Open Access Library Journal
2017, Volume 4, e4050

ISSN Online: 2333-9721

ISSN Print: 2333-9705

Collocation Technique for Numerical Solution
of Integral Equations with Certain Orthogonal
Basis Function in Interval [0, 1]

0. L. Babasolal, I. Irakoze?

1University of Ilorin, Ilorin, Nigeria

2Université du Burundi, Bujumbura, Burundi

Email: babasolaoluwatosin@yahoo.com, irene.irakoze@aims-cameroon.org

How to cite this paper: Babasola, O.L. and
Irakoze, 1. (2017) Collocation Technique for
Numerical Solution of Integral Equations with
Certain Orthogonal Basis Function in Interval
[0, 1]. Open Access Library Journal, 4: e4050.
https://doi.org/10.4236/0alib.1104050

Received: October 21, 2017
Accepted: December 12, 2017
Published: December 15, 2017

Copyright © 2017 by authors and Open
Access Library Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

GMOMR Open Access|

Abstract

This paper is concerned with the construction of a class of polynomial ortho-
gonal with respect to the weight function W(X) =1-x* over the interval
[0,1] . The zeros of these polynomials were employed as points of collocation

for the orthogonal collocation technique in the solution of integral equations.
The method is illustrated with some numerical examples and the results ob-
tained show that the method is effective.
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1. Introduction

Many problems arising in mathematics and in particular, applied mathematics
can be formulated into two distinct but connected ways: differential equations
and integral equations. Over the years, much emphasis has been placed on the
solution of differential equations (ordinary differential equations and partial dif-
ferential equations) more than the solution of integral equations because one
may easily accept that the solution of integral equations are more tasking to ob-
tain compared to the differential equations.

According to [1], Integral equations can be used as the mathematical model in

which many physical problems are modelled. The numerical solution of such
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integral equations has been studied by various authors and in recent years, great
works have been focused on the development of more advanced and efficient
methods for integral equations as they have several applications.

Integral equations can be applied in the radioactive transfer and oscillation
problems such as oscillation of string, axle and membrane [1]. Recently, the ap-
plications of integral equations have become prominent. However, mathemati-
cians have so far devoted their attention mainly into two peculiarly types of
integral equation: the linear equations of the first and second kinds.

An Integral equation is an equation in which the unknown function appears

under one or more integral sign [2]. The standard integral equations of the form
[k (xt)g(t)dt=p(x) (1.1)

and
2["K (xt)g(t)dt=g(x)+p(x) (1.2)

are known as the /inear Fredholm integral equations of the first and second
kinds respectively. In each case, g(X) is the unknown function and it occurs to
the first degree while the kernel K (X,t) and (p(X) are the known functions.
If the constant g in (1.1) and (1.2) is replaced by x (the variable of integra-
tion), then the equations become Volterra integral equations. Thus, the integral

equations of the form
JoK(xt)g(H)dt=p(x) (13)
and
iLXK(x,t)g(t)dt=g(x)+go(x) (1.4)

are called the Volterra integral equations of the first and second kinds.
If (p(X) =0 in (1.3) and (1.4), then we say the equation is homogeneous,

otherwise nonhomogeneous.

2. Literature Review

Collocation method involves evaluating of approximate solution in a suitable set
of functions called basis function or trial solution. This method for obtaining the
approximate solution to an integral equation has its origin in the 1930s when [3]
consider an integral equation using the line collocation procedure. [4] used or-
thogonal collocation to solve a boundary value problems where he developed the
set of orthogonal polynomials using both the boundary conditions and the roots
of the polynomials as the collocation points.

Recently, many researchers have developed the numerical method to obtain
the solution to an integral equation using several well known polynomials and in
particular, orthogonal polynomials.

[5] obtained the numerical solution of the Volterra integral equation of

second kind using the Gelerkin method and he used the Hermite polynomials as
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the basis function. Similarly, [6] explore the solution of both the linear and non-
linear Volterra integral equation using the Gelerkin method but they used the
Hermite and Chebyshev polynomials as the basis function. [7] also considered
the first kind boundary integral equation and obtained its numerical solution by
the means of attenuation factors. [8] did a work by using an extrapolation tech-
niques and collocation method for some integral equations. [9] obtained a nu-
merical solution of the integral equation of second kind and he compared the
error with that of analytics solution. [10] uses the numerical expansion methods
to solve Fredholm-Volterra linear integral equation by interpolation and qua-
drature rules while [11] formulated and use the collocation technique to obtain
the numerical solution of the fredholm second kind integral equation.

However in this paper, the orthogonal collocation techniques will be use to
obtain the numerical solution of linear integral equation and the zeros of a con-
structed orthogonal polynomials will be used as the points of collocation. The-
reafter, the result obtained will be compare with the analytic solution to show

that the method is effective and accurate.

3. Construction of Orthogonal Polynomials

Let ¢, (x) bea polynomial of exact degree n, then ¢, is said to be orthogonal
with respect to a weight function W(x) within the interval [a, f]eR with
a<p if

B
ja¢m(x)¢n(x)w(x)dx=5mn, (3.1)
with ., isthe Kronecker symbol defined by:
1 ifm=n,
5= M=l (3.2)
0 ifm=n.

The weight function W(X) should be continuous and also positive on
[a, g ] such that the moments

ij(x)x”dx, neN
exists and finite. Then
(G0 = 0 (X) (X)W(x) e (3.3)

defines the inner product of the polynomial ¢, and 4, .
We shall adopt the weight function W(X)=1—X2 in the interval [0,1].

Hence, we use the property below to construct our basis function.

7,00 =2

n
=0

(:,)=0 (3.4)

=

For ¢,(x), we have

DOI: 10.4236/0alib.1104050

3 Open Access Library Journal


https://doi.org/10.4236/oalib.1104050

0. L. Babasola, I. Irakoze

For ¢ (x), we have

r=0
When x=1,
4 (1)=cl+c =1 (3.5)
(0 h) = [.(1-X )y ()4 (x)dx = O
- I:(l— xz)(Cél) + Cl(l)x)dx =0 (3.6)
2 1
= gcgl) ch(” =0
solving (3.5) and (3.6), we obtain
8
C(()l) -3 Cl(l) -2
Hence,
1
¢1( )= 5(8X 3) (3.7)
Similarly,

For ¢, (X) , we have

2 2 2 2 2
# (x)=Y.cPx" =cl? +clPx+CcPx?
r=0

For x=1, we obtain

(1)=Ccl+c? +cl =1 (3.8)
and
(d0:82) = [, (1) (x) ¢, (x) e = 0
(Cz+ Jx+C! xz)dx 0
§ch> + ch(Z) + %cf) -0 (3.9)

() = [.(1- %) 4 (X) 4, () dx =0
%_[:(1— xz)(8x_3)(cgz> +Cl(2)x+C§2)x2)dx =0

19

200 —cl+ C 20 (3.10)

75
solving (3.8), (3.9) and (3.10), we obtain
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co 1 o 80 oo 9
26 26 26
Hence,
1 2
¢2(x):2—6(95x —~80x+11). (3.11)

Following the same procedure,

1
#,(x) =E(448x3 ~595x” +208x~15)

() =%(21042x4 —38304x° + 22232%" — 4424x +197)

¢ (x) = ﬁ(352176x5 —815430x" +6669x° — 229320x” + 20840 —903)

1

¢ (X)= m(6180603x6 —17379648x° +18440235x" — 9144960x’

+2116935x2 —195264x + 4279)

4. Numerical Examples

We consider here three problems for illustration of the proceeding discourse.
For this purpose, we seek approximant of degree 3, 4 and 5 (Tables 1-5).
Example 1 Consider the integral equation

_[: xey(s)ds=e*—y(x), whose analytic solutionis y(x)=1.

Solving with N =3 as the degree of approximation, we have

o3 ()=~ a4, (x)

1 (8 3] [95 , 80 11)
[ xe*da,+a|—s-= |+a,| s’ ———s+=~
0 5 5 26 26 26
[224 s 595 , 104 15]
+8| —S ———S"+——s——|ds
23 46 23 46
=e*—Ja,+ [gx—§)+a (ﬁxz—@x+£)
TP TS (26" 26 26
[224 s 595 , 104 15)
ra | — XX =X -
23 46 23 46

This gives

29910 +129120x°a; +10925x°a, ~38675xa; +2990¢"X, (3 +2, +2, +a;)
X

+4784x"a, —9200x"a, +13520x"a, — 4784e*x’a, —12650e*x’a,
— 23530e*x%a, + 21850e*xa, + 97370e*xa, + 4784x°a, —9200x°a,

+13520%"a, ~174720e"a, — 21850xa, + 77350xa, +174720a, | ="

As there are four unknown coefficients in this equation, we shall collocate at
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the zeros of the fourth degree polynomial earlier constructed, This results into
the linear system of equations:

1.063634023a, —0.48804359094, + 0.25388030664a, —0.0901090390a,
=1.063634023

1.338950765a, —0.05201912344a, —0.1239293627a, +0.1566142614a,
=1.338950765

1.8211409644a, + 0.5886120730a, +0.0023209561a, —0.1022283745a,
=1.821140964

2.380518708a, +1.2214934093, +0.7117809561a, + 0.3397428175a,
=2.380518708

Solving the equations above, we have
a, =0.9999999999, a =a,=a,=0
Thus, the approximate solution,
¥5(X) = 0.9999999999

Next, we seek an approximant of degree N =4 and for this, we shall engage

the zeros of the fifth degree orthogonal polynomial constructed. This leads to the
equations

0.9-0.4574733239a, + 0.7737959868a, —0.1951129745a,
+0.2172348194a, — 0.02283297131a, = 0.7695433192

0.9-0.2916717999a, + 0.54167385314a, +0.36688606264a,
—0.07218775521a, + 0.1350402311a, = 0.5208410331

0.9-0.0477684829a, +0.2002092093a, + 0.366886062a,
+0.11103526617a, — 0.053569893a, = 0.1549860577

0.90.20653224124a, —0.15581180444, +0.098736803a,
+0.252593850a, +0.194777949a, = —0.226465028

0.90.4057861632a, —0.4347672951a, —0.441575320a,
—0.284119350a, —0.10098142a, = —-0.5253459117

Solving the equations,
a, =1.000000, a, =a,=a,=4a,=0
Therefore
Y, (x)=1

Similarly, for a fifth degree approximant, we use the zeros of the sixth degree
orthogonal polynomial as our point of collocation to also get Yy;(X)=1 as the
desired approximation.

Example 2 Consider
I:(x +s)y(s)ds=y(x) —gx+%, whose analytic solution is y (x) =—1+x.

For a third degree approximant of y(X), we have
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26 5 26 46

+ %a _5% jsﬁ% s*lds
2672 46 3 23 %

1 3 11 15 8 80 208
J'O(x+s){(a(J —SAtoed —4—6a3j+£—a1——a2 +—a3j5

11 15 8 80 208 J
a; |X

3
—{ao‘gaﬂ%%%%)*(gaﬂ‘%aﬁﬁ

L[5, 95, e 224 5 3.5
2672 6 9 23 & 7%

This gives
1061 308 101 124 5
2760 2 69 (B T3 39 TG
9% , 595, 224 . 3 5

-—Xa, + X —a —X-
267 2T 5 %3 2

~Lxa,-La,+x
B~ X~ B Xy

collocating this we obtain the system of equations

—0.4383086312a, + 0.7469654169a, —0.14147693144a, + 0.1559852267a,
=0.7407962800

—0.2081137040a, + 0.4246925189a, + 0.2930318285a, —0.0586727298a,
=0.3955038893

0.0994632079a, —0.00591515774a, +0.26923559474a, + 0.258737951a,
=-0.0658614785

0.36731840864a, —0.3809124389a, —0.314663883a, —0.1111380664,
=-0.4676442797
We solve these to obtain
a, =-0.6249999992, a, = 0.6250000003,
a, =1.211249628x10 ", a, = —2.268186446 x10*°

and hence
Y5 (X) = —0.9999999992 + 0.9999999986x + 3.376421840 x10~° X*
—2.209016365x107°x°.
For a quartic approximation of y(X) we obtain by using the zeros of the
fifth degree polynomial and we have
¥, (x) =-1.000000001+1.000000002x — 2.101878150 x 10° x*
+3.718048589 x10°° x* —1.995546318 x 10 x*

Similarly, for an approximation of degree 5 we obtained
Y5 (X) = —0.9999999981+ 0.9999999995x + 2.545793296 x10~° x°
—7.244844114x107°x° +9.516056846 x10° x*
—4.631806729x107°x°

Example 3 Consider the integral equation

y(x) :l+f: x’s’y(s)ds, whose analytic solution is y(x) :1+%x2.
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By seeking a cubic approximation to y(X) we have

1+j': xzsgi a4, (s)ds= iargé, (x)

1+J'1xzs3 {[ao —Ea1 +Ea2 —Ea3j+(§a1 —@a2 +@a3js
0 5 26 46 5 26 46
+(§a2 —%agjs2 L2248 %53}ds
26 46 23

(g 3, 12, 15 1, (8,_80, 208 1
T T M P T T

95 505 ), 224
+ az——a3 X +2—3a3X

262 46

That is
35861 og 1109 oy L AT ea v lya g 434 g
2760« 2 312 20 AT R TR g AT o5 %

+Ea3 —§xa1 +4—0va —%xa3 —%agf =-1

4 5 13 23 23

collocating this at the four points, we have the linear system
—0.9990485438a, +0.5019408002a, —0.24678508284a, + 0.0942975884a, = -1
—0.97870059764a, + 0.1474655200a, +0.1722009453a, —0.1289571472a, = -1
-0.9101609656a, —0.29805058924a, +0.1440984716a, +0.186615570a, = -1

—0.8119396945a, —0.6598284463a, —0.42823667574a, —0.175869988a, = -1

We solve this to have
a, =1.060000000, a, = 0.1578947373,
a, =0.08210526282, a, =1.260103578 x107%°

so that
Ys (X) =0.9999999996 + 2.4 x10° x + 0.2999999972x* +1.227231311x10°x*

is our desired approximant of y(X)
Similarly, for the quartic and quintic approximant of y(x) , we obtained re-

spectively
¥, (x)=1.0000+9.0x10""x +0.3000000052x* —9.297606497 x 10~ x*
+5.11785260x10 ®x*
¥s () =1.000000000 — 6.8 x10° x +0.3000000373x” — 8.393008256 x10° X
+8.191152506 x10® x* — 2.880832986 x10° x°

5. Conclusion

A method for the numerical solution of integral equations has been presented.
The method employs the idea of collocation and it uses a class of orthogonal po-
lynomials with respect to the weight function W(X) =1-x* over the interval [0,

1]. The zeros or roots of the orthogonal polynomials were chosen as collocation
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Table 1. Numerical results for 1.

b Exact Approximate Approximate Approximate
Solution Solution Solution Solution
N=3 N=4 N=5

0.01 1.000000 0.999999999 1.000000 1.000000
0.02 1.000000 0.999999999 1.000000 1.000000
0.03 1.000000 0.999999999 1.000000 1.000000
0.04 1.000000 0.999999999 1.000000 1.000000
0.05 1.000000 0.999999999 1.000000 1.000000
0.06 1.000000 0.999999999 1.000000 1.000000
0.07 1.000000 0.999999999 1.000000 1.000000
0.08 1.000000 0.999999999 1.000000 1.000000
0.09 1.000000 0.999999999 1.000000 1.000000
0.10 1.000000 0.999999999 1.000000 1.000000

Table 2. Error results for 1.

X Error, N=3 Error, N=4 Error, N=5
0.01 1.00e—-09 0.00e+00 0.00e+00
0.02 1.00e—-09 0.00e+00 0.00e+00
0.03 1.00e-09 0.00e+00 0.00e+00
0.04 1.00e-09 0.00e+00 0.00e+00
0.05 1.00e-09 0.00e+00 0.00e+00
0.06 1.00e-09 0.00e+00 0.00e+00
0.07 1.00e-09 0.00e+00 0.00e+00
0.08 1.00e-09 0.00e+00 0.00e+00
0.09 1.00e-09 0.00e+00 0.00e+00
0.10 1.00e-09 0.00e+00 0.00e+00

Table 3. Numerical results for 2.

b Exact Approximate Approximate Approximate
Solution Solution Solution Solution
N=3 N=4 N=5

0.01 —-0.99000000 —0.9899999992 —-0.9900000010 —-0.99000000
0.02 —-0.98000000 —0.9799999992 —-0.9800000010 —-0.98000000
0.03 —-0.97000000 —0.9699999992 -0.9700000010 —-0.97000000
0.04 —0.96000000 —0.9599999993 —0.9600000010 —-0.96000000
0.05 —0.95000000 —0.9499999993 —0.9500000010 —0.95000000
0.06 —0.94000000 —0.9399999993 —0.9400000010 —0.94000000
0.07 —0.93000000 —0.9299999993 —0.9300000010 —0.93000000
0.08 —0.92000000 —0.9199999993 —0.9200000010 —0.92000000
0.09 —-0.91000000 —0.9099999993 —0.9100000010 —0.91000000
0.10 —-0.90000000 —0.8999999993 —0.9000000010 —-0.90000000
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Table 4. Error results for 2. 7.00e-10  1.00e—10  0.00e+00

X Error, N=3 Error, N=4 Error, N=5
0.01 8.00e-10 1.00e-10 0.00e+00
0.02 8.00e-10 1.00e-10 0.00e+00
0.03 8.00e-10 1.00e-10 0.00e+00
0.04 7.00e-10 1.00e-10 0.00e+00
0.05 7.00e-10 1.00e-10 0.00e+00
0.06 7.00e-10 1.00e-10 0.00e+00
0.07 7.00e-10 1.00e-10 0.00e+00
0.08 7.00e-10 1.00e-10 0.00e+00
0.09 7.00e-10 1.00e-10 0.00e+00
0.10 7.00e-10 1.00e-10 0.00e+00

Table 5. Numerical results for 3.

be Exact Approximate Approximate Approximate
Solution Solution, Solution, Solution,
N=3 N=4 N=5

0.01 1.0000300 1.0000300 1.0000300 1.0000300
0.02 1.0001200 1.0001200 1.0001200 1.0001200
0.03 1.0002700 1.0002700 1.0002700 1.0002700
0.04 1.0004800 1.0004800 1.0004800 1.0004800
0.05 1.0007500 1.0007500 1.0007500 1.0007500
0.06 1.0010800 1.0010800 1.0010800 1.0010800
0.07 1.0014700 1.0014700 1.0014700 1.0014700
0.08 1.0019200 1.0019200 1.0019200 1.0019200
0.09 1.0024300 1.0024300 1.0024300 1.0024300
0.10 1.0030000 1.0030000 1.0030000 1.0030000

points for an orthogonal collocation technique. Three numerical examples were
considered to illustrate the proposed method. However, the numerical evidences
show that method is effective and gives better approximation solution compared

to the one in the literatures.
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