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Abstract 
 
Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to 
be unpredictable when presented with real experimental data that are unavoidably corrupted with uncorre-
lated noise content. In this paper, reanalysis using frequency response functions for correlating and updating 
dynamic systems is presented. A transformation matrix is obtained from the relationship between the com-
plex and the normal frequency response functions of a structure. The transformation matrix is employed to 
calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified 
from the normal frequency response functions by using the least squares method. A numerical example is 
employed to illustrate the applicability of the proposed method. The result indicates that the present method 
is effective. 
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1. Introduction 

Model updating is a very active research field, in which 
significant efforts has been invested in recent years. In 
case some different structure should be added according 
to the original structure in order to reduce sounds and 
vibrations, the structural dynamic modification is im-
plemented. The structural dynamic modification has the 
object of letting the system have the desired dynamic 
characteristics after it is modified. If the dynamic proper-
ties, which are obtained only from experimental data, can 
approximate to some degree the modified system proper-
ties, then they can be usefully utilized in order to point 
out locations at which the structure can be efficiently 
modified. 

On this account, recent methods reconstructing the fi-
nite element model using the experimental data from real 
structure have been actively studied. Several review arti-
cles of finite element model updating reveal a wealth of 
updating algorithms but success seems to remain case 
dependent and applicability is bounded by the skill of 
the analyst in choosing a correct updating procedure 
([1-9]). 

This paper suggests structural reanalysis method in 

which the correlated finite element model is evaluated 
using FRFs (Frequency Response Functions) of the 
structure. In this method, the concept of a transformation 
matrix was introduced and an updated damping matrix of 
the correlated finite element model was evaluated inde-
pendently of a mass matrix and a stiffness matrix by 
means of the FRFs of which noises were filtered out. 
Updated mass matrix and stiffness matrix of the corre-
lated finite element model could be also evaluated inde-
pendently of the updated damping matrix. The proposed 
algorithms adjust the analytical model without iteration. 
For the purpose of proving effectiveness of the structural 
reanalysis method proposed in this paper, a numerical 
test was performed. 

2. Structural Reanalysis 

The primary objective of the structure experiment per-
formed in the field or laboratory is to understand the ac-
tual behavior or innate features of structures under given 
conditions. The various applications of the test results 
will also be one of the main objectives. Structural re-
analysis is defined as the work that aims to obtain the 
behaviors of actual structures more precisely by per-
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forming various structural analysis based on the analyti-
cal model obtained through experiments is usually called 
the structure reanalysis. In a broader meaning, structure 
reanalysis is used to precisely obtain the behavior of 
structures under a different load condition based on the 
structural behavior observed at one load condition or its 
own structural feature. As a method of modifying the 
behavior of structures or the innate structural features to 
values approximately close to reality by system identifi-
cation, as well as structure experiment, structure reanaly-
sis is also classified as Structural Dynamic Modification 
(SDM).  

As indicated in Figure 1, the alteration quantity of 
structure response that corresponds to that of the struc-
ture parameter generally tends to be smaller. Thus, to 
obtain the exact structural parameter of inverse problem 
that performs the damage detection by applying the sys-
tem identification, the difference between the analytical 
response and the observed response should be obviously 
indicated. On the contrary, identifying the degree of 
damage through structure reanalysis belongs to the in-
verse problem in a broader meaning. However, even 
though some error is included in the correlated analytical 
model obtained through the system identification, the 
error in the reanalyzed response is considerably reduced 
to describe the behavior of the real structure. This rela-
tion is described in Equation (1),  

*U V V V                   (1) 

where  is the actual response of the structure,  is 
the correlated analytical model,  is the initial base-
line model, and  is the response modification value 
of actual observation. After all, in proportion to the ac-
curacy of response modification value that applies the 
data actually observed in the structure, the real response 
of the structure can be predicted more efficiently. 

U V
*V

V

3. Estimation Method for Model Updating 

Consider an n-DOF, linear dynamic system of baseline 
model described by 

        ,My t Cy t Ky t f t t 0          (2) 

where   Ny t R  is the vector of generalized coordi-  

nates,   Ny t R  is the forcing vector, N NM R   is  

the symmetric, positive definite mass matrix, N NC R   
is the symmetric, positive, semi-definite damping matrix, 
and, N NK R   is the symmetric, positive definite stiff-
ness matrix. The over-dot denotes differentiation with 
respect to time. The frequency response of Equation (2) 
is given by  

      2M K y i Cy f        
 

     (3) 

where     i tf t f e 


 and     i ty t y e    are used. 
If variable mass, stiffness and damping for model updat-
ing are added, Equation (3) can be expressed as 

     
     

2 M M K K y

i C C y f

 

  

       
   



        (4) 

where, M , C  and K  are the n by n variable 
mass, damping and stiffness matrices for model updating, 
respectively. Due to physical limitations and time of cost 
constraints, however, the number of distinct parameters 
is almost always less than degrees of freedom of the 
analytical model. Thus, in practice, n < N. By the way, 

M , C  and K  depend on the experimental de-
gree of freedom available in the observation experiment 
of dynamic system, overall system of structure can 
eventually be condensed in the degree of freedom which 
is identical to the experimental degree of freedom. Actu-
ally, it is impossible to obtain the degree of freedom 
which is identical to that of the structure. Therefore, only 
the lower mode response that mainly represents the dy-
namic system is observed. It is nothing but an approxi-
mate solution, because it does not observe all response 
features of the overall structure system, but merely util-
izes the value of the lower mode acquired in the experi-
ment. However, if the value of the lower mode generally 
represents the structure in the case of civil engineering 
structures and if the value of the lower mode presents 
satisfactory measurements, this will not be largely dif-  
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Figure 1. Effects of variation in structural parameters on variation in responses. (U and V : exact values, U' and V' : updated 
values, and U* and V* : initial reference values). 
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ferent from the accurate values in which more modes are 
included, but will effectively lessen the degree of free-
dom of the analytical structure. Thus, the error in calcu-
lation can be reduced, with even higher efficiency, 
thanks to its reduced length. Since the term inside the 
parentheses represents the inverse of normal FRFs matrix, 
Equation (4) can be rewritten as  

         1 *N Ny I i B H H f     
       


 (5) 

where  

       *N NB H H C        C       (6) 

is referred to as the transformation matrix. It is noted that 
 B   is real matrix. where I is the identity matrix, 
NH   is the frequency response function matrix of 

baseline model generated from the normal modes, and 
*NH   is the variable frequency response function 

matrix for model updating generated from the normal 
modes. On the other hand, the complex frequency re-
sponse equation of total dynamic system can also be 
represented as  

     TCy H f  


          (7) 

where  TCH   is the complex frequency response 
function matrix of total dynamic system. And, it can be 
actually calculated actuality in the total structure system 
through an experiment. Note that  NH   is a square 
matrix, since it is synthesized from the identified com-
plex modes of total dynamic system by separating 

 NH   into real and imaginary parts. Comparing Equ- 
ations (5) and (7), the relationship between the FRFs for 
complex modes and normal modes is given by  

     
     

* ( )N TC TC
R I

TC TC
R I

H H B H

i B H H

   

  

    
   

NH
     (8) 

where  TC
RH   is the real part of a complex frequency 

response function matrix of total dynamic system, and 
 TC

IH   is the imaginary part of a complex frequency 
response function matrix. Since the left hand side of 
Equation (8) is a real matrix, so the imaginary part of the 
right hand side must be equal to a zero matrix for all 
frequencies and the transformation matrix then  B   
can be solved in terms of the matrices  TC

RH   and 
 TC

IH   by  

       TC TC
I IB H B H       NH      (9) 

Substituting Equation (9) into Equation (8) yields the 
relation between the normal FRFs matrix and the com-
plex FRFs matrix as  

       *N TC TC N
R IH H B H     H    (10) 

From Equations (9) and (10), the transformation ma-

trix  B   and the variable normal FRFs matrix for 
model updating  *NH   can be calculated, respec-
tively. Once matrices  B   and  *NH   become 
available, the variable damping matrix for model updat-
ing can be calculated from Equation (8). Finally, corre-
lated frequency response function can be expressed by 

 TC
RH   and  TC

IH   of frequency response function 
that can get in an experiment of total dynamic system. 
After all, by applying the FRFs that was obtained in the 
experiment of all structure system, the correlated ana-
lytical model can be reorganized as a modification of the 
baseline analytical model. This means that the model, 
unlike the general dynamic analysis, can express the be-
havior of a real structure more accurately. For a 
noise-free case, an exact solution for updated damping 
matrix can be obtained directly from Equation (6) by  

   11
* j j

j

C H N B 



  C           (11) 

where j  is chosen frequency. In practice, the fre-
quency response functions are more or less contaminated 
with noise and the Least Square Method is employed to 
solve the updated damping matrix. It is noted that the 
updated damping matrix is identified independently from 
the mass and stiffness matrices. This is the main differ-
ence from the other methods. Next, the identification of 
updated mass and stiffness matrices is presented. For an 
undamped system, the equation of motion can be written 
as  

      2M K y f    


         (12) 

The relation between the matrices, M , K  and 
 *NH   is given by 

    2 *NM K H I              (13) 

where  *NH   is calculated from Equation (10). 
Similar to the preceding section, the real overdetermined 
equation can be obtained and can also be solved by the 
least squares method. 

4. Numerical Example  

Generally speaking, the finite element method is formu-
lated in order to analyze and evaluate the structural sys-
tems. But there are some distinct differences between the 
behavior obtained from a baseline finite element method 
and that of a real structure [10]. In reality, it is practically 
impossible to formulate the baseline model considering 
all errors and then exactly corresponding to the real be-
havior. Generally the way in which the arbitrary propor-
tional Gaussian noises are added to FRFs is mostly used 
to mix noises and the experimental data. The most com-
mon method for modelling the corruption present on 
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experimental data is to add proportional Gaussian ran-
dom noise to FRFs where each datum is factored as  

    1H H a   s           (14) 

where  is a normally distributed variable, and s is a 
user-specified standard deviation. It is unlikely that 
genuine experimental noise will be either Gaussian of 
proportional. Arbitrary noises having noise levels of 5% - 
10% are employed in the article.  

a

A sample structure employed in the numerical test II 
as Lembregts [11] suggested has totally 7 degrees of 
freedom. The shape of the structure is shown in the Fig-
ure 2 and the dynamic properties are the same with 
Equation (15). In the selected sample structure, the third 
and the fourth modes, and the fifth and sixth modes form 
very close couples and the damping ratio of the sixth 
mode, 7% is largest. In conclusion the selected structure 
is of highly coupled system. In the numerical test, the 
initially assumed baseline finite element model was as-
sumed to be 90% of true dynamic properties.  

4
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    (15) 

As the result of the analysis, it is known that in case of 
noise-free experimental data the dynamic properties of 
the estimated correlated finite element model correspond 
to true values of the structure, and even in case of the 
noise level of 5% satisfactory results are presented. Fig-
ure 3 shows the dynamic parameters of the updated finite 
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Figure 2. Updated system of 7 degrees of freedom. 
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dated system properties necessary for correcting the ini-
tially assumed baseline finite element model. It is known 
that the method can reduce significantly calculation error, 
and most importantly error accumulation arising in the 
calculation because the method estimates the updated 
damping matrix independently of the mass and the stiff-
ness matrices while existing methods estimate the up-
dated damping matrix while they consider both the mass 
and the stiffness matrices. 

element model estimated at the noise level of 10%. The 
natural frequencies and the damping ratios according to 
the noise levels (5%, 10%) are indicated in Tables 1-4, 
where i is th number of modes. The errors are given by  

Exact Updated
ErrorP

Exact


          (16) 

for i = 1,2,3,4,5,6,7, where Error P denotes the relative 
errors induced by proposed method.  

The proposed updating algorithms depend on the con-
nectivities in the baseline finite element model to be cor- 
rect. Because the basis of model updating is the baseline 
finite element model, the baseline finite element model 
must capture certain physical attributes of the actual sys-
tem. The proposed method, expanding the combination 
of FRF, can independently estimate the response modi-
fication damping from FRF that is observed irrespective 
of mass matrix or stiffness matrix. Therefore, the accu-
mulation of calculation error can be decreased consid-
erably. The method suggested in this research does not 
seek, in one time, the dynamic parameters of structure by 
using data observed in the dynamic system, but suggests 

Generally the error which arises in estimating the up-
dated damping matrix is significantly larger than those of 
the updated mass and the stiffness matrices. It is because 
the damping effect is much smaller than the mass and 
stiffness matrices. To overcome this difficulty, the pre-
sent effort succeeds in updating the damping matrix in-
dependently from the updated mass and the stiffness ma-
trices. This is the main difference between the present 
method and the existing methods. And the method sug-
gested in the article is not to estimate at once the dy-
namic properties of the structure by using the experi-
mental data in the dynamic system but to present the 
correlated finite element model by estimating the up-  
 

Table 1. Natural frequencies comparisons (5% noise level). 

i 1 2 3 4 5 6 7 

Exact (rad/sec) 13.40 22.89 28.15 28.88 40.85 41.38 45.99 

Our method (rad/sec) 13.39 22.90 28.14 28.87 40.85 41.39 45.98 

ErrorP 9.701E−04 5.679E−04 4.263E−04 3.809E−04 9.792E−05 3.142E−04 3.044E−04 

Table 2. Natural frequencies comparisons (10% noise level). 

i 1 2 3 4 5 6 7 

Exact (rad/sec) 13.40 22.89 28.15 28.88 40.85 41.38 45.99 

Our method (rad/sec) 13.36 22.93 28.12 28.85 40.86 41.41 45.96 

ErrorP 2.687E−03 1.616E−03 9.236E−04 9.349E−04 3.427E−04 6.767E−04 5.653E−04 

 
Table 3. Damping ratios comparisons (5% noise level). 

i 1 2 3 4 5 6 7 

Exact (%) 1.40 5.05 4.31 4.36 2.21 7.09 4.12 

Our method (%) 1.37 5.03 4.4 4.32 2.19 7.13 4.08 

ErrorP 2.143E−02 3.960E−03 2.088E−02 9.174E−03 9.050E−03 5.642E−03 9.709E−03 

 
Table 4. Damping ratios comparisons (10% noise level). 

i 1 2 3 4 5 6 7 

Exact (%) 1.40 5.05 4.31 4.36 2.21 7.09 4.12 

Our method (%) 1.47 5.00 4.52 4.31 2.27 7.19 4.19 

ErrorP 5.286E−02 9.901E−03 4.872E−02 1.147E−02 2.715E−02 1.410E−02 1.699E−02 
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correlated analytical model by identifying response mo- 
dification to supplement the initially assumed baseline 
analytical model. Thus, the error in calculation can be 
reduced considerably. Furthermore, while the existing 
methods estimate damping matrix by considering mass 
and stiffness simultaneously, this method identifies re-
sponse modification damping irrespective of mass and 
stiffness matrix. Therefore, the accumulation of error in 
the calculation is notably reduced. 

5. Conclusions 

This article suggested the structural reanalysis method 
evaluating the correlated finite element model corrected 
by means of the FRFs of the structure. In conclusion, 
even with noise-mixed data, the suggested method could 
predict the updated structural system more accurately 
even with noise-mixed data. The proposed method, ex-
panding the combination of FRF, can independently es-
timate the response modification damping from FRF that 
is observed irrespective of mass matrix or stiffness ma-
trix. Therefore, the accumulation of calculation error can 
be decreased considerably. Also, the results of the article 
can be properly utilized to evaluate the state of the dy-
namic system necessary for the maintenance and man-
agement of the structure or locate the positions to be 
modified. 
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	Figure 2. Updated system of 7 degrees of freedom.

