 


n m —the set of  real matrices, mn

n m
 —the set of n m  matrices with nonnegative en-

tries and 1n n
    , nM —the set of  Metzler 

matrices (real matrices with nonnegative off-diagonal 
entries), —the 

nn

nI n n  identity matrix. 
 
2. Continuous-Time Linear Systems 
 
Consider the continuous-time linear system 

( ) ( )x t Ax t                 (2.1) 

where ( ) nx t   is the state vector and n nA  .  *This work was supported by Ministry of Science and Higher Educa-
tion in Poland under work No. N N514 6389 40. The system (2.1) is called (internally) positive if 
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

( ) nx t 
(0)x x 

,  for any initial conditions 
 [1, 2]. 
0t 

n0 

Theorem 2.1. [1,2] The system (2.1) is positive if and 
only if A is a Metzler matrix. 

The positive system is called asymptotically stable if 

0lim ( ) lim 0At

t t
x t e x

 
  for all 0

nx   

Theorem 2.2. [1,2] The positive system (2.1) is as-
ymptotically stable if and only if all principal minors  

 of the matrix –A are positive, i.e. , 1, ,  i i n

1 11

11 12
2

21 22

0,

0,

det[ ] 0n

a

a a

a a

A

   
 

  
 

   


             (2.2) 

Theorem 2.3. [1,2] The positive system (2.1) is as-
ymptotically stable only if all diagonal entries of the ma-
trix A are negative. 

Let  be a Metzler matrix with nega-
tive diagonal entries ( ). Let define 

[ ] n n
ijA a  

ii 0, 1, ,  a i n

(0) (0)
11 1, (0) (0)

(0) 11 1
(0) (0)

(0) (0) 1 1
,1 ,

(0) (0)
22 2,

(0)
1

(0) (0)
,2 ,

(0)
21

(0) (0) (0) (0)
1 12 1, 1

(0)
,1

...

... ,

...

...

... ,

...

[ ... ],

n
n

n
n n

n n n

n

n

n n n

n n n

n

a a
a b

A A
c A

a a

a a

A

a a

a

b a a c

a



 



 

 
       
  

 
 
 

  
 
 




 



 

 





 
 



  (2.3a) 

and 
( ) ( )

1, 1 1,( 1) ( 1)
( ) ( 1)

( 1)
( ) ( )1, 1
, 1 ,

( ) ( )
1, 1 1

( ) ( )
1 1

( ) ( )
2, 2 2,

( )
1

...

...

...

       ,

...

...

k k
k k k nk k

k k n k n k
n k n k k

k kk k
n k n n

k k
k k n k

k k
n k n k

k k
k k k n

k
n k

n

a a
c b

A A
a

a a

a b

c A

a a

A

a

   
  

  
 



   

   

  

 

 
     
 
 

 
  
 



 

 
( ) ( )
, 2 ,

( )
2, 1

( ) ( ) ( ) ( )
1 1, 2 1, 1

( )
, 1

,

...

[ ... ],

k k
k n n

k
k k

k k k k
n k k k k n n k

k
n k

a

a

b a a c

a



 

      



 
 
 
 
 

 
 

   
 
 



 (2.3b) 

for k = 1, ,n – 1. 
Let us denote by  the following elemen-

tary column operation on the matrix A: addition to the i-th 
column the j-th column multiplied by a scalar c. It is 

well-known that using these elementary operations we 
may reduce the matrix 

[R i j c 

11 12 1,

21 22 2,

,1 ,2 ,

...

...

...

...

n

n

n n n n

a a a

a a a
A

a a a

 
 
 
 
 
  

  
        (2.4) 

to the lower triangular form 

11

21 22

,1 ,2 ,

0 ... 0

... 0

...n n n n

a

a a
A

a a a

 
 
 
 
 
  


 
   
  

.       (2.5) 

The reduction of the matrix (2.4) to the form (2.5) is 
equivalent to postmultiplication of the matrix (2.4) by the 
upper triangular matrix of the elementary column opera-
tions of the form 

12 1,

2,

1 ...

0 1 ...

0 0 ... 1

n

n

r r

r
R

 
 
 
 
 
 

   
          (2.6) 

i.e.               A AR                  (2.7) 
Note that to reduce to zero the entries 12  of 

the matrix (2.4) we postmultiply it by the matrix  
1, , na a

1,12

11 11

1

1 ...

0 1 ... 0

0 0 ... 1

naa

a a

R

 
  

 
 
 
 
  

   
      (2.8) 

and we obtain  

11

21 22 2,
1

,1 ,2 ,

0 ... 0

...

...

...

n

n n n n

a

a a a
A AR

a a a

 
 
  
 
 
  

  
       (2.9) 

where 
21 1,12 21

22 22 2, 2,
11 11

,1 12 ,1 1,
,2 ,2 , ,

11 11

, , ,

, , .


   

 
   





n
n n

n n
n n n n n n

a aa a
a a a a

a a

a a a a
a a a a

a a
n

 

Next we postmultiply the matrix (2.9) by the matrix  

2,23

22 22
2

1 0 0 ... 0

0 1 ...

0 0 1 ... 0

0 0 0 ... 1

naa

a a
R

 
 
  
 

  
 
 
 
  

    

.     (2.10) 

]
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In a similar way we define matrices 3 . The 
matrix (2.6) is the product of the elementary column op-
erations matrices , i.e. . 

, , nR R

, , ,R R R1 2 1 2 n

It is easy to show that if the matrix (2.4) is Metzler ma-
trix with negative diagonal entries then the matrix (2.5) is 
also a Metzler matrix. 

, , , nR R R  R

Theorem 2.4. The positive systems with the matrix 
(2.5) is asymptotically stable if and only if all diagonal 
entries of the matrix are negative. 

Proof. The eigenvalues of the matrix (2.5) are equal to 
its diagonal entries 11  and the positive system is 
asymptotically stable if and only if all the diagonal entries 
are negative.  

, ,  nna a

Theorem 2.5. The positive continuous-time linear sys-
tem (2.1) is asymptotically stable if and only if one of the 
equivalent conditions is satisfied: 

1) the diagonal entries of the matrices defined by (2.3) 
( )k
n kA   for k = 1, ,n – 1         (2.11) 

are negative, 
2) the diagonal entries of the lower triangular matrix 

(2.5) are negative, i.e. 

0kka   for k = 1, ,n           (2.12) 

Proof. Let 
1  q

1 , ,

, ,

 qi i

j jA

i

 be the  ( q ) minor of 
the matrix A obtained by the deleting all rows except the 
rows  and all columns except the columns 

1 . In a similar way we define the minors of the 
matrices 

q q n

1, , qi

qj, ,j
A  and R. Applying the Cauchy-Binet theorem 

to (2.7) we obtain 
1 1

1 1
1

, , , , , ,

, , , , , ,
1   

  
 



 q q

q
q

i i i i k k

i i k k i i
k k n

A A 1

1




q

q q
R       (2.13) 

From the structure of the matrix (2.6) it follows that 

1

1

, , 1 1
, ,

1 1

, ,1 for

, ,0 for

    







q

q

k k q q
i i

q q

k i k i
R

k i k i
     (2.14) 

Taking into account (2.14) from (2.13) we obtain 
1 1

1 1

, , , ,

, , , ,


 q q

q q

i i i i

i i i iA A

 n for        (2.15) 1, , q

From (2.15) follows the equivalence of the conditions 
(2.2) and (2.11). To show the equivalence of the condi-
tions (2.11) and (2.12) note that the computation of the 
matrix (1)

1nA   by the use of (2.3b) for k = 1 is equivalent 
to the reduction to zero of the entries , , 2, , i ja j n  
of the matrix (2.4) by elementary column operations since 

22 2, 21
(1)

1
11

,2 , ,1

...
1

... ...

...

n

n

n n n n

a a a

A
a

a a a


   
           
      

   12 1,na a . (2.16) 

Note that 1,

11

0ia

a
   for i = 2, ,n and 1, ,1

11

0i ia a

a
   

for i = 2, ,n since  and  for  11 0a  ,i ja 0 i

Thus, the matrix (1)
1nA   is a Metzler matrix. Continuing 

this procedure after n steps we obtain the Metzler lower 
triangular matrix (2.5). Therefore, the conditions (2.11) 
and (2.12) are equivalent.  

Example 2.1. Consider the positive system (2.1) with 
the matrix 

2 1 0

0 1 1

1 1 2

A

 
   
  

.            (2.17) 

Check the asymptotic stability using the conditions 
(2.11) and (2.12).  

Using (2.3) for (2.17) we obtain 
(0) (0)

(1) (0) 2 2
2 2 (0)

33

(1) (1)
(2) (1) 1 1
1 1 (1)

22

1 1 0 1 11
[1 0]

1 2 1 1.5 22

1.5
2 0.5

1

 

 

.

    
  


          

      

b c
A A

a

b c
A A

a


  (2.18) 

The conditions (2.11) of Theorem 2.5 are satisfied and 
the positive system is asymptotically stable. 

Using the elementary column operations to the matrix 
(2.17) we obtain 

[2 1 0.5]

[3 2 1]

2 1 0 2 0 0

0 1 1 0 1 1

1 1 2 1 1.5 2

2 0 0

0 1 0

1 1.5 0.5

R

R

A  

 

    
      
   
      

 
   
 



 

 (2.19) 

The conditions (2.12) of Theorem 2.5 are also satisfied 
and the positive system is asymptotically stable. 

 
3. Discrete-Time Linear Systems 

 
Consider the discrete-time linear system 

1 , {0,1    i ix Ax i Z , }         (3.1) 

where n
ix   is the state vector and n nA  . 

The system (3.1) is called (internally) positive if 
n

ix  , i Z  for any initial conditions 0
nx  . 

Theorem 3.1. [1,2] The system (3.1) is positive if and 
only if n nA 

 . 
The positive system is called asymptotically stable if 

0lim lim 0i
i

i i
x A x

 
   for all 0

nx  . 

From Theorem 2.2 and 3.1 it follows that the nonnega-
tive matrix A  is asymptotically stable if and only if the 
Metzler matrix nA I  is asymptotically stable. 

j .  Theorem 3.2. [1,2] The positive system (3.1) is as-

Copyright © 2011 SciRes.                                                                                   CS 
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n
ymptotically stable if and only if all principal minors 

 of the matrix ˆ , 1, ,  i i ˆ ˆ[ ] n n
n ijA I A a      

are positive, i.e. 

11 12
1 11 2

21 22

ˆ ˆ ˆˆ ˆ ˆˆ 0, 0, , det[ ] 0
ˆ ˆ

         n

a a
a

a a
A . 

Theorem 3.3. [1,2] The positive system (3.1) is as-
ymptotically stable only if all diagonal entries of the ma-
trix A  are less than 1. 

It is assumed that 1, 1, ,  iia i n  of the matrix 
[ ] n n

ijA a 
   since otherwise by Theorem 3.3 the 

system is unstable. Using (2.3) in a similar way as for the 
matrix A we define for the matrix ˆ ˆ[ ]n ijA A I a    the 
matrices ( )ˆ k

n kA   for . Using the elemen-
tary column operations we reduce the matrix 

0,1, , 1 k n
Â  to the 

lower triangular form 

11

21 22

,1 ,2 ,

' 0 ... 0

' ' ... 0
'

' ' ... 'n n n n

a

a a
A

a a a

 
 
 
 
 
  


 
   
  

.         (3.4) 

Theorem 3.4. The positive discrete-time system with 
the matrix (3.4) is asymptotically stable if and only if all 
diagonal entries of the matrix ˆ 'A  are less than 1. 

Proof is similar to the proof of Theorem 2.4. 
Theorem 3.5. The positive discrete-time linear system 

(3.1) is asymptotically stable if and only if one of the 
equivalent conditions is satisfied: 

1) the diagonal entries of the matrices  
( )ˆ k
n kA   for k = 1, , n – 1          (3.5) 

are negative, 
2) the diagonal entries of the lower triangular matrix 

(3.4) are negative, i.e. 

'kka  0  for k = 1, ,n.          (3.6) 

Proof. The positive discrete-time system (3.1) is as-
ymptotically stable if and only if the corresponding con-
tinuous-time system with the Metzler matrix ˆ

nA A I   
is asymptotically stable. By Theorem 2.5 the positive 
discrete-time system (3.1) is asymptotically stable if one 
of its conditions is satisfied. □ 

Example 3.1. Check the asymptotic stability of the 
positive system (3.1) with the matrix 

0.5 0.1

0.2 0.4
A


 
 


 .              (3.7) 

In this case 

0.5 0.1ˆ
0.2 0.6nA A I


     


 .         (3.8) 

Using (3.5) for n = 2 we obtain 

(1) 12 21
1 22

11

ˆ ˆ 0.1 0.2ˆ ˆ 0.6 0.56 0
ˆ 0.5

a a
A a

a


        . 

Condition i) of Theorem 3.5 is satisfied and the posi-
tive system (3.1) with (3.7) is asymptotically stable. 

Similarly, using the elementary column operations to 
the matrix (3.8) we obtain 

 2 1 0.20.5 0.1 0.5 0ˆ
0.2 0.6 0.2 0.56

    
 


    
  

RA


k

. 

The condition ii) of Theorem 3.5 is also satisfied and 
the positive system is asymptotically stable. 

 
4. Linear Systems with Delays 

 
Consider the continuous-time linear system with q delays 
[5] 

0
1

( ) ( ) ( )
q

k
k

x t A x t A x t d


           (4.1) 

where ( ) nx t 
, 0 n n

 is the state vector,  

k ,1, , A k q  and  are 
delays.  

0, 1, ,  kd k q

The initial conditions for (4.1) have the form 

0( ) ( )x t x t  for [ ,0t d ]  , .  (4.2) max k
k

d  d

The system (4.1) is called (internally) positive if  
( ) nx t  ,  for any initial conditions 0t  0 ( ) nx t  . 
Theorem 4.1. The system (4.1) is positive if and only if 

0 nA M  and ,     (4.3) n n
kA 

 1, , k q

where Mn is the set of nn  Metzler matrices. 
Proof is given in [5]. 
Theorem 4.2. The positive system with delays (4.1) is 

asymptotically stable if and only if the positive system 
without delays 

x Ax , 
0

q

k
k

nA A M


            (4.4) 

is asymptotically stable. 
Proof is given in [5]. 
To check the asymptotic stability of the system (4.1) 

Theorem 2.5 is recommended. The application of Theo-
rem 2.5 to checking the asymptotic stability of the system 
(4.1) will be demonstrated on the following example. 

Example 4.1. Consider the system (4.1) with q = 1 and 
the matrices 

0 1

1 0.2 0.5 0.1
,

0.2 1.4 0.2 0.8
A A

  
 


   
   

.    (4.5) 

The matrix of the positive system (4.4) without delays 
has the form 
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20 1

0.5 0.3

0.4 0.6
A A A M

 
     

.     (4.6) 

Using (2.3) for the matrix (4.6) we obtain 

(1)
1

0.4 0.3ˆ 0.6 0.36 0
0.5

A


      .      (4.7) 

Condition i) of Theorem 2.5 is satisfied and the posi-
tive system (4.1) with (4.5) is asymptotically stable. 

Using the elementary column operations to the matrix 
(4.6) we obtain 

3
2 1

50.5 0.3 0.5 0

0.4 0.6 0.4 0.36

R

A
       

     


 

 

The condition ii) of Theorem 2.5 is also satisfied and 
the positive system is asymptotically stable. 

Now let us consider the discrete-time linear system 
with q delays [3] 

1
0

,
q

i k i k
k

x A x i Z 


             (4.8) 

where  is the state vector and n
ix  n n

kA  , k = 
0,1, ,q. 

The initial conditions for (4.8) have the form 
n

kx   for k = 0,1, , q.        (4.9) 

The system (4.8) is called (internally) positive if 
,  for any initial conditions n

ix  i Z n
kx   for  

k = 0,1, ,q. 
Theorem 4.3. [2] The system (4.8) is positive if and 

only if , k = 0,1, ,q. n n
kA 

 
Theorem 4.4. The positive discrete-time system with 

delays (4.8) is asymptotically stable if and only if the 
positive system without delays 

1i ix Ax  , 
0

q

k
k

A A


  ,       (4.10) i Z

is asymptotically stable. 
Proof is given in [3]. 
To check the asymptotic stability of the system (4.8) 

Theorem 3.5 is recommended. The application of Theo-
rem 3.5 to checking the asymptotic stability of the system 
(4.8) will be demonstrated on the following example. 

Example 4.2. Consider the positive system (4.8) with q 
= 1 and the matrices 

0 1

0.2 0.2 0.2 0.1
,

0.1 0.2 0.1 0.3
A A

  
   
  





.      (4.11) 

The matrix of the positive system (4.10) without de-
lays has the form 

0 1

0.4 0.3

0.2 0.5
A A A


   

 

In this case 

0.6 0.3ˆ
0.2 0.5nA A I
 

     
          (4.13) 

and using the elementary column operation to (4.13) we 
obtain 

 2 1 0.50.6 0.3 0.6 0

0.2 0.5 0.2 0.4
R     




    
   

. 

The condition ii) of Theorem 3.5 is satisfied and the 
positive system is asymptotically stable. 
 
5. 2D Linear Systems 
 
Consider the general autonomous model of 2D linear 
systems 

1, 1 0 , 1 1, 2 , 1, ,i j i j i j i jx A x A x A x i j Z          (5.1) 

where ,
n

i jx   is the state vector and n n
kA  , k = 

0,1,2. 
Boundary conditions for (5.1) have the form 

,0
n

ix  , i Z  and , 0,
n

jx  j Z .  (5.2) 

The model (5.1) is called (internally) positive if  

,
n

i jx  , ,i j Z  for any initial conditions ,0
n

ix  , 
i Z , 0,

n
jx  , j Z . 

Theorem 5.1. [2] The system (5.1) is positive if and 
only if  

n n
kA 

 , k = 0,1,2.           (5.3) 

The Roesser autonomous model of 2D linear systems 
has the form [2] 

11 121, ,

21 22, 1 ,

, ,
h h
i j i j
v v
i j i j

A Ax x
i j Z

A Ax x





    
     

       
    (5.4) 

where 1
,

nh
i jx   and 2

,
nv

i jx   are the horizontal and 
vertical state vectors at the point (i, j) and ,

k ln n
k lA  , k, 

l = 1,2. 
Boundary conditions for (5.4) have the form 

1
0,

nh
jx  , j Z  and , 2

,0
nv

ix  i Z .  (5.5) 

The model (5.4) is called (internally) positive if 
1

,
nh

i jx   and 2
,

nv
i jx   for any initial conditions 

1
0,

nh
jx  , j Z  and , . 2

,0
nv

i x 

Theorem 5.2. [2] The Roesser model (5.4) is positive 
if and only if  

i Z

11 12

21 22

n nA A

A A



 
 

 
, .    (5.6) 1n n n  2

The positive general model (5.1) is called asymptoti-
cally stable if 

 .         (4.12) 
,

,
lim 0i j

i j
x


  for all , ,0

n
ix  i Z  
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and              , .          (5.7) 0,
n

jx  j Z

Similarly, the positive Roesser model (5.4) is called 
asymptotically stable if 

,

,
,

lim 0
h
i j
vi j
i j

x

x

 
 

  
 for all , 1

0,
nh

jx  j Z  

and 2
,0

nv
ix  , .          (5.8) i Z

Theorem 5.3. The positive general model (5.1) is as-
ymptotically stable if and only if the positive 1D system 

1 0 1 2,i i ,x Ax A A A A i Z          (5.9) 

is asymptotically stable. 
Proof is given in [8, 6]. 
Theorem 5.4. The positive Roesser model (5.4) is as-

ymptotically stable if and only if the positive 1D system 

11 12
1

21 22

,i i

A A
x x i Z

A A 

 
  
 







        (5.10) 

is asymptotically stable. 
Proof is given in [8, 6]. 
To check the asymptotic stability of the positive gen-

eral model (5.1) and the positive Roesser model (5.4) the 
Theorem 3.5 is recommended. The application of Theo-
rem 3.5 to checking the asymptotic stability of the models 
(5.1) and (5.4) will be demonstrated on the following 
examples. 

Example 5.1. Consider the positive general model (5.1) 
with the matrix 

0 1 1

0.1 0.2 0 0.1 0.2 0.3
, ,

0.1 0.1 0 0.1 0.1 0.2
A A A

    
      
    

. 

(5.11) 

In this case 

0 1 2

0.3 0.6

0.2 0.4
A A A A

 
     

 
       (5.12) 

and 

0.7 0.6ˆ
0.2 0.6nA A I


     


 .         (5.13) 

Using the elementary column operation to (5.13) we 
obtain 

6
2 1

7

0.7 0
0.7 0.6ˆ 3

0.2 0.6 0.2
7

R

A
    

             

. 

The condition ii) of Theorem 3.5 is satisfied and the 
positive general model with (5.11) is asymptotically sta-
ble. 

Example 5.2. Consider the positive Roesser model (5.4) 
with the matrices 

11 12

21 22

A A
A

A A

 
  
 

             (5.14a) 

and 

11 12

21 22

0.6 0.2 0.1
, ,

0.1 0.4 0.2

[0.2 0.1], [0.8].

A A

A A

  
 


   
  

 
      (5.14b) 

In this case 

0.4 0.2 0.1
ˆ 0.1 0.6 0.2

0.2 0.1 0.2
nA A I

 
     
  

 .    (5.15) 

Using the elementary column operation to (5.15) we 
obtain 

 
 
2 1 0.5
3 1 0.25

22.5
3 2

55

0.4 0.2 0.1 0.4 0 0

0.1 0.6 0.2 0.1 0.55 0.225

0.2 0.1 0.2 0.2 0.2 0.15

0.4 0 0

0.1 0.55 0

0.2 0.2 0.0682

R
R

R

 
 

    

    
     
   
      

 
   
  


 

The condition ii) of Theorem 3.5 is satisfied and the 
positive Roesser model with (5.14) is asymptotically sta-
ble. 

In a similar way as for 1D linear systems using the 
approach given in [7] the considerations can be easily 
extended to 2D linear systems with delays and to frac-
tional 1D and 2D linear systems. 
 
6. Fractional Positive Discrete-Time Linear 

Systems 
 
Consider the autonomous fractional discrete-time linear 
systems with q delays [10] 

1
1

1 1
1 0

( 1)
qi

j
i i j

j k
k i kx x A

j


 x   

 

 
   

 
  0 1,     (6.1) 

where   is the fractional order,  is the state 
vector, 

n
ix 

, 0,1, ,  n n
kA k q  and 

1
for 0

for 1,2,( 1)...( 1)

!


  


          



j

j jj

j

   (6.2) 

The fractional system (6.1) is called (internally) posi-
tive if n

ix  , for any initial conditions n
kx  , 

0,1, , k q . 
Theorem 6.1. [10] The fractional system (6.1) is posi-

tive if and only if  for 1
n n

k k nA c I 
  0,1, , k q   
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where ( 1)k
kc

k

 
   

 
. 

The fractional positive system (6.1) is called asymp-
totically stable if 

lim 0i
i

x


  for all , .   (6.3) n
kx  0,1, , k q

Theorem 6.2. [10] The fractional positive system (6.1) 
is asymptotically stable if and only if the positive dis-
crete-time system without delays 

1i ix Ax  , 
0

q

n
k

kA I


   A          (6.4) 

is asymptotically stable. 
Proof is given in [10]. 
To check the asymptotic stability of the fractional posi-

tive system (6.1) Theorem 3.5 is recommended. The ap-
plication of Theorem 3.5 to checking the asymptotic sta-
bility of the system (6.1) will be demonstrated on the fol-
lowing example. 

Example 6.1. Consider the fractional system (6.1) for 
5.0  with q = 1 and the matrices 

0 1

0.55 0.1 0.2 0.1
,

0.05 0.5 0.05 0.2
A A

  
   
  





.     (6.5) 

The fractional system is positive since 

2 2
0 1 2 0 2

0.05 0.1

0.05 0
A c I A I 


 

     
 

  (6.6a) 

and 

2 2
1 2 2 2 2

0.075 0.1( 1)

0.05 0.0752
A c I A I

  


 
     

 
 

(6.6b) 

Therefore, to check the asymptotic stability of the 
positive system we may use Theorem 3.5. 

Using (3.5) for n = 2 and (6.4) we obtain 

2 0 1 2

1.25 0.2ˆ 2
0.1 1.3

A A I A A I
 

        
 (6.7) 

and 

(1) 12 21
1 22

11

ˆ ˆ 0.2 0.1ˆ ˆ 1.3 1.284 0
ˆ 1.25

a a
A a

a


        . (6.8) 

The condition i) of Theorem 3.5 is also satisfied and 
the positive system is asymptotically stable. 

Using the elementary column operations to the matrix 
(6.7) we obtain 

 2 1 0.161.25 0.2 1.25 0

0.1 1.3 0.1 1.284
R     

    


 

. 

The condition ii) of Theorem 3.5 is satisfied and the 

positive system is asymptotically stable. 
This approach can be also applied to checking the 

asymptotic stability of the positive 2D linear systems 
with delays. 

 
7. Concluding Remarks 

 
New tests for checking asymptotic stability of positive 
1D continuous-time and discrete-time linear systems 
without and with delays and of positive 2D linear sys-
tems described by the general and the Roesser models 
have been proposed. The tests are based on the Theorem 
2.5 and Theorem 3.5. Checking of the asymptotic stabil-
ity of positive 2D linear systems has been reduced to 
checking of suitable corresponding 1D positive linear 
systems. It has been shown that the stability tests  can 
be also applied to checking the asymptotic stability of 
fractional discrete-time linear systems with delay. The 
tests can be also extended to 2D continuous-discrete lin-
ear systems and to 1D and 2D fractional linear systems. 
An open problem is extension of these considerations to 
2D positive switched linear systems. 
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