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Abstract 
In this paper, a SEIR model with ratio-dependent transmission rate in the 

form 
h

h h

kS I
S Iα+

 is studied and the basic reproduction number which deter-

mines the disease’s extinction or continued existence is obtained. By con-
structing the proper Lyapunov function, we prove that if 0 1R ≤ , the dis-
ease-free equilibrium point of the model is globally asymptotically stable and 
the disease always dies out; if 0 1R > , the endemic equilibrium point is glo-
bally asymptotically stable and the disease persists. 
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1. Introduction 

As we all know, infectious diseases are enemies of human health. For a long time, 
people have been fighting various infectious disease; and many methods have 
been used to study the spread of infectious diseases, so as to control and elimi-
nate infectious diseases, see [1]. Amongst them, mathematical model has become 
an important tool to analyze the epidemiological characteristics of infectious 
diseases since the pioneer work of Kermack and McKendrick [2] [3], which pro-
vides us useful control measures in [4]. In standard epidemiological models, the 
incidence rate (the rate of new infections) is bilinear in the infective and suscepti-
ble individuals, see [5] [6] [7]. It has been suggested that the diseases transmis-
sion process may have a nonlinear incidence rate, see [8] [9] [10]. 

In real life, epidemics tend to have an incubation period, as susceptible to in-
fection after contacting with infected people. First of all, carrying virus, the virus 
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is not immediately, but after a period of time, to onset and into the herd of in-
fected people. In the paper, on the basis of the work of Yuan and Li in [11] an 
SEIR (Susceptible-Exposed-Infected-Removed) epidemic model is considered with 
a ratio-dependent nonlinear incident rate ( ),g S I .  

The transmission function ( ),g S I  plays a key role in determining disease 
dynamics, see [12] [13]. Traditionally, the density-dependent transmission (or 
the bilinear incidence rate, ( ),g S I kSI= , k  the proportionality constant) and 
the frequency-dependent transmission (or the standard incidence rate,  

( ), kSIg S I
S I

=
+

) are two extreme forms of disease transmission, which have  

been frequently used in well-know epidemic models [14] [15]. For example, Ca-
passo and Serio [16] introduced a saturated transmission rate ( ) ( ),g S I f I S= , 
where the infectious force ( )f I  is a function of infectious individuals which 
has been used in many classic disease model. Especially, Yuan and Li [11] stu-
died a rate-dependent nonlinear incident rate with the following form 

( )
1

, ,
1

α
α

− +
 
    = = =  +   +  
 

l

h l l

h h h

Ik S
I kS ISg S I f S
S S II

S

              (1) 

where α  is a parameter which measures the psychological or inhibitory effect. 
It should be noted that if 1α =  and 1h l= = , (1) becomes the well-known  

frequency-dependent transmission rate kSI
S I+

.  

In the case of 1l = , we can obtain the rate-dependent transmission rate ( ),g S I  
as the following form: 

( ), ,
1

α
α

 = = =  +   +  
 

h

h h h

I kI kS Ig S I f S
S S II

S

              (2) 

which indicates that the transmission rate of disease is approximately governed  

by kI  if 
I
S

 is small (e.g., at the beginning of disease’s spreading) or it is ap-

proximately governed by 
1hk S S

Iα

−
 
 
 

 if 
I
S

 is large (e.g., in the endemic when  

almost everyone is infected). Therefore, the ratio-dependent transmission rate 
(2) indeed takes accounts of the crowding effects and behavior changes during 
epidemics. In this paper, we mainly focus on a SEIR epidemic model with the ra-
tio-dependent incidence rate (2). 

We consider the global properties of this SEIR model and show that if the ba-
sic reproduction number 0 1R ≤ , the disease-free equilibrium point is globally 
asymptotically stable, while if 0 1R > , the disease-free equilibrium point is un-
stable and the unique endemic equilibrium point is globally asymptotically sta-
ble.  

The organization of this paper is as follows: in the next section, we present the 
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model and derive the disease-free equilibrium point and the endemic equilibrium 
point. In Section 3 we analyze the global stability of the equilibrium point. A brief 
discussion and summarize are given in Section 4. 

2. Model Formulation 

The whole population ( )N t  is divided into four subclasses based on disease 
status: the susceptible population, the exposed population, the infected popula-
tion and removed population, denoted by ( ) ( ) ( ) ( ), ,,S t E t I t R t , respectively, 
and ( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + + . We assume that infectious disease can cause 
additional mortality, then the SEIR model can be modeled by the following set of 
nonlinear differential Equations (3) deterministically: 

( )

( )

d ,
d
d ,
d
d ,
d
d ,
d

h

h h

h

h h

S kS IA S
t S I
E kS I q E
t S I
I qE I
t
R I R
t

µ
α

µ
α

µ δ γ

γ µ

= − −
+

= − +





+

= − +










+

= −

                    (3) 

where A  is the recruitment rate of the population, µ  is the natural death rate, 
q  is the constant rate such that the exposed individuals become infective, γ  is the 
constant rate for recovery, δ  is the disease inducing death. Since R  does not 
appear in the first three equations of system (3), thus (3) reduces to the following 
three-dimensional system (4) 

( )

( )

d ,
d
d ,
d
d .
d

h

h h

h

h h

S kS IA S
t S I
E kS I q E
t S I
I qE I
t

µ
α

µ
α

µ δ γ

= − −
+

= − +
+

=







− + +






                    (4) 

Because 
0

d 0
d S

S A
t =

= > , 
0

d 0
d

h

h h
E

E kS I
t S Iα=

= ≥
+

, 
0

d 0
d I

I qE
t =

= ≥ , the  

non-negativity of the initial value of system (4) in 3R+  is guaranteed, where  

( ){ }3 , , : 0, 0, 0 ,R S E I S E I+ = > > >                  (5) 

It follows from system (4) that:  

( ) ( ) ( )

( )
( ) ( )
( )

d
d

.

S E I
A S q E qE I

t
A S E I

A S E I I

A S E I

µ µ µ δ γ

µ µ µ δ γ

µ δ γ

µ

+ +
= − − + + − + +

= − − − + +

= − + + − +

≤ − + +

         (6) 

Since ( )lim sup
t

AS E I
µ→+∞

+ + ≤ , the feasible region for system (4) is thus a  
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bounded set Γ :  

( ), , : , 0, 0, 0 .
µ

 
Γ = + + ≤ > ≥ ≥ 

 

AS E I S E I S E I            (7) 

The region Γ  is positively invariant with respect to systems (4). So, the only 
solution with the associated initial conditions will be considered inside the re-
gion Γ , where the uniqueness of solutions, usual existence, and continuation 
results are satisfied. Hence, system (4) is considered mathematically and epide-
miologically well posed in Γ . Notice that model (4) has a disease-free equilibrium  

point 0 ,0,0
µ

 
=  
 

AP  for all parameter values. Let ( )T, ,=X E I S , system (4) can 

be written as (see [17])  

( ) ( )d .
d

= −
X X X
t
                         (8) 

And  

( ) ,
0
0

α
 
 

+ =
 
 
 

h

h h

kS I
S IX                        (9) 

( )

( )
( ) .

µ
µ δ γ

µ
α

+ 
 − + + + =
 
 − + +

+ 

h

h h

q E
qE IX

kS IA S
S I

                   (10) 

The jacobian matrices of ( )X  and ( )X  at the disease-free equilibrium 
point 0P  are, respectively,  

( )0

0
,

0 0
 

=  
 

F
D P                       (11) 

( )0
1 2

0
,

 
=  
 

V
D P

J J
                       (12) 

where  
0

,
0 0
 

=  
 

k
F                          (13) 

0
.

µ
µ δ γ

+ 
=  − + + 

q
V

q
                    (14) 

So the regeneration matrix of system (4) is  

( )( )1 ,
0 0

µ µ δ γ µ δ γ−

 
 + + + + += =  
 
 

kq k
qQ FV            (15) 

the spectral radius of 1−FV  is  

( ) ( )( )
1 .ρ

µ µ δ γ
− =

+ + +
kqFV

q
                 (16) 
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Hence the basic reproduction number 0R  (see [18]) is   

( )( )0 .kqR
qµ µ δ γ

=
+ + +

                     (17) 

Without difficulty we can get unique endemic equilibrium point state  

( )* * * *, ,P S E I=  of model (4) with  

( )( )

( )

( )( )

*
*

*
*

1
* *

*

,

,

,
h h h

q IAS
q

I
E

q

kS q SI
q

µ µ δ γ
µ µ

µ δ γ

α µ µ δ γ α

+ + +
= −

+ +
=











= − 







+ + + 

               (18) 

and the endemic equilibrium point is written in the following form:  

( )

* 0
1

0
0

1

0

*
1

0
0

1

0
0

*
1

0
0

,
1

1

,
1

1

,
1

h

h

h

h

h

AR
S

RR k

RkA
E

Rq R k

RAR
I

RR k

µ
α

α

µ µ
α

α

µ
α



  
  

 

  

   
  

         

      

=


  
  

−
+

−

=
−

+ +

−

=
−

+
 

                (19) 

if 0 1R > .  
Through the above analysis, system (4) has no endemic equilibrium point for 

0 1R ≤ , and from (19) we know that system (4) has a unique endemic equilibrium 
point if 0 1R > . 

3. Global Stability of the Equilibrium Point  

In this section, we first consider the global stability of model (4) at the disease-free 
equilibrium point 0P .  

Theorem 1: If 0 1R ≤ , the disease-free equilibrium point 0P  is globally asymp-
totically stable; if 0 1R > , 0P  is unstable.  

Proof. The characteristic equation of system (4) at 0P  is give by  

( ) ( ) ( )( )2 2 0.q q kqλ µ λ µ δ γ λ µ µ δ γ + + + + + + + + + − =         (20) 

It is clear that λ µ= −  is one root of (20). The other roots of (20) are determined 
by the following equation  
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( ) ( )( )2 2 0.q q kqλ µ δ γ λ µ µ δ γ+ + + + + + + + − =           (21) 

If 0 1R < , ( )( ) 0q kqµ µ δ γ+ + + − > , thus (21) has two roots with negative 
real parts, therefore, the disease-free equilibrium point 0P  is locally asymptoti-
cally stable.  

To complete the proof, we construct the following Lyapunov function  

( )1 .L qE q Iµ= + +                       (22) 

The time derivative of 1L  along the solution of (4) is  

( )

( ) ( ) ( )( )

( )( )

( )( )
( )( )

1d d d
d d d

.

h

h h

h

h h

L E Iq q
t t t

kS Iq q qE q qE q I
S I

kS Iq q I
S I

kqI q I

kq q I

µ

µ µ µ µ δ γ
α

µ µ δ γ
α
µ µ δ γ

µ µ δ γ

= + +

= − + + + − + + +
+

= − + + +
+

≤ − + + +

= − + + +  

     (23) 

When 0 1R ≤ , we have 1d 0
d
L
t
≤ . By the LaSalle’s invariance principle, see  

[19], we conclude that 0P  is globally asymptotically stable if 0 1R ≤ .  
When 0 1R > , the Jacobian matrix of model (4) evaluated at 0P  is  

( ) ( )
( )

0

0
0 ,
0

k
J P q k

q

µ
µ

µ δ γ

− − 
 = − + 
 − + + 

              (24) 

which has an eigenvalue 0µ− < . Denoted by  

( )
( )

,
q k

B
q
µ

µ δ γ
− + 

=  − + + 
                   (25) 

we find that 0trB <  ( trB  represents the trace of matrix B, which is the sum of 
the elements of the main diagonal of the matrix B). When 0 1R > , and 0detB <  
( detB  is the determinant of matrix B), the matrix B must have a positive eigen-
value, thus the disease-free equilibrium point 0P  is unstable whenever 0 1R > . 
This completes the proof.  

For the stability of endemic equilibrium point ( )* * * *, ,P S E I=  of model (4), 
we have the following theorem:  

Theorem 2: If 0 1R > , the unique endemic equilibrium point ( )* * * *, ,P S E I=  
of model (4) is globally asymptotically stable.  

Proof. Suppose that ( ), ,S E I  is any positive solution to system (4). Define a 
Lyapunov function  

( ) * * *
2 , , .L S E I S S E E I I= − + − + −                 (26) 

Obviously ( )*
2 0L P =  and when *P P≠ , ( )2 0L P ≠ . Remember that *P  

is the solution to the system (4), the upper right derivative of 2L  can be esti-
mated:  
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( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

* * * *
2

* *

* *
* *

* *

* *
* *

* *

*

µ µ
α α

µ µ
α α

µ δ λ

+    ′ ′′ ′= − − + − −   
   
 ′′+ − − 
 
  

= − − − − − −  + +   
  

+ − − + − − +  + +   

+ − − + + −

h h

h h h h

h h

h h h h

D L sgn S S S S sgn E E E E

sgn I I I I

kS I kS Isgn S S A S A S
S I S I

kS I kS Isgn E E q E q E
S I S I

sgn I I qE I qE ( )( )* * .µ δ λ − + + I

 (27) 

and we all know that when 0x > , ( ) 1sgn x = ; 0x = , ( ) 0sgn x = ; 0x < ,  
( ) 1sgn x = − .  

In (27), there are 8 kinds of situation for the size of S  and *S , E  and *E , 
I  and *I , it is enough to analyze the situation of *S S> , *E E> , *I I> , while 
for the other situations, the discussion is similar.  

Firstly there is  

( )* * *
2

* * *

2 .

µ µ µ δ λ

µ µ µ

µ

+ ≤ − − − − − + + −

≤ − − − − − −

≤ −

D L S S E E I I

S S E E I I

L

          (28) 

Integrate from 0t  to t  on both sides of (28), we have  

( ) ( ) ( )
0

2 2 2 0d .
t

t
L t L x x L tµ+ ≤ < +∞∫                  (29) 

Since the front set Γ  has a boundary, ,S E  and I  must have boundaries, 
and their derivatives are bounded. It means that 2L  is uniformly continuous.  

By Barbalat Lemma in [20], there is  

( )2lim 0,t L t→+∞ =                          (30) 

and the unique endemic equilibrium point *P  of model (4) is globally asymp-
totically stable. This completes the proof.  

4. Brief Summary  

In this paper, we consider the SEIR epidemic model which is different from the 
classical nonlinear incident rate. We assume that the infectious force is a func-
tion of a number ratio of the infective to that of the susceptible which takes the  

form 
α+

h

h h

kS I
S I

, and the regeneration matrix is used to obtain the basic repro-

ductive number 0R ; the existence of equilibrium is obtained by direct calcula-
tion.  

By constructing the proper Lyapunov functions, we prove that if 0 1≤R , there 
exists only the disease-free equilibrium point which is globally asymptotically stable, 
and if 0 1>R , there is a unique endemic equilibrium point and this endemic equi-
librium point is globally asymptotically stable.  
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In the future work, we can further consider adding pulse condition to the model 
studied in this paper. 
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