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Abstract 
Real-time functional magnetic resonance imaging (rtfMRI) technology has 
been widely used to train subjects to actively regulate the activity of specific 
brain regions. Although many previous studies have demonstrated that neu-
rofeedback training alters the functional connectivity between brain regions in 
the task state and resting state, it is unclear how the regulation of the key hub 
of the default mode network (DMN) affects the topological properties of the 
resting-state brain network. The current study aimed to investigate what to-
pological changes would occur in the large-scale intrinsic organization of the 
resting state after the real-time down-regulation of the posterior cingulate 
cortex (PCC). The results indicated that the down-regulation of the PCC in 
the DMN reduced the functional connectivity of the PCC with the nodes out-
side of the DMN and reduced functional connectivity between the superior 
medial frontal gyrus (SFGmed) and parahippocampal gyrus (PHG) in the ex-
perimental group. Moreover, the nodal graph properties of the SFGmed were 
reduced, while that of the PHG showed the opposite alteration after the 
down-regulation of the PCC. These findings possibly suggest that the regula-
tion of the key hub of the DMN, the PCC, mainly changed the information 
transfer of the SFGmed and PHG. 
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1. Introduction 

Functional magnetic resonance imaging (fMRI) is a noninvasive technique that 
can be used to assess brain function by measuring blood-oxygen-level-depen- 
dent signal changes [1]. By far, task-based and resting-state fMRI are the two 
most popular paradigms to investigate brain function. Task-based fMRI para-
digms are generally used to reveal differentiated involvement of brain regions by 
comparing the experimental condition with the “rest” condition. However, it 
was noted that the brain is not idle at “rest” but rather produces spontaneous in-
trinsicactivity that is highly correlated between multiple brain regions [2]. Espe-
cially in recent years, resting-state fMRI (RS-fMRI) has attracted an increasing 
amount of attention to investigate synchronous activity between brain regions 
and identify resting-state networks [3].  

Resting-state functional connectivity (RSFC) research has revealed a number 
of consistent resting networks that represent specific patterns of synchronous 
activity from healthy subjects [4]. Moreover, the RSFC in the human brain is 
dynamic. Previous studies have demonstrated that the RSFC can be altered by 
development, aging [5], or neurologic and psychiatric brain disorders that in-
clude schizophrenia, Alzheimer’s disease, dementia and depression [6]. Fur-
thermore, some studies have reported that the RSFC can be modulated by offline 
learning-related training [7] [8]. These studies suggest that the RSFC is alterable 
and can be affected by appropriate training. Thus, the dynamic characteristics of 
the RSFC are important for us to explore the functional stability and flexibility of 
the brain. 

Recently, real-time functional magnetic resonance imaging (rtfMRI) technol-
ogy has been used to train subjects to actively control their brain activity [9]. The 
self-regulation of brain activity can lead to changes in functional connectivity 
during the task state. Several studies have demonstrated that functional connec-
tivity of the task fMRI can be altered by neurofeedback training through 
real-time modulation of the activity of the premotor area, visual cortex, amyg-
dala, insular cortex and primary auditory cortex [10], etc. Moreover, rtfMR In-
eurofeedback training can also change the functional connectivity during the 
resting state. Hampson et al. [11] reported that the RSFC of the supplementary 
motor area with the left striatum and right thalamus during the resting state was 
significantly reduced after real-time modulation of the activity of the supple-
mentary motor area. Scheinost et al. [12] found that orbitofrontal cortex neuro-
feedback produced lasting changes in the RSFC in limbic circuitry and the dor-
solateral prefrontal cortex. Yuan et al. [13] observed that the RSFC of the amyg-
dala with the right parahippocampalgyrus, right superior temporal gyrus, bila-
teral middlefrontal gyrus and right lingual gyrus was significantly changed 
through real-time modulation of the activity of amygdala. Megumi et al. [14] 
reported that the RSFC of the regions of the default mode network (DMN) with 
the regions of the motor/visuospatial network was significantly increased by 
real-time regulation of connectivity between two regions. Moreover, it was 
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demonstrated that the neurofeeback training on connectivity between two re-
gions could induce long-lasting changes in intrinsic functional network [14]. 
Although these studies suggest that neurofeedback training induces changes in 
RSFC, it is not clear how the intrinsic organization of the brain in the resting 
state changes after neurofeedback training. Especially, it is unknown how neu-
rofeedback of the key hub of the DMN alters the intrinsic organization of the 
brain in the resting state. 

In our previous study, the down-regulation of the activity of the PCC was 
demonstrated to alter the activity of the DMN in the resting state using the 
rtfMRI technique and the Independent Component Analysis (ICA) method [15]. 
The ICA method is generally used to reveal the pattern of functionally connected 
brain networks but cannot reveal how the nodes within a brain network interact 
with each other. Thus, it is unknown what changes would occur in the intrinsic 
organizational mechanism of the brain underlying the relevant networks 
through the down-regulation of the activity in the PCC. Based on our previous 
study, this study aimed to further investigate the topological alterations of the 
intrinsic organization of the brain during the resting state after real-time neuro-
feedback training in terms of: 1) the small-world configuration and 2) the global 
DMN topography and nodal properties. In contrast to ICA, the graph-based 
network analyses can not only provide the visualization of the overall connectiv-
ity pattern among all of the elements of the brain regions but also quantitatively 
characterize the global organization [16]. Therefore, the graph theory method 
was used in this study to identify changes in the topological properties of the 
brain functional network during the resting state after real-time neurofeedback 
training. The RS-fMRI data of 16 subjects in the experimental group before and 
after real-time neurofeedback training were acquired. Moreover, the RS-fMRI 
data of16 subjects in the control group that underwent the same task but without 
neurofeedback during the training were also collected. We hypothesized that the 
regulation of the PCC could result in the topological alteration of the key nodes 
and the alteration of connectivity between the key nodes of the DMN. 

2. Material and Methods 

The data used in this study were collected in our previous study [15]. For reada-
bility, the main information about the subjects, experimental procedure and 
scanning parameters are repeated here. 

2.1. Participants 

Thirty-two healthy right-handed individuals with normal vision participated in 
the experiment. The experimental group included eight females and eight males 
(age: 21.00 ± 2.00 years) and the control group included eight females and eight 
males (age: 21.60 ± 2.00 years). The two groups had no significant difference in 
age (p = 0.18). All participants agreed to sign informed consent before scan-
ning.  
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2.2. Imaging Parameters 

The brain scans were performed at the MRI Center of Beijing Normal University 
using a 3.0-T Siemens whole-body MRI scanner. A single-shot T2∗-weighted 
gradient-echo, EPI sequence was used for functional imaging acquisition with 
the following parameters: TR/TE/flip angle = 2000 ms/30 ms/90˚, matrix = 64 × 
64, in-plane resolution = 3.125 × 3.125 mm2, slice = 33, slice thickness = 4 mm, 
and slice gap = 0.6 mm. 

2.3. Experimental Procedure 

The whole experiment included a task familiarization exercise, a pre-training 
resting run, a region of interest (ROI) localizer run, two training runs, a 
post-training resting run and a questionnaire interview outside of the scanner. 
Our previous study demonstrated that the task of moving and imaging the right 
fingers according to the sequence 4-2-3-1-3-4-2 can make the region in PCC 
deactivated stably [17]. In order to identify the reliable PCC and down-regulate 
PCC effectively, the same finger tapping task was used to locate the PCC ROI 
and the finger imagination strategy was used during the neurofeedback training 
runs. 

2.3.1. Task Familiarization Exercise 
In the task familiarization exercise, all subjects were told that the four fingers of 
their right hand from their index to little finger represented one, two, three, and 
four, respectively. Then, they were required to perform a right-hand finger 
movement for 30-s according to the sequence 1-2-3-4 with a metronome set to 4 
Hz and imagine the movement of the right fingers for 30 s according to the se-
quence 1-2-3-4 without a metronome.  

2.3.2. Pre-Training Resting Run 
All subjects were instructed to remain still for 10 min with eyesclosed in this run. 

2.3.3. ROI Localizer Run 
The 3.5-min localizer run consisted of three 30-s task blocks alternating with 
four 30-s rest blocks. During the task blocks, subjects performed the right-hand 
finger movement according to a new sequence4-2-3-1-3-4-2 at 4 Hz without a 
metronome. The ROI was selected as a rectangular zone in one slice centered on 
the area of deactivation of the PCC. The volume and location of the ROI varied 
across subjects (mean volume: 15.90 ± 3.20; mean slice: 13.20 ± 0.80). The vo-
lume represented the number of voxels in the ROI. 

2.3.4. Two Neurofeedback Training Runs 
Each training run lasted 782 s and consisted of eight 46-s task blocks alternating 
with nine 46-s rest blocks. The neurofeedback presented to the subjects was a 
continuously updated time course averaged across the voxels in the ROI. All 
subjects in the experimental group were required to lower the activity in the ROI 
during the task blocks and maximizing the difference between the activity of the 
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ROI during the rest and task blocks. Apart from imagining, subjects were in-
structed to imagine the movement of the right fingers according to the sequence 
4-2-3-1-3-4-2 with varied speed, strength and the mode of the movement during 
the imagery task. During the rest blocks, subjects were required to rest and not 
recall anything about the regulation. The subjects in the control group were re-
quired to imagine movements of the right fingers according to the sequence 
4-2-3-1-3-4-2 without neurofeedback signal during the task blocks. 

2.3.5. Post-Training Resting Run 
All subjects were asked to stay relaxed with eyes closed during the 10-min 
post-training resting run. 

2.3.6. Questionnaire Interview 
After the scan, a questionnaire was filled out by each subject. The questionnaire 
mainly addressed whether the subjects performed the tasks according to the ex-
perimenter’s instruction, the detailed strategies they used to regulate the activity 
and any difficulties they encountered during the experiment. 

2.4. Data Analyses 

For the pre-training and post-training resting data of each subject, the prepro-
cessing, brain network construction and the calculation of global network para-
meters and regional nodal parameters were performed using graph theoretical 
network analysis software (GRETNA, http://www.nitrc.org/projects/gretna). 

2.4.1. Preprocessing 
The preprocessing steps included removal of the first 10 volumes, slice timing 
correction, head movement correction, spatial normalization (EPI template pro-
vided by the Montreal Neurological Institute, MNI, with a final resolution of 3 × 
3 × 3 mm), removal of linear trend, temporal band-pass filtering (0.01 - 0.08 Hz) 
and nuisance signal regression (6 head motion parameters, the cerebrospinal 
fluid signal and the white matter signals). Two subjects in the experimental 
group were eliminated because the target ROI could not be defined. In addition, 
two subjects in the experimental group and four in the control group were fur-
ther removed from the analysis because the translation of head movement was 
larger than one voxel during training. As a result, a total of 24 subjects consisting 
of 12 in the experimental group and 12 in the control group underwent the sub-
sequent brain network analysis. 

2.4.2. Construction of Large-Scale Brain Functional Networks 
Each participant’s brain was parceled into 90 cortical and subcortical regions 
using the AAL atlas. Then, the time series of each ROI was acquired by averag-
ing the signals of all voxels within each ROI region. Pearson’s correlation coeffi-
cients of time series between any pair of brain regions were calculated, and a 
Fisher’s r-to-z transformation [18] was applied to improve the normality of the 
correlation coefficients. For each resting run of each subject, a temporal correla-
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tion matrix (90 × 90) was obtained. A sparsity threshold was used to threshold 
each correlation matrix into a binarized matrix to ensure that the brain networks 
corresponding to each subject had the same number of edges. Sparsity is defined 
as the ratio of the number of actual edges divided by the maximum possible 
number of edges in a network. The positive value of the Fisher Z-score was em-
ployed for sparsity thresholding. We set a series of sparsity threshold values in a 
range of 0.1 - 0.5 at intervals of 0.01 to allow prominent small-world properties 
in brain networks to be observed [19]. The undirected binarized graphs of the 
brain were obtained with the nodes representing brainregions and the edges 
representing functional relationships between brain regions. 

2.4.3. Network Analysis 
The network analysis, including the global network parameters and regional 
nodal parameters, was performed in the large-scale brain functional networks. 

Global network parameters. Graph theory has been widely used to quantita-
tively characterize the brain functional networks [20]. In this study, six global 
network parameters that included four small-world parameters (clustering coef-
ficient pC , characteristic path length pL , normalized clustering coefficient γ , 
and normalized shortest path length λ ) and two efficiency parameters (global 
efficiency globE  and local efficiency locE ) were used to characterize the global 
topological organization of brain networks. Their formula definitions in a graph 
G with N nodes are listed below [21] [22], 

( ) ( )( )
1

1 2
i

p i G
nod nod

KC
N D i D i∈

=
−∑                   (1) 

where N is the number of all nodes of a network G, ( )nodD i  is the degree of 
node i, and iK  is the number of edges in the subgraph iG  that consists of the 
neighbors of node i. pC  measures the local cliquishness of a network G, 

( )

1

1 1
1

p

j i G
ij

L

N N L≠ ∈

=
 
  −  
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                    (2) 

where ijL  denotes the shortest path length between nodes i and j. pL  meas-
ures the overall routing efficiency of a network G. 

( )
1 1

1glob j i G
ij

E
N N L≠ ∈

=
− ∑                     (3) 

globE  measures the extent of information propagation through the whole 
network. 

( )1
loc globi GE E i

N ∈
= ∑                       (4) 

locE  measures the capability of parallel information transfer in the local scope 
of a network. 

To examine the small-world properties, the normalized clustering coefficient 
real rand
p pC Cγ =  and the normalized shortest pathlength real rand

p pL Lλ =  were 
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computed [23]. real
pC  and real

pL  are the clustering coefficient and the shortest 
pathlength of real networks, respectively. rand

pC  and rand
pL  represent the mean 

indices derived from matched random networks (100matched random networks 
that preserved the same number of nodes, edges, and degree distribution as the 
real networks were selected) [24]. Typically, a small-world network should meet 
the following criteria: γ > 1 and λ ≈ 1 [23], or 1σ γ λ= >  [25]. 

Regional nodal parameters of DMN nodes. Among the various resting 
networks, the DMN is a prominent one that reflects a default state of neuronal 
activity of the human brain. Moreover, the PCC that was down-regulated during 
neurofeedback training was a key hub in the DMN [26]. Thus, this study focused 
on investigating the regional nodal parameters of the DMN nodes. In the present 
study, three nodal parameters that included degree ( nodD ), nodal efficiency 
( nodE ), and betweenness centrality (BC) were used to examine the regional cha-
racteristics of brain network. The following are their formula definitions in a 
graph G with N nodes [27] [28]: 

( )nod ijj i GD i e
≠ ∈

= ∑                        (5) 

where ije  is the (i, j)th element in the formerly obtained binarized correlation 
matrix. ( )nodD i  measures the connectivity of node i with the rest of the nodes 
in a network. 

( ) 1 1
1nod j i G

ij

E i
N L≠ ∈

=
− ∑                     (6) 

( )nodE i  measures the ability of information transmission of node i in the 
network. 

( ) ( )jk
j i k G

jk

i
BC i

δ
δ≠ ≠ ∈

= ∑                     (7) 

jkδ  is the number of the shortest paths from node j to node k, and ( )jk iδ  is 
the number of the shortest paths from node j to node k that passes through node 
i within the network G. ( )BC i  measures the influence of node i over informa-
tion flow between other nodes in the brain network. Moreover, the nodal cha-
racteristics of the brain networks measure the extent to which a given node con-
nects to all other nodes of a network, which may indicate the importance of spe-
cial brain areas in the brain network [27]. 

2.4.4. Extraction of the Global DMN Topography 
In the present work, the DMN regions were determined from the AAL-at-a- 
sprimarily according to the coordinates of the peak foci of all the “task-negative” 
regions [29]. The ROIs in the AAL-atlas which covered the coordinates or the 
most adjacent ones were selected. Two coordinates (−3, 39, −2) and (1, 54, 21) 
were close to the inter-hemisphere locations between the left and right homoge-
neous regions, so the corresponding bilateral AAL-atlas regions were also se-
lected. Last, the peak coordinate (−2, −36, 37) is near the boundary between 
cingulum_Mid_L and cingulum_Post_L, but the great part ofthe left PCC in Fox 
et al. (2005) is involved in cingulum_Post_L, so we selected cingulum_Post_L as 
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the corresponding left PCC. Totally fourteen regions were selected as the 
AAL-based DMN components (see Table 1). For each resting run of each sub-
ject, a correlation sub-matrix representing the global DMN topography was ex-
tracted from the 90 × 90 global correlation matrix with the Fisher’s r-to-z trans-
formation. The global DMN topography included the pairwise functional con-
nectivity between the fourteen DMN regions (the intra-DMN functional con-
nectivity) and that between the DMN regions and non-DMN regions (the ex-
tra-DMN functional connectivity). 

2.4.5. Statistical Analysis 
For each of the global network parameters and regional nodal parameters over 
the sparsity range of 0.1 - 0.5, a two-way repeated-measures analysis of variance 
(ANOVA) using group (experimental group and control group) as a between- 
subject factor and state (pre-training and post-training) as a repeated-measures 
factor was conducted in SPSS 20.0. Moreover, the same two-way repeated-mea- 
sures ANOVA was performed on each functional connectivity of the global 
DMN topography. If any parameter showed a significant interaction effect (p < 
0.05), tests of simple effect were further carried out and were corrected by the 
false discovery rate (FDR) method [30] to examine the differences between the 
pre-training and post-training resting states in each group. 

3. Result 
3.1. Stability of the Small-World and Global Network Parameters  

under the Four Conditions 

Figure 1 shows the small-world properties of the functional organization of the 
brain in the pre-training and post-training resting states for both groups. It can 
be seen that over the sparsity range of 0.1 - 0.5, γ was larger than 1, and λ ap- 
 
Table 1. DMN components (Fox et al., 2005) defined in the AAL-atlas. 

Regions of interest in the AAL Talairach coordinates (x, y, z) Common names 

Frontal_Sup_L (−14, 38, 52) Superior frontal gyrus,  
dorsolateral Frontal_Sup_R (17, 37, 52) 

Frontal_Sup_Medial_L (-5, 49, 31) Superior frontal  
gyrus, medial Frontal_Sup_Medial_R (9,50,30) 

Cingulum_Ant_L (−3, 39, −2) Anterior cingulate  
and paracingulate gyri Cingulum_Ant_R (8,37,15) 

Cingulum_Post_L (−2, −36, 37) Posterior  
cingulate gyrus Cingulum_Post_R (3, −51, 8) 

ParaHippocampal_L (−22, −26, −16) Parahippocampal  
gyrus ParaHippocampal_R (25, −26, −14) 

Angular_L (−47, −67, 36) 
Angular 

Angular_R (53, −67, 36) 

Temporal_Mid_R (65, −17, −15) Middle temporal gyrus 

Temporal_Inf_L (−61, −33, −15) Inferior temporal gyrus 
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(a)                                      (b) 

 
(c)                                      (d) 

 
(e)                                      (f) 

 
(g)                                      (h) 

Figure 1. Small-world properties of the functional organization of the brain in the 
pre-training and post-training resting states for both groups. ((a)-(d)) Changes in the γ 
and λ with the increasing of sparsity thresholds for the pre-training (a) and post-training 
(b) resting runs of the experimental group and the pre-training (c) and post-training (d) 
resting runs of the control group; ((e)-(h)) Changes in the loc loc randE E −  and 

glob glob randE E −  with the increasing of sparsity thresholds for the pre-training (e) and 

post-training (f) resting runs of the experimental group and the pre-training (g) and 
post-training (h) resting runs of the control group. 
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proached 1 for the pre-training and post-training resting states of each group 
(see Figures 1(a)-(d)). According to Watts and Strogatz (1998), all four sets of 
networks exhibited small-worldness (γ > 1 and λ ≈ 1) in the range of 0.1 ≤ spar-
sity ≤ 0.5. From the efficiency perspective, the local efficiencies of these networks 
were larger than the matched random networks ( 1loc loc randE E − > ), whereas the 
global efficiencies of these networks approached that of the matched random 
networks ( 1glob glob randE E − ≈ ) (see Figure 1(e)-(h)). Thus, these results demon-
strated the small-world configurations in the functional network of the brain 
under the four conditions (2 groups × 2 states). Moreover, two-way repeated- 
measures ANOVA did not reveal a significant interaction between group and 
state on any of the six global parameters of the brain functional network (p > 
0.1). 

3.2. Results of the DMN Nodal Graph Properties 

The degree, nodal efficiency and betweenness centrality of the SFGmed. L/R, the 
betweenness centrality of the cingulum_Post_L (PCC.L), the nodal efficiency 
and betweenness centrality of the cingulum_Post_R (PCC.R) and the between-
ness centrality of the PHG.R showed a significant interaction effect (p < 0.05) 
within some ranges of sparsity levels. Figure 2 and Figure 3 show the variation  
 

 
Figure 2. The variation of the nodal parameters that show significant interaction effect 
with the sparsity threshold for SFGmed. ((a)-(c)) Changes of degree (a); efficiency (b) and 
betweenness centrality (c) of the SFGmed.L during the pre-training and post-training 
resting runs for both groups. ((d)-(f)) Changes of degree (d); efficiency (e) and 
betweenness centrality (f) of the SFGmed.R during the pre-training and post-training 
resting runs for both groups. Exp_rest1 represents the pre-training resting run of the 
experimental group. Exp_rest2 represents the post-training resting run of the experi- 
mental group. Con_rest1 represents the pre-training resting run of the control group. 
Con_rest2 represents the post-training resting run of the control group. Red asterisks 
indicate the significant difference between the pre-training and post-training resting runs 
of the experimental group (*FDR-corrected p < 0.05). 
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Figure 3. The variation of the nodal parameters that show significant interaction effect 
with the sparsity threshold for PCC.L/R and PHG.R during the pre-training and 
post-training resting runs for both groups. (a) Changes of betweenness centrality of 
PCC.L; (b) Changes of efficiency of PCC.L; (c) Changes of betweenness centrality of 
PCC.R; (d) Changes of betweenness centrality of PHG.R. Red asterisks indicate the 
significant difference between the pre-training and post-training resting runs of the 
experimental group (*FDR-corrected p < 0.05). 
 
of the parameters that showed a significant interaction effect with the sparsity 
level. For the post-training versus the pre-training resting run, the experimental 
group showed a significant decrease in the degree, nodal efficiency and bet-
weenness centrality of the SFGmed. L/R (see Figures 2(a)-(f)), in the between-
ness centrality of the PCC.L, and in the nodal efficiency and betweenness cen-
trality of the PCC.R (see Figures 3(a)-(c)) within some ranges of sparsity levels 
(FDR-corrected p < 0.05). Moreover, the experimental group produced signifi-
cantly higher betweenness centrality of the PHG.R (see Figure 3(d)) for the 
post-training than the pre-training resting run within some ranges of sparsity 
levels (FDR-corrected p < 0.05). The control group did not show any significant 
changes in DMN nodal graph properties after the training runs.  

Importantly, we further divided the degree of each DMN node into two parts, 
including the intra-DMN degree and extra-DMN degree. The intra-DMN degree 
of a DMN node is defined as the number of edges that connect the node with the 
other nodes within the DMN. The extra-DMN degree of a DMN node is defined 
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as the number of edges that connect the node with the other nodes outside of the 
DMN. A two-way repeated-measures ANOVA using group as a between-subject 
factor and state as a repeated-measures factor revealed that the intra-DMN de-
gree of the SFGmed. L/R, the extra-DMN degree of the PCC.R and the ex-
tra-DMN degree of the PHG.R displayed significant interaction effect within 
some ranges of sparsity levels (p < 0.05). The variations of the intra-DMN degree 
of the SFGmed. L/R, the extra-DMN degree of the PCC.R and PHG.R with the 
sparsity level are presented in Figure 4. The simple effect analysis further re-
vealed that the intra-DMN degree of the SFGmed. L/R and PHG.R and the ex-
tra-DMN degree of the PCC.R were significantly lower, and the extra-DMN de-
gree of the PHG.R was significantly higher in the post-training resting run of the 
experimental group than in the pre-training resting run (FDR-corrected p < 
0.05). The DMN nodes of the control group did not produce any significant 
changes in the intra-DMN and extra-DMN degree. 

3.3. Results of the Global DMN Topography 

For each functional connectivity, a two-way repeated-measures ANOVA using 
group (experimental group and control group) as a between-subject factor and 
state (pre-training and post-training) as a repeated-measures factor was con- 
ducted in SPSS 20.0. If any functional connectivity showed a significant interac- 
 

 
Figure 4. The variation of intra-DMN and extra-DMN degree with the sparsity level for 
the nodes that show significant interaction effect during the pre-training and post-train- 
ing resting runs for both groups. (a) Changes of intra-DMN degree of the SFGmed. L; (b) 
Changes of intra-DMN degree of the SFGmed. R; (c) Changes of the extra-DMN degree 
of the PCC. R (d) Changes of intra-DMN degree of the PHG.R; (e) Changes of extra- 
DMN degree of the PHG.R. Red asterisks indicate the significant difference between the 
pre-training and post-training resting runs of the experimental group (*FDR-corrected p 
< 0.05). 
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tion effect (p < 0.05), tests of simple effect were further carried out and were 
corrected by the false discovery rate (FDR) method to examine the differences 
between the pre-training and post-training resting states in each group. The dif-
ferences of the global DMN topography between the two resting runs of each 
group are shown in Figure 5. The functional connectivity that showed a signifi-
cant interaction between the state and the group are colored in Figure 5. For the 
post-training versus pre-training run, the intra-DMN functional connectivity 
between the SFGmed. L and PHG.L, connectivity between the SFGmed. R and 
PHG.L and connectivity between the SFGmed. R and PHG.R were significantly 
decreased in the experimental group (see Figure 5(a)). For the extra-DMN 
functional connectivity, significant changes of the experimental group mainly 
occurred in the connectivity between the SFGmed/ Anterior cingulate/PHG/An- 
gular and the regions outside of the DMN. In contrast, the control group did not 
show significant alteration of the intra-DMN functional connectivity and 
showed some significant alterations of the extra-DMN functional connectivity. 

4. Discussion 

In the present study, we utilized the rtfMRI technique and graph theory analysis 
method to investigate neurofeedback training-related changes in the topological  
 

 
Figure 5. The variation maps of the global DMN topography. (a) Changes of functional 
connectivity for the post-training relative to the pre-training of the experimental group; 
(b) Changes of functional connectivity for the post-training relative to the pre-training of 
the control group. Color cells indicate the individual significant differences of functional 
connectivity between the post-training and pre-training resting runs for both groups. 
(FDR corrected, p < 0.05). Warm color cells represent positive values while cold color 
cells represent negative values. 
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properties of brain functional networks of the resting state. The main findings 
are as follows: 1) The brain network exhibited prominent small-world properties 
that cannot be changed by neurofeedback training; 2) The down-regulation of 
the PCC significantly reduced the functional connectivity between the SFGmed 
and PHG of the experimental group; and 3) the down-regulation of the PCC re-
sulted in significant reductions in the nodal parameters of the SFGmed and PCC 
and significant increases in the nodal parameters of the PHG. 

4.1. Small-Worldness of the Whole Brain Network 

In this study, the whole brain network showed small-world properties during the 
pre-training and post-training resting run (see Figure 1), which is consistent 
with previous studies’ findings that the human brain networks are small world 
(for reviews, see [31] [32]). The small-world mode indicates that the architecture 
of the networks contains dense local clustering between neighboring nodes and a 
short path length between any (distant) pair of nodes that have relatively few 
long-range connections [32]. The unchanged small-world properties after neu-
rofeedback training further suggest that the functional organization of the brain 
maintained stable, robust and efficient small-world attributes for its internal 
complicated information processing. Moreover, the small-world organization 
also reflects an optimal balance between the global integration and local specia-
lization of parallel information processing [32] [33]. Our results indicated that 
real-time training could not break the balance between the local specialization 
and global integration.  

4.2. Training-Related Alterations of the Nodal Graph Properties 

Our previous study demonstrated that most subjects in the experimental group 
can successfully reduce the activity of the PCC [15]. In this study, we found that 
the experimental group showed significant reductions in the betweenness cen-
trality and efficiency of the PCC after the down-regulation of the PCC, while the 
control group did not show any significant changes in the PCC (see Figure 3(a) 
and Figure 3(b)). Moreover, the extra-DMN degree of the PCC of the experi-
mental group was significantly reduced, and the intra-DMN degree did not 
change after neurofeedback training (see Figure 4(c)). The results indicated that 
the connectivity of the PCC with the brain nodes outside of the DMN after the 
down-regulation of the PCC was mainly reduced, which may lead to a reduction 
in information transfer from the PCC with the nodes outside of the DMN. 
Therefore, the betweenness centrality and efficiency of the PCC were reduced 
after the down-regulation of the PCC. The unchanged degree of the PCC in the 
intra-DMN of the experimental group further suggests that the PCC is an im-
portant key hub of the DMN [26] and maintains a more stable connectivity and 
information transfer with the nodes in the DMN than the nodes outside of the 
DMN, even if the activity of the PCC is down-regulated. 

Compared with the pre-training resting run, the degree, nodal efficiency and 
betweenness centrality of the SFGmed.R and SFGmed. L of the experimental 
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group were significantly decreased during the post-training resting run (see 
Figures 2(a)-(f)). Moreover, the experimental group significantly reduced the 
intra-DMN rather than the extra-DMN degree of the SFGmed. R and SFGmed. 
L (see Figure 4(a) and Figure 4(b)). The results showed that the down-regula- 
tion of the PCC largely reduced the information transmission ability of the 
SFGmed and the influence of the SFGmed over information flow between other 
nodes. Because the intra-DMN degree of the SFGmed and the functional con-
nectivity between the SFGmed and PHG were significantly decreased after the 
neurofeedback training (see Figure 4(a) and Figure 4(b) and Figure 5(a)), it 
could be inferred that the SFGmed of the experimental group possibly reduced 
the information transmission with the PHG in the DMN. The PHG.R of the ex-
perimental group showed a significant increase in the betweenness centrality and 
the extra-DMN degree and a significant decrease in the intra-DMN degree after 
the neurofeedback training (see Figure 3(d), Figure 4(d) and Figure 4(e)). 
Moreover, the PHG.R of the experimental group showed significantly decreased 
connectivity with the SFGmed. R in the DMN and increased connectivity with 
regions outside of the DMN (see Figure 5(a)). The results could indicate that the 
real-time neurofeedback training increased the interaction between the PHG.R 
and the regions outside of the DMN, while it decreased the information trans-
mission between the PHG.R and the regions within the DMN, especially the 
SFGmed. R. 

Notably, several nodal graph properties of the SFGmed were significantly de-
creased, while the betweenness centrality of the PHG.R was significantly in-
creased in the experimental group after the down-regulation of the PCC (see 
Figures 2(a)-(f), Figure 3(d)). The nodal graph property of the PHG.R seemed 
to show the opposite pattern compared to the SFGmed for the experimental 
group. Given that SFGmed covers pre-supplementary motor area (pre-SMA), 
the functional connectivity between the pre-SMA and PHG of the experiment 
group was significantly reduced after neurofeedback training because they were 
actively trying to downregulate PCC (while watching the PCC ROI signal activi-
ty) during training by performing a complex motor task [34]. It is possible that 
the memory processing and motor planning components get decoupled due to 
the complex motor task being visually guided in the case of the experimental 
group.As a result, it may lead to the reduced functional connectivity between the 
SFGmed and PHG, the reduced nodal graph properties of the SFGmed and the 
increased nodal graph property of the PHG.R after neurofeedback training. Our 
previous study also found that the down-regulation of the PCC resulted in the 
reduced activity of the SFGmed in the experimental group. The previous result is 
consistent with this study and further supports the inference that the levels of 
congruency of the down-regulation of the PCC with prior knowledge were re-
duced after neurofeedback training for the experimental group. 

4.3. Robustness and Stability of the Global Network Parameters 

No significant real-time training-related alterations were found in the global pa-
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rameters of the brain functional network for both the experimental group and 
control group. The results indicated that the real-time neurofeedback training 
could not change the global properties of brain networks in the resting state. For 
the functional network of the brain, the global properties are more stable and 
robust than the regional nodal properties. This finding is consistent with pre-
vious brain functional network studies [35] [36] that demonstrated that the in-
trinsic organization of the brain remained consistent during the resting states 
regardless of preceding experiences. Moreover, this finding also suggests that 
examining the intrinsic organization of the brain may provide additional insight 
into the dynamics of the brain that are induced by training. 

4.4. Limitations 

It should be noted that there are some limitations in this study. Firstly, this study 
did not include the control groups using neurofeedback from different brain re-
gions as well as sham feedback. Thus, the differences of these two groups may 
come from not only neurofeedback but also working load and sensory input etc. 
Secondly, this study parceled each subject’s data into 90 cortical and subcortical 
regions using the AAL atlas to construct the brain network. Some other atlases 
can be used to parcel each subject’s data into more regions in future study. 

5. Conclusion 

To summarize, we investigated the impact of the down-regulation of the PCC on 
the topological properties of the brain functional network in the resting state 
using a graph theory analysis method. We observed that both the small-world 
properties of the brain functional network and their global network parameters 
remained stable and robust after the neurofeedback training. Moreover, the re-
sults indicated that the down-regulation of the core hub (PCC) in the DMN pos-
sibly reduced the information transfer of the PCC with the nodes outside of the 
DMN and reduced the functional connectivity between the SFGmed and PCC. 
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