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Abstract 
This paper is concerned with the construction of a class of polynomial ortho-

gonal with respect to the weight function ( ) 21w x x= −  over the interval 

[ ]0,1 . The zeros of these polynomials were employed as points of collocation 
for the orthogonal collocation technique in the solution of integral equations. 
The method is illustrated with some numerical examples and the results ob-
tained show that the method is effective. 
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1. Introduction 

Many problems arising in mathematics and in particular, applied mathematics 
can be formulated into two distinct but connected ways: differential equations 
and integral equations. Over the years, much emphasis has been placed on the 
solution of differential equations (ordinary differential equations and partial dif-
ferential equations) more than the solution of integral equations because one 
may easily accept that the solution of integral equations are more tasking to ob-
tain compared to the differential equations. 

According to [1], Integral equations can be used as the mathematical model in 
which many physical problems are modelled. The numerical solution of such 
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integral equations has been studied by various authors and in recent years, great 
works have been focused on the development of more advanced and efficient 
methods for integral equations as they have several applications. 

Integral equations can be applied in the radioactive transfer and oscillation 
problems such as oscillation of string, axle and membrane [1]. Recently, the ap-
plications of integral equations have become prominent. However, mathemati-
cians have so far devoted their attention mainly into two peculiarly types of 
integral equation: the linear equations of the first and second kinds. 

An Integral equation is an equation in which the unknown function appears 
under one or more integral sign [2]. The standard integral equations of the form 

( ) ( ) ( ), dK x t g t t x
β

α
ϕ=∫                     (1.1) 

and 

( ) ( ) ( ) ( ), dK x t g t t g x x
β

α
λ ϕ= +∫                  (1.2) 

are known as the linear Fredholm integral equations of the first and second 
kinds respectively. In each case, ( )g x  is the unknown function and it occurs to 
the first degree while the kernel ( ),K x t  and ( )xϕ  are the known functions. 
If the constant β  in (1.1) and (1.2) is replaced by x (the variable of integra-
tion), then the equations become Volterra integral equations. Thus, the integral 
equations of the form 

( ) ( ) ( ), d
x

a
K x t g t t xϕ=∫                       (1.3) 

and 

( ) ( ) ( ) ( ), d
x

a
K x t g t t g x xλ ϕ= +∫                  (1.4) 

are called the Volterra integral equations of the first and second kinds. 
If ( ) 0xϕ =  in (1.3) and (1.4), then we say the equation is homogeneous, 

otherwise nonhomogeneous. 

2. Literature Review 

Collocation method involves evaluating of approximate solution in a suitable set 
of functions called basis function or trial solution. This method for obtaining the 
approximate solution to an integral equation has its origin in the 1930s when [3] 
consider an integral equation using the line collocation procedure. [4] used or-
thogonal collocation to solve a boundary value problems where he developed the 
set of orthogonal polynomials using both the boundary conditions and the roots 
of the polynomials as the collocation points. 

Recently, many researchers have developed the numerical method to obtain 
the solution to an integral equation using several well known polynomials and in 
particular, orthogonal polynomials. 

[5] obtained the numerical solution of the Volterra integral equation of 
second kind using the Gelerkin method and he used the Hermite polynomials as 
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the basis function. Similarly, [6] explore the solution of both the linear and non-
linear Volterra integral equation using the Gelerkin method but they used the 
Hermite and Chebyshev polynomials as the basis function. [7] also considered 
the first kind boundary integral equation and obtained its numerical solution by 
the means of attenuation factors. [8] did a work by using an extrapolation tech-
niques and collocation method for some integral equations. [9] obtained a nu-
merical solution of the integral equation of second kind and he compared the 
error with that of analytics solution. [10] uses the numerical expansion methods 
to solve Fredholm-Volterra linear integral equation by interpolation and qua-
drature rules while [11] formulated and use the collocation technique to obtain 
the numerical solution of the fredholm second kind integral equation. 

However in this paper, the orthogonal collocation techniques will be use to 
obtain the numerical solution of linear integral equation and the zeros of a con-
structed orthogonal polynomials will be used as the points of collocation. The-
reafter, the result obtained will be compare with the analytic solution to show 
that the method is effective and accurate. 

3. Construction of Orthogonal Polynomials 

Let ( )n xϕ  be a polynomial of exact degree n, then nϕ  is said to be orthogonal 
with respect to a weight function ( )w x  within the interval [ ],α β ∈  with 
α β<  if 

( ) ( ) ( )d ,m n mnx x w x x
β

α
φ φ δ=∫                    (3.1) 

with mnδ  is the Kronecker symbol defined by: 

1 if ,
0 if .mn

m n
m n

δ
=

=  ≠
                        (3.2) 

The weight function ( )w x  should be continuous and also positive on 
[ ],α β  such that the moments 

( ) d ,nw x x x n
β

α
∈∫   

exists and finite. Then 

( ) ( ) ( ), dm n m nx x w x x
β

α
φ φ φ φ= ∫                    (3.3) 

defines the inner product of the polynomial mφ  and nφ . 
We shall adopt the weight function ( ) 21w x x= −  in the interval [ ]0,1 . 

Hence, we use the property below to construct our basis function. 

( ) ( )

0

n
n r

n r
r

x C xφ
=

= ∑  

, 0m nφ φ =                           (3.4) 

( )1 1nφ =  

For ( )0 xφ , we have 
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( ) ( ) ( )
0

0 0
0 0

0

r
r

r
x C x Cφ

=

= =∑  

( ) ( )0
0 01  1Cφ = =  

( )0  1xφ =  

For ( )1 xφ , we have 

( ) ( ) ( ) ( )
1

1 1 1
1 0 1

0
.r

r
r

x C x C C xφ
=

= = +∑  

When 1x = , 

( ) ( ) ( )1 1
1 0 11 1C Cφ = + =                      (3.5) 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

1 2
0 1 0 10

1 1 12
0 10

1 1
0 1

, 1 d 0

1 d 0

2 1 0
3 4

x x x x

x C C x x

C C

φ φ φ φ= − =

= − + =

= + =

∫

∫                (3.6) 

solving (3.5) and (3.6), we obtain 

( ) ( )1 1
0 1

3 8,    
5 5

C C= − =  

Hence, 

( ) ( )1
1 8 3
5

x xφ = −                         (3.7) 

Similarly, 
For ( )2 xφ , we have 

( ) ( ) ( ) ( ) ( )
2

2 2 2 2 2
2 0 1 2

0
.r

r
r

x C x C C x C xφ
=

= = + +∑  

For 1x = , we obtain 

( ) ( ) ( ) ( )2 2 2
2 0 1 21 1C C Cφ = + + =                       (3.8) 

and 

( ) ( ) ( )1 2
0 2 0 20
, 1 d 0x x x xφ φ φ φ= − =∫  

( ) ( ) ( ) ( )( )1 2 2 22 2
0 1 20

1 d 0x C C x C x x− + + =∫  
( ) ( ) ( )2 2 2
0 1 2

2 1 2 0
3 4 15

C C C+ + =                    (3.9) 

( ) ( ) ( )1 2
1 2 1 20
, 1 d 0x x x xφ φ φ φ= − =∫  

( )( ) ( ) ( ) ( )( )1 2 2 22 2
0 1 20

1 1 8 3 d 0
5

x x C C x C x x− − + + =∫
 

( ) ( )2 2
1 2

19 4 0
300 75

C C+ =                     (3.10) 

solving (3.8), (3.9) and (3.10), we obtain 
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( ) ( ) ( )2 2 2
0 1 2

11 80 95,    ,    .
26 26 26

C C C= = − =  

Hence, 

( ) ( )2
2

1 95 80 11 .
26

x x xφ = − +                   (3.11) 

Following the same procedure, 

( ) ( )3 2
3

1 448 595 208 15
46

x x x xφ = − + −  

( ) ( )4 3 2
4

1 21042 38304 22232 4424 197
743

x x x x xφ = − + − +  

( ) ( )5 4 3 2
5

1 352176 815430 6669 229320 29840 903
4043

x x x x x xφ = − + − + −  

( ) (
)

6 5 4 3
6

2

1 6180603 17379648 18440235 9144960
22180

2116935 195264 4279

x x x x x

x x

φ = − + −

+ − +
 

4. Numerical Examples 

We consider here three problems for illustration of the proceeding discourse. 
For this purpose, we seek approximant of degree 3, 4 and 5 (Tables 1-5). 

Example 1 Consider the integral equation 

( ) ( ) ( )1

0
d , whose analytic solution is 1.xs xxe y s s e y x y x= − =∫  

Solving with 3N =  as the degree of approximation, we have 

( ) ( )
3 31

0
0 0

dxs x
r r r r

r r
xe a s s e a xφ φ

= =

= −∑ ∑∫  

1 2
0 1 20

3 2
3

2
0 1 2

3 2
3

8 3 95 80 11
5 5 26 26 26

224 595 104 15 d
23 46 23 46

8 3 95 80 11
5 5 26 26 26

224 595 104 15
23 46 23 46

xs

x

xe a a s a s s

a s s s s

e a a x a x x

a x x x

    + − + − +    
   

 + − + −  
 
    = − + − + − +    

   
 + − + −  

 

∫

 

This gives 

( ){ 6 5 5
3 2 3 3 0 1 2 33

4 4 4 2 2
1 2 3 1 2

2 2 2
3 2 3 1 2

2
3 3 2 3

1 29120 10925 38675 2990
2990

4784 9200 13520 4784 12650

23530 21850 97370 4784 9200

13520 174720 21850 77350 1

x

x x

x x x

x

x a x a x a e x a a a a
x

x a x a x a e x a e x a

e x a e xa e xa x a x a

x a e a xa xa

+ − + + + +

+ − + − −

− + + + −

+ − − + + }374720 xa e=

 

As there are four unknown coefficients in this equation, we shall collocate at 
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the zeros of the fourth degree polynomial earlier constructed, This results into 
the linear system of equations: 

0 1 2 31.063634023 0.4880435909 0.2538803066 0.0901090390
1.063634023

a a a a− + −

=
 

0 1 2 31.338950765 0.0520191234 0.1239293627 0.1566142614
1.338950765

a a a a− − +

=
 

0 1 2 31.821140964 0.5886120730 0.0023209561 0.1022283745
1.821140964

a a a a+ + −

=
 

0 1 2 32.380518708 1.221493409 0.7117809561 0.3397428175
2.380518708

a a a a+ + +

=
 

Solving the equations above, we have 

0 1 2 30.9999999999,  0a a a a= = = =  

Thus, the approximate solution, 

( )3 0.9999999999y x =  

Next, we seek an approximant of degree 4N =  and for this, we shall engage 
the zeros of the fifth degree orthogonal polynomial constructed. This leads to the 
equations 

0 1 2

3 4

0.9 0.4574733239 0.7737959868 0.1951129745
0.2172348194 0.02283297131 0.7695433192

a a a
a a

− + −

+ − =
 

0 1 2

3 4

0.9 0.2916717999 0.5416738531 0.3668860626
0.07218775521 0.1350402311 0.5208410331

a a a
a a

− + +

− + =
 

0 1 2

3 4

0.9 0.0477684829 0.2002092093 0.366886062
0.11103526617 0.053569893 0.1549860577

a a a
a a

− + +

+ − =
 

0 1 2

3 4

0.90.2065322412 0.1558118044 0.098736803
0.252593850 0.194777949 0.226465028

a a a
a a

− +

+ + = −
 

0 1 2

3 4

0.90.4057861632 0.4347672951 0.441575320
0.284119350 0.10098142 0.5253459117

a a a
a a

− −

− − = −
 

Solving the equations, 

0 1 2 3 41.000000,  0a a a a a= = = = =  

Therefore 

( )4 1y x =  

Similarly, for a fifth degree approximant, we use the zeros of the sixth degree 
orthogonal polynomial as our point of collocation to also get ( )5 1y x =  as the 
desired approximation. 

Example 2 Consider 

( ) ( ) ( ) ( )1

0

3 5d , whose analytic solution is 1 .
2 6

x s y s s y x x y x x+ = − + = − +∫  

For a third degree approximant of ( )y x , we have 
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( )1
0 1 2 3 1 2 30

2 3
2 3 3

0 1 2 3 1 2 3

2 3
2 3 3

3 11 15 8 80 208
5 26 46 5 26 46

95 595 224 d
26 46 23

3 11 15 8 80 208
5 26 46 5 26 46

95 595 224 3 5
26 46 23 2 6

x s a a a a a a a s

a a s a s s

a a a a a a a x

a a x a x x

   + − + − + − +   
   

  + − +  
  
   = − + − + − +   
   
  + − + − + 
 

∫




 

This gives 

3 3 2 2 1 1 0 0

2 2 3
2 3 3

1061 308 101 124 5 7 1
2760 69 312 39 6 5 2

95 595 224 3 5 0
26 46 23 2 6

a xa a xa a xa a xa

x a x a a x x

− − − + − − +

− + − + − =
 

collocating this we obtain the system of equations 

0 1 2 30.4383086312 0.7469654169 0.1414769314 0.1559852267
0.7407962800

a a a a− + − +

=
 

0 1 2 30.2081137040 0.4246925189 0.2930318285 0.0586727298
0.3955038893

a a a a− + + −

=
 

0 1 2 30.0994632079 0.0059151577 0.2692355947 0.258737951
0.0658614785

a a a a− + +

= −
 

0 1 2 30.3673184086 0.3809124389 0.314663883 0.111138066
0.4676442797

a a a a− − −

= −
 

We solve these to obtain 

0 1
10 10

2 3

0.6249999992, 0.6250000003,

1.211249628 10 , 2.268186446 10

a a

a a− −

= − =

= × = − ×  
and hence 

( ) 9 2
3

9 3

0.9999999992 0.9999999986 3.376421840 10

2.209016365 10 .

y x x x

x

−

−

= − + + ×

− ×  
For a quartic approximation of ( )y x  we obtain by using the zeros of the 

fifth degree polynomial and we have 

( ) 8 2
4

8 3 8 4

1.000000001 1.000000002 2.101878150 10

3.718048589 10 1.995546318 10

y x x x

x x

−

− −

= − + − ×

+ × − ×  
Similarly, for an approximation of degree 5 we obtained 

( ) 8 2
5

8 3 8 4

8 5

0.9999999981 0.9999999995 2.545793296 10

7.244844114 10 9.516056846 10

4.631806729 10

y x x x

x x
x

−

− −

−

= − + + ×

− × + ×

− ×  
Example 3 Consider the integral equation 

( ) ( ) ( )1 2 3 2
0

31 d , whose analytic solution is 1 .
10

y x x s y s s y x x= + = +∫
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By seeking a cubic approximation to ( )y x  we have 

( ) ( )
3 31 2 3

0
0 0

1 dr r r r
r r

x s a s s a xφ φ
= =

+ =∑ ∑∫
 

1 2 3
0 1 2 3 1 2 30

2 3
2 3 3

0 1 2 3 1 2 3

2 3
2 3 3

3 11 15 8 80 2081
5 26 46 5 26 46

95 595 224 d
26 46 23

3 11 15 8 80 208
5 26 46 5 26 46

95 595 224
26 46 23

x s a a a a a a a s

a a s a s s

a a a a a a a x

a a x a x

   + − + − + − +   
   

  + − +  
  
   = − + − + − +   
   
 + − + 
 

∫

 
That is 

2 2 2 2
3 2 1 0 0 1 2

3
3 1 2 3 3

35861 1109 17 1 3 11
2760 312 100 4 5 26
15 8 40 104 224 1
4 5 13 23 23

x a x a x a x a a a a

a xa xa xa a x

− + + − + −

+ − + − − = −
 

collocating this at the four points, we have the linear system 

0 1 2 30.9990485438 0.5019408002 0.2467850828 0.0942975884 1a a a a− + − + = −  

0 1 2 30.9787005976 0.1474655200 0.1722009453 0.1289571472 1a a a a− + + − = −  

0 1 2 30.9101609656 0.2980505892 0.1440984716 0.186615570 1a a a a− − + + = −  

0 1 2 30.8119396945 0.6598284463 0.4282366757 0.175869988 1a a a a− − − − = −  
We solve this to have 

0 1
10

2 3

1.060000000, 0.1578947373,

0.08210526282, 1.260103578 10

a a

a a −

= =

= = ×  
so that 

( ) 9 2 9 3
3 0.9999999996 2.4 10 0.2999999972 1.227231311 10y x x x x− −= + × + + ×  

is our desired approximant of ( )y x  
Similarly, for the quartic and quintic approximant of ( )y x , we obtained re-

spectively 

( ) 10 2 9 3
4

8 4

1.0000 9.0 10 0.3000000052 9.297606497 10

5.11785260 10

y x x x x

x

− −

−

= + × + − ×

+ ×  
( ) 9 2 8 3

5

8 4 8 5

1.000000000 6.8 10 0.3000000373 8.393008256 10

8.191152506 10 2.880832986 10

y x x x x

x x

− −

− −

= − × + − ×

+ × − ×  

5. Conclusion 

A method for the numerical solution of integral equations has been presented. 
The method employs the idea of collocation and it uses a class of orthogonal po-
lynomials with respect to the weight function ( ) 21w x x= −  over the interval [0, 
1]. The zeros or roots of the orthogonal polynomials were chosen as collocation 
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Table 1. Numerical results for 1. 

x Exact Approximate Approximate Approximate 

 Solution Solution Solution Solution 

  N = 3 N = 4 N = 5 

0.01 1.000000 0.999999999 1.000000 1.000000 

0.02 1.000000 0.999999999 1.000000 1.000000 

0.03 1.000000 0.999999999 1.000000 1.000000 

0.04 1.000000 0.999999999 1.000000 1.000000 

0.05 1.000000 0.999999999 1.000000 1.000000 

0.06 1.000000 0.999999999 1.000000 1.000000 

0.07 1.000000 0.999999999 1.000000 1.000000 

0.08 1.000000 0.999999999 1.000000 1.000000 

0.09 1.000000 0.999999999 1.000000 1.000000 

0.10 1.000000 0.999999999 1.000000 1.000000 

 
Table 2. Error results for 1.  

x Error, N = 3 Error, N = 4 Error, N = 5 

0.01 1.00e−09 0.00e+00 0.00e+00 

0.02 1.00e−09 0.00e+00 0.00e+00 

0.03 1.00e−09 0.00e+00 0.00e+00 

0.04 1.00e−09 0.00e+00 0.00e+00 

0.05 1.00e−09 0.00e+00 0.00e+00 

0.06 1.00e−09 0.00e+00 0.00e+00 

0.07 1.00e−09 0.00e+00 0.00e+00 

0.08 1.00e−09 0.00e+00 0.00e+00 

0.09 1.00e−09 0.00e+00 0.00e+00 

0.10 1.00e−09 0.00e+00 0.00e+00 

 
Table 3. Numerical results for 2. 

x Exact Approximate Approximate Approximate 

 Solution Solution Solution Solution 

  N = 3 N = 4 N = 5 

0.01 −0.99000000 −0.9899999992 −0.9900000010 −0.99000000 

0.02 −0.98000000 −0.9799999992 −0.9800000010 −0.98000000 

0.03 −0.97000000 −0.9699999992 −0.9700000010 −0.97000000 

0.04 −0.96000000 −0.9599999993 −0.9600000010 −0.96000000 

0.05 −0.95000000 −0.9499999993 −0.9500000010 −0.95000000 

0.06 −0.94000000 −0.9399999993 −0.9400000010 −0.94000000 

0.07 −0.93000000 −0.9299999993 −0.9300000010 −0.93000000 

0.08 −0.92000000 −0.9199999993 −0.9200000010 −0.92000000 

0.09 −0.91000000 −0.9099999993 −0.9100000010 −0.91000000 

0.10 −0.90000000 −0.8999999993 −0.9000000010 −0.90000000 
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Table 4. Error results for 2.   7.00e−10   1.00e−10   0.00e+00 

x Error, N = 3 Error, N = 4 Error, N = 5 

0.01 8.00e−10 1.00e−10 0.00e+00 

0.02 8.00e−10 1.00e−10 0.00e+00 

0.03 8.00e−10 1.00e−10 0.00e+00 

0.04 7.00e−10 1.00e−10 0.00e+00 

0.05 7.00e−10 1.00e−10 0.00e+00 

0.06 7.00e−10 1.00e−10 0.00e+00 

0.07 7.00e−10 1.00e−10 0.00e+00 

0.08 7.00e−10 1.00e−10 0.00e+00 

0.09 7.00e−10 1.00e−10 0.00e+00 

0.10 7.00e−10 1.00e−10 0.00e+00 

 
Table 5. Numerical results for 3. 

x Exact Approximate Approximate Approximate 

 Solution Solution, Solution, Solution, 

  N = 3 N = 4 N = 5 

0.01 1.0000300 1.0000300 1.0000300 1.0000300 

0.02 1.0001200 1.0001200 1.0001200 1.0001200 

0.03 1.0002700 1.0002700 1.0002700 1.0002700 

0.04 1.0004800 1.0004800 1.0004800 1.0004800 

0.05 1.0007500 1.0007500 1.0007500 1.0007500 

0.06 1.0010800 1.0010800 1.0010800 1.0010800 

0.07 1.0014700 1.0014700 1.0014700 1.0014700 

0.08 1.0019200 1.0019200 1.0019200 1.0019200 

0.09 1.0024300 1.0024300 1.0024300 1.0024300 

0.10 1.0030000 1.0030000 1.0030000 1.0030000 

 
points for an orthogonal collocation technique. Three numerical examples were 
considered to illustrate the proposed method. However, the numerical evidences 
show that method is effective and gives better approximation solution compared 
to the one in the literatures. 
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