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Abstract 
Estimation of bounded populations and carrying capacity in the presence of a 
sample frame is considered. Models based on Logistic model are proposed. 
Like the existing estimators, this estimation technique deals with initial condi-
tion and is based on yearly population totals in order to fit in a model within a 
given period of time in this study. The proposed Logistic model technique has 
shown to be efficient especially with large data. The empirical study indicated 
that the Logistic model is efficient and can estimate properly even in the 
presence of outliers. 
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1. Introduction 

Sample surveys are widely used as a cost effective apparatus of data collection 
and for making valid inference about population parameters. Government bu-
reaus and organizations use such methods to obtain the current information. 
The foremost aim of a statistician in a sample survey is to obtain information 
about the population by deriving reliable estimates of unknown population pa-
rameters.  

This study is using estimation techniques to estimate the bounded population 
and carrying capacity called the Logistic model that do not require any choice of 
step size as in the case of local polynomial regression estimator or have to be re-
stricted a fix behavior, instead we allow the data to reveal its nature. The logistic 
model is use for data fitting. The logistic equation was introduced (around 1840) 
by the Belgian mathematician and demographer P.F. Verhulst as a possible 
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model for human population growth [1]. 
Under simple random sampling (SRS) without replacement design, [2] pro-

posed an exactly unbiased estimator for θyx. The proposed estimator is given by 
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Y, x ii Ut x
∈

=∑  be the population total for the variable X and U of N units in-
dexed by the set { }1,2, , N  a finite population. This estimator can be rewrit-
ten under general sampling design p(·). In this case, this estimator is no longer 
unbiased but still with negligible bias [3]. 

Under general sampling design, [4] proposed an estimator for estimating the 
population ratio θyx. This estimator, has negligible relative bias especially for 
small sample sizes 𝑛𝑛 and approaches zero with increasing n. Under SRS, and 
based on simulation results, the performance of this estimator is better than that 
of (1.1). Their estimator is defined by 
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ĴM s s s s

s

r y r x
x

θ = + −                     (1.2) 

Define πi, the first order inclusion probability, by 
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For i j≠ , the second order inclusion probability is defined by 
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where { }i sI ∈  is one if i s∈  and zero otherwise. Further, 

1 ˆ
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can be used to estimate the population mean 1
u yy t

N
= . It can be noted that  

ŷt π  and sy  are unbiased estimators for ty, and uy  respectively. However, ŷt π  
and sy  do not use the availability of auxiliary variables in the study. In similar 
way, 

1 ˆ
s xx t

N π=  and 1 ˆ
s rr t

N π=                   (1.7) 

are unbiased estimators for ux  and ur  respectively. Where sx  is the sample 
mean of the inclusion probability of the auxiliary variable. 
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The availability of more than one auxiliary variable issued in literature for es-
timating the finite population total ty, or finite population mean uy . 

Under SRS, [6] was the first one who deals with the problem of estimating the 
population mean using more than one auxiliary variables. His estimator is given 
by 

1
ˆˆ P

u i iu yxiy w x θ
=

= ∑                       (1.8) 

where p is the number of the auxiliary variables, ˆ
i

s
yx

is

y
x

θ =  wi is the weight of 
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=∑  sy  is the sample mean of Y and  

,iu isx x  are the population mean and the sample mean of Xi, respectively, for 
1, ,i p=  . [7] proposed the following estimator 

1 2
1 2

1 2

ˆ u u
u s

s s

x xy y w w
x x

 
= + 

 
                   (1.9) 

for estimating the population mean uy , 1 2 1w w+ = . 
[8] studied the general form of (1.9). They proposed two classes of estimators 

using two auxiliary variables to estimate the population mean for the variable of 
interest Y. 

[9] suggested a new multivariate ratio estimator using the regression estimator 
instead of sy  which used in (1.9). Their estimator is given by 

( )2
1

s i iu is
pr i iui

is
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x=

+ −
=∑                (1.20) 

where bi, i = 1,2 are the regression coefficients. Based on the mean squares error 
(MSE), they found that their estimator is more efficient than (1.9) when 

( ) ( )pr uMS yE MSE y< , 

where ( )prMSE y , and ( )uMSE y  are defined by Equations (2.4), and (1.2) of 
Kadilar and Cingi (2004), respectively. 

In subsection 2.1 we introduced a general population model that accommo-
dates birth and death rates that are necessarily constant, while subsection 2.2 
talked about the asymptotic properties and Section 3.1 talked about the empiri-
cal studies. Finally, Section 4.0 drew a conclusion on the study. However, our 
population P(t) will be a continuous approximation to the actual population, 
which of course changes only by integral increments—that is, by one birth or 
death at a time. 

Suppose that the population changes only by the occurrence of births and 
deaths—there is no immigration or emigration from outside the country or en-
vironment under consideration. It is customary to track the growth or decline of 
a population in terms of its birth rate and death rate functions defined as fol-
lows: 

B(t) is the number of births per unit of population per unit of time at time t; 
D(t) is the number of deaths that occur during the time at time t. 
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Then the numbers of births and deaths that occur during the time interval 
[ ],t t t+ ∆  is given (approximately) by: 

Births: ( ) ( )B t P t t⋅ ⋅ ∆ ,   Deaths: ( ) ( )D t P t t⋅ ⋅ ∆  

Hence the change P∆  in the population during the time interval [ ],t t t+ ∆  
of length t∆  is  

{ } { } ( ) ( ) ( ) ( )births deathsP B t P t t D t P t t∆ = ≈ ⋅ ⋅ ⋅− ∆ − ⋅∆      (1.21) 

So  

 ( ) ( ) ( )P B t D t P t
t

∆
≈ −  ∆

                  (1.22) 

The error in this approximation should approach zero as 0t∆ → , so—taking 
the limit—we get the differential equation 

 ( )d
d
P B D P
t
= −                       (1.23) 

in which we write ( )B B t= , ( )D D t= , and ( )P P t=  for brevity. Equation 
(1.22) is the general population equation. If B and D are constants, Equation 
(1.22) reduces to the natural growth equation with K B D= − . But it also in-
cludes the possibility that B and D are variable functions of t. The birth and 
death rates need not be known in advance; they may well depend on the un-
known function ( )P t . 

2. Estimation of Bounded Population and Carrying Capacity 

This section is purposely considering an estimator that is the logistic model es-
timate of the bounded population and carrying capacity. 

2.1. Proposed Logistic Model 

Suppose the birth rate B is a linear decreasing function of the population size P, 
so that 0 1B B B P= − , where 0B  and 1B  are positive constants. If the death 
rate 0D D=  remains constant, then Equation (1.22) takes the form  

 ( )0 1 0
d
d
P B B P D P
t
= − −                    (1.24) 

That is, 

2d
d
P aP bP
t
= −

                     
 (1.25) 

where 0 0a B D= −  and 1b B=  
If the coefficients a and b are both positive, then Equation (1.25) is called the 

logistic equation. For the purpose of relating the behavior of the population 
( )P t  to the values of the parameters in the equation, it is useful to rewrite the 

logistic equation in the form 

( ) ( ) 0
d , 0
d
P KP M P P P
t
= − =                 (1.26) 
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where K b=  and aM
b

=  are constants. Solving Equation (1.25) gives, 

( ) ( )
0

0 0 e KMt

MPP t
P M P −=
+ −

                 (1.27) 

Actual human populations are positive valued. If 0P M= , then (1.27) reduces 
to the unchanging (constant- valued) “equilibrium population” ( )P t M≡ . 
Otherwise, the behavior of a logistic population depends on whether 00 P M< <  
or 0P M> . If 00 P M< < , then we see from (1.26) and (1.27) that 0P′ >  and  

( ) ( ) { }
0 0 0
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.
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However, if 0P M> , then we see from (1.26) and (1.27) that 0P′ <  and  

( ) ( ) { }
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0 00 0

.
negative numbere KMt

MP MP MPP t M
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In either case, the “positive number” or “negative number” in the denomina-
tor has absolute value less than 0P  an—because of the exponential factor- ap-
proaches 0 as t →+∞ . It follows that 

( ) 0

0

lim
0t

MPP t M
P→∞ = =
+

                  (1.28) 

Thus a population that satisfies the logistic equation does not grow without 
bound. Instead, it approaches the finite limiting population M as t →∞ . The 
population ( )P t  steadily increases and approaches M from below if 00 P M< < , 
but steadily decreases and approaches M from above if 0P M> . Sometimes M 
is called the carrying capacity of the environment, considering it to be the max-
imum population that the environment can support on a long-term basis. 

The five census years obtained from a sample frame is shown in Table 1 above. 
However, we aimed at selecting 1969 population as initial population and fit a 
model through 1989 and 2009 populations from the table. These sample sizes 
will be used to estimate the population total in 2019 census using the proposed 
techniques. 

Here, 0 10942705P =  (Initial population) 
At 2 1989t =  and 2 21443636P =  we have; 

( ) 20

10942705 21448774
10942705 10942705 e KM

M
M − =

+ −
         (1.29) 

 
Table 1. Census Results. 

i YEAR ( i iX t= ) POPULATION TOTAL ( i iY P= ) 

0 1969 10,942,705 

1 1979 15,327,061 

2 1989 21,448,774 

3 1999 28,686,607 

4 2009 38,610,097 
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Similarly, 
At 4 2009t =  and 4 38610097P =  we have; 

( ) 40

10942705 38610097
10942705 10942705 e KM

M
M − =

+ −
         (1.30) 

Solving Equations ((1.29) and (1.30)) simultaneously we have;  

{ }0.038506784, 124433288.8KM M= =  

( )
15

0.038506784

1.361636772 10
10942705 113490583.8e tP t −

×
=

+
           (1.31) 

2.2. Asymptotic Properties 

Theorem: Law of large numbers: 
Let 1 2, , , nX X X  be iid random variables with common expectation 

( )iE Xµ = . Define 
1

1 n
n iiA X

n =
= ∑ . Then for any 0∝ > , we have  

0 asr nP A nµ − ≥ ∝ → →∞   

Proof of Theorem: 
Let ( ) 2

iVar X σ=  be the common variance of the random variables; we as-
sume that 2σ  is finite. With this (relatively mild) assumption, the Law of Large 
Numbers (LLN) is an immediate consequence of Chebyshev’s inequality.  

For as we have seen above, ( )nE A µ=  and ( )
2

nVar A
n
σ

= , so by Chebyshev 

we have  

( ) 2

2 2 0 asn
r n

Var A
P A n

n
σ

µ
α

 − ≥ ∝ ≤ = → →∞  ∝  
Table 2 above represents the census population from 1969 to 2009 in the eight 

provinces in Kenya. Successive sample sizes are selected below to show the law 
of large numbers. 

Here, 40N =  and 2875251µ =  
 

Table 2. Provinces. 

Provinces 1969 1979 1989 1999 2009 

Nairobi 509,286 827,775 1,324,570 2,143,254 3,138,369 

C. Province 1,675,647 2,345,833 3,116,703 3,724,159 4,383,743 

Coast Province 944,082 1,342,794 1,829,191 2,487,264 3,325,307 

E. Province 1,907,301 2,719,851 3,768,677 4,631,779 5,668,123 

N.E. Province 245,757 373,787 371,391 962,143 2,310,757 

Nyanza 2,122,045 2,643,956 3,507,162 4,392,196 5,442,711 

R. Valley 2,210,289 3,240,402 4,981,613 6,987,036 10,006,805 

W. Province 1,328,298 1,832,663 2,544,329 3,358,776 4,334,202 

Total Population 10,942,705 15,327,061 21,443,636 28,686,607 38,610,097 
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Sample 1: Nairobi (1969 to 2009) 
5n =  and 1 1588651x =   

Sample 2: Nairobi and Central 
10n =  and 2 2318934x =  

Sample 3: Nairobi, Central and Coast  
15n =  and 3 1915957x =  

Sample 4: Nairobi, Central, Coast & Eastern 
20n =  and 4 2371755x =   

Sample 5: Nairobi, Central, Coast, Eastern and N/Eastern 
25n =  and 5 2067957x =  

Sample 6: Nairobi, Central, Coast, Eastern, N/Eastern and Nyanza 
30n =  and 6 2326900x =  

Sample 7: sample 6 and R. Valley 
35n =  and 7 2778090x =  

Remark: We can clearly see the sample mean tending to the population mean 
as we approach the population total N which is in line with the Law of Large 
Numbers (LLN) 

Therefore, limn N nx µ→ =  
Comment: This technique can track reasonably well throughout up to a suffi-

ciently large number after which, there is a need to shift the initial condition to 
where the error margin starts increasing in order to maintain precision. 

3. Main Results 
Empirical Analysis 

Table 3 represents the actual population totals, estimated population totals and 
their corresponding errors from 1969 to 2009. 

4. Conclusion 

In this work, the logistic model is very effective especially with the presence of 
outliers in trying to maintain precision. It can perform well with a sufficiently 
large sample size. The logistic model can be more efficient in prediction espe-
cially where a regression model is ill conditioned.  

 
Table 3. Estimated population and error calculations. 

YEAR( it ) ACTUAL POPULATION( iP ) ESTIMATED POPULATION( iP ) ERROR( it ) 

1969 (t = 0) 10,942,705 10,942,705 0 

1979 (t = 10) 15,327,061 15,444,677 -117,616 

1989 (t = 20) 21,443,636 21448,774 -5138 

1999 (t = 30) 28,686,607 29,162,417 -475810 

2009 (t = 40) 38,610,097 38,610,096 1 

( )2019 50 49527365P =  
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