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Abstract 
For weighted sums of asymptotically almost negatively associated (AANA) 
random variables sequences, we use the Rosenthal type moment inequalities 
and prove the Marcinkiewicz-Zygmund type complete convergence and ob-
tain the complete convergence rates. Our results extend some known ones. 
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1. Introduction 

A sequence { }, 1nX n ≥  of random variables is said to be asymptotically almost 
negatively associated (AANA, in short) if there exists a nonegative sequence 
( ) 0q n →  as n →∞  such that 

( ) ( )( )
( ) ( ) ( )( )

1 2

1 2

1 2

Cov , , , ,

Var Var , , ,

n n n n k

n n n n k

f X g X X X

q n f X g X X X

+ + +

+ + + ≤  

�

�
        (1.1) 

for all , 1n k ≥  and for all coordinate wise nondecreasing continuous functions 
f  and g  whenever the variances exist. ( ){ }, 1q n n ≥  is said to be the mixing 

coefficients of { }, 1nX n ≥ . 
Chandra and Ghosal [1] firstly introduced this concept, and gave a following 

example. Let ( ) ( )1 2
11 , 1n n n n nX a Y a Y n−
+= + + ≥ , where { }, 1nY n ≥  are inde-

pendent random variables with common distribution ( )0,1N , then { }, 1nX n ≥  
is an AANA sequence. At the same time, the Kolmogorov type inequality and 
strong law of large numbers (SLLN) were proved. 
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From then on, many authors have studied the various limit properties for 
AANA sequences. For example, Chandra and Ghosal [2] [3] obtained the almost 
sure convergence of weighted average, Kim, Ko and Lee [4] established the Ha-
jek-Renyi type inequalities and Marcinkiewicz-Zygmund type SLLN, Cai [5] in-
vestigated the complete convergence of weighted sums, Yuan and An [6] got the 
Rosenthal type inequalities, pL  convergence, complete convergence and Mar-
cinkiewicz-Zygmund type SLLN, Wang, Hu and Yang [7] obtained the complete 
convergence and SLLN, etc. and so on. We see the following theorems. 

Theorem A. (Kim, Ko and Lee [4]) Let { },1 , 1nia i n n≤ ≤ ≥  be a sequence of 

real numbers with 1 1sup n
n nii a≥ =

< ∞∑  and let { }, 1nX n ≥  be a sequence of  
identically distributed, mean zero AANA random variables with  

1 ,0 2pE X p< ∞ < < . If ( )2
2n q n∞

=
< ∞∑ , then 

1
1

1 0   a.s.
n

ni ip
i

a X
n =

→∑                     (1.2) 

Theorem A generalizes the Marcinkiewicz-Zygmund SLLN (Chow and Teicher 
[1], or Gut [8]) for the independent identically distributed (i.i.d.) sequences to 
the weighted sums of AANA sequence. 

Theorem B. (Cai [5]) Let { },1 , 1nia i n n≤ ≤ ≥  be a sequence of real numbers 

with ( )2
1

n
nii a O n

=
=∑ , and let { }, 1nX n ≥  be a sequence of mean zero AANA 

random variables. Let ( )2
1n q n∞

=
< ∞∑ . If pE X < ∞ , for 0 2p< <  and  

( ) ( ) , 0iP X x P X x x> ≤ > > . Then for all 0ε > , 

1

11 1

1 max .
k

p
ni ik nn i

P a X n
n

ε
∞

≤ ≤= =

 
> < ∞ 

 
∑ ∑              (1.3) 

Theorem C. (Yuan and An [6]) Let { }, 1nX n ≥  be an AANA sequence of 
identically distributed random variables with mixing coefficients  

( ){ }, 1 , 1, 1 2q n n pα α≥ > > , and suppose that 1 0EX =  for 1α ≤ . If  
( ) ( )2 3

1
r

n q n∞

=
< ∞∑  where ( ) ( )1 1 2 2r p pα α= − − + + , then 1

pE X < ∞  is 
equivalent to 

2

11 1
max .

k
p

ik nn i
n P X nα αε

∞
−

≤ ≤= =

 
> < ∞ 

 
∑ ∑               (1.4) 

The main purpose of this paper is to further investigate the complete conver-
gence, almost sure convergence and complete convergence rate of weighted 
sums for AANA random variable sequences. In the following sections, theorem 
2.1 (Section 2) extends theorem A to some more relaxed conditions and gets a 
more general result. Theorem 2.2 is about complete convergence rates which ex-
tends theorem B and theorem C to the cases of weighted sums. 

2. Main Results 

Throughout this paper we use the following notations: ( )I ⋅  denotes the indi-
cator function, C  stands for a positive constant its value may be different on 

https://doi.org/10.4236/am.2017.811120


J. An 
 

 

DOI: 10.4236/am.2017.811120 1664 Applied Mathematics 
 

different places, �  represents the Vinogradov symbol O , :=  means defined 
as and 

p⋅  denotes the pL  norm. 
Theorem 2.1. Let { }, 1nX n ≥  be a sequence of mean zero, identically 

distributed AANA random variables with ( )2
1n q n∞

=
< ∞∑ . Let { }, 1, 1nia i n≥ ≥  

be a sequence of real numbers satisfying 2
1 1sup n

n nii a≥ =
< ∞∑ . If  

1 ,0 2pE X p< ∞ < < , then 

1 1 1

1 max 0  completely.
k

ni ip k n i
a X

n ≤ ≤ =

→∑                (2.1) 

Remark 2.1. As we known, complete convergence leads to the almost sure 
convergence but its converse does not hold. So the result of theorem 2.1 is  

stronger than theorem A. On the other hand, ( )2
2

1 1
n n

ni nii ia a C
= =

≤ ≤ < ∞∑ ∑  

under the condition of 1 1sup n
n nii a≥ =

< ∞∑ . Thus theorem A is a corollary of  

theorem 2.1. 
Theorem 2.2. Let { }, 1nX n ≥  be a sequence of centered identically distri-

buted AANA random variables with mixing coefficients ( ){ }, 1q n n ≥ , 

1 , 1, 1 2pE X pα α< ∞ > > . Suppose that 1 0EX =  for 1p > . Let  

{ }, 1, 1nia i n≥ ≥  be a sequence of real numbers with ( )1
rn

nii a O n
=

=∑ ,  

( ) ( )1 1 2r pα α> − −  if 2p ≥ ; or 2r =  if 0 2p< < : Take  

( ) ( )11 2 2 1kr r r r−= − −� , where k  is a positive integer number satisfying 
12 2k kr +< ≤ . If ( )1

r
n q n∞

=
< ∞∑ � , then for any 0ε >  

2

11 1
max

k
p

ni ik nn i
n P a X nα αε

∞
−

≤ ≤= =

 
> < ∞ 

 
∑ ∑                 (2.2) 

and 

2

1 1
sup

k
p

ni i
k nn i

n P k a Xα α ε
∞

− −

≥= =

 
> < ∞ 

 
∑ ∑ .               (2.3) 

3. Proofs 

To prove our results we need the following two lemmas. 
Lemma 3.1. (Yuan and An [6]) Let { }, 1nX n ≥  be a sequence of AANA 

random variables with mixing coefficients ( ){ }, 1q n n ≥ . Let 1 2, ,f f �  be all 
nondecreasing (or all nonincreasing) functions, then ( ){ }, 1n nf X n ≥  is still a 
sequence of AANA random variables with mixing coefficients ( ){ }, 1q n n ≥ . 

Lemma 3.2. (Yuan and An [6]) Let { }, 1nX n ≥  be a sequence of AANA 
random variables with mean zero and mixing coefficients ( ){ }, 1q n n ≥ , then 
there exists a positive constant pC  depending only on p  such that 

( )
1

2 2

1 1 1 1
max

p pj n np p
i p i i pj n i i i

E X C E X q i X
−

−

≤ ≤ = = =

       ≤ +        
∑ ∑ ∑         (3.1) 

for all 1n ≥  and 1 2p< < , and such that 
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( )

( )1

2 1
2 2

1 1 1 1 1

1
1 2 2

1

max

k

p p pj n n np p
i p i i i pj n i i i i

pn
p

i p
i

E X C E X EX q i X

q i X
−

−

≤ ≤ = = = =

−
−

=

        ≤ + +          
  +  

  

∑ ∑ ∑ ∑

∑
 (3.2) 

for all 1n ≥  and 12 2k kp +< ≤  where integer number 1k ≥ . 
In particular, if ( )2

1n q n∞

=
< ∞∑ , then 

1 1 1
max

pj n p
i p ij n i i

E X C E X
≤ ≤ = =

 
  ≤
 
 

∑ ∑                (3.3) 

for all 1n ≥  and 1 2p< ≤ . 
Remark 3.1. It’s obvious that if 2p = , taking 0k =  on the right hand of 

(3.2), the two inequalities (3.1) and (3.2) are the same. 
Corollary 3.1. Under the conditions of Lemma 3.2, we have the following 

moment inequality 

( )
1 21

2

1 1 1 1 1
max 1

p p pj n n npr
i p i ij n i i i i

E X C C q i E X EX
−−

≤ ≤ = = = =

          ≤ + +                
∑ ∑ ∑ ∑  (3.4) 

for all 1n ≥  and 12 2k kp +< ≤ , where integer number 0k ≥ ,  
( ) ( )11 2 2 1kr p p p−= − −� . 

Proof of Corollary 3.1. For 12 2k kp +< ≤ , we know 11 2 2 2k p p− − ≤ . Since 
( ) ( )0q n n→ →∞ , for n  large enough, there exists a positive constant C  such 

that 

( ) ( )11 1
2 1 2 2

1 1
.

k
p pn n

p p
i ip p

i i
q i X C q i X

−− −
−

= =

   ≤   
   
∑ ∑           (3.5) 

Applying the Holder inequality on the right hand of (3.5) we get 

( ) ( )1
11 1

1 2 2

1 1 1
.

k
p pn n n pp r

i ip
i i i

q i X q i E X
−

−− −
−

= = =

     ≤     
     
∑ ∑ ∑�         (3.6) 

Thus (3.4) follows from (3.2), (3.5) and (3.6). 
Proof of Theorem 2.1. Without loss of generality we may assume 0nia ≥  for 

all 1, 1n i≥ ≥ . Let 

( ) ( ) ( )1 1 1 1 1 ,p p p p p
ni i i i iY n I X n X I X n n I X n= − < − + ≤ + >  

( ) ( ) ( ) ( )1 1 1 1 .p p p p
ni i ni i i i iY X Y X n I X n X n I X n′ = − = + < − + − >  

Since Lemma 3.1, { }, 1niY i ≥  and { }, 1ni nia Y i ≥  are AANA for all 1n ≥ . It’s 
easy to see that 

1 1 1
1 21 1 11 1 1

max max max : .
k k k

p p p
ni i ni ni ni nik n k n k ni i i

n a X n a Y n a Y I I− − −

≤ ≤ ≤ ≤ ≤ ≤= = =

′≤ + = +∑ ∑ ∑  

To prove (2.1) it suffices to prove 1 0I →  completely, and 2 0I →  com-
pletely. 

By assumption 2
1 1sup n

n nii a≥ =
< ∞∑  and the rC  inequality we have  
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1 2
1

n
nii a n

=∑ � . For 1 0EX = , considering two cases 0 1p< ≤  and 1 2p< <   

we can easily get  

1 1

1 1
0.

n n
p p

ni ni ni ni
i i

n a EY n a EY− −

= =

′= →∑ ∑             (3.7) 

Thus, to prove 1 0I →  completely it suffices to prove 

( )1

1 1
max 0  completely.

k
p

ni ni nik n i
n a Y EY−

≤ ≤ =

− →∑          (3.8) 

By the Chebyseve inequality, ( )2
1n q n∞

=
< ∞∑  and (3.3) of Lemma 3.2 we get 

( )

( )

( ) ( )( )

( ) ( )

1

11 1

2
2

11 1

2 2 2

1 1

2 2 2 1 2 1

1 1

2 2 1 2 1
1 1 1 1 1

1

max

max

: .

k
p

ni ni nik nn i

k
p

ni ni nik nn i

n
p

ni ni
n i

n
p p p p

ni i i i
n i

p p p p

n

P a Y EY n

n E a Y EY

n a EY

n a EX I X n n P X n

n EX I X n n P X n I I

ε
∞

≤ ≤= =

∞
−

≤ ≤= =

∞
−

= =

∞
−

= =

∞
−

=

 
− > 

 

 − 
 

≤ + >

′ ′′≤ + > = +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

�

�

�

�

     (3.9) 

It’s easy to see that 

( )1
1 1 1

1
.pp

n
I P X n E X

∞

=

′′= > ≤ < ∞∑              (3.10) 

For 1I ′  we have 

( )

( )( )

( )( )

( )( )

( )( )

2 2 1
1 1 1

1

12 2 1
1 1

1 1

12 1 2
1 1

1

12 1 2 1
1 1

1

1 1
1 1 1

1

1

1

1

1 .

p p

n

n pp p

n j

p p p

j n j

pp p

j

p pp p

j

I n EX I X n

n EX I j X j

EX I j X j n

j EX I j X j

E X I j X j E X

∞
−

=

∞
−

= =

∞ ∞
−

= =

∞
− +

=

∞

=

′ = ≤

= − < ≤

= − < ≤

− < ≤

≤ − < ≤ = < ∞

∑

∑ ∑

∑ ∑

∑

∑

�

      (3.11) 

Thus (3.8) follows from (3.9), (3.10) and (3.11). Consequently 1I < ∞ . 
Since (3.7), to prove 2 0I →  completely it suffices to prove 

( )1

1 1
max 0  completely.

k
p

ni ni nik n i
n a Y EY−

≤ ≤ =

′ ′− →∑          (3.12) 

In fact, according to the Chebyshev inequality, (3.3) and assumption  
2

1 1sup n
n nii a≥ =

< ∞∑ , 
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( )

( )

( )

( )( )

1

11 1

2
2

11 1

2 2 2

1 1

2 2 1
1 1

1

12 2 1
1 1

1

max

max

1

k
p

ni ni nik nn i

k
p

ni ni nik nn i

n
p

ni ni
n i

p p

n

pp p

n k n

P a Y EY n

n E a Y EY

n a EY

n EX I X n

n EX I k X k

ε
∞

≤ ≤= =

∞
−

≤ ≤= =

∞
−

= =

∞
−

=

∞ ∞
−

= =

 
′ ′− > 

 

 ′ ′− 
 

′

>

= < ≤ +

∑ ∑

∑ ∑

∑ ∑

∑

∑ ∑

�

�

�

                 (3.13) 

  

( )( )
( )( ) ( )( )

( )( )

12 1 2
1 1

1 1

2 12 1 1
1 1

1

11
1 1

1

1

1

1 1

1

.

kpp p

k n

pp p pp p

k

p pp

k

p

EX I k X k n

k k E X I k X k

E X I k X k

E X

∞
−

= =

∞
−− +

=

∞

=

< ≤ +

⋅ + < ≤ +

< ≤ +

< ∞

∑ ∑

∑

∑

�

�

�

�

 

From (3.12) and (3.13) we know 2 0I →  completely. The proof of Theorem 
2.1 is complete. 

Proof of Theorem 2.2. Without loss of generality we assume 0nia ≥  for all 
1, 1n i≥ ≥ . Let 

( ) ( ) ( )ni i i i iY n I X n X I X n n I X nα α α α α= − < − + ≤ + > . 

By Lemma 2.1 we see that { }, 1niY i ≥  and { }, 1ni nia Y i ≥  are AANA for all 
1n ≥ . So 

{ }

2

11 1

2 2

11 1 11

1 2

max

max

: .

k
p

ni ik nn i

n k
p p

i ni nik nn n ii

n P a X n

n P X n n P a Y n

I I

α α

α α α α

ε

ε

∞
−

≤ ≤= =

∞ ∞
− −

≤ ≤= = ==

 
> 

 
  

≤ > + >  
   

= +

∑ ∑

∑ ∑ ∑∪    (3.14) 

To prove (2.2) it suffices to prove 1I < ∞  and 2I < ∞ . 
Since 1pα >  we have 

( )1
1 1 1

1
.pp

n
I n P X n E Xα α

∞
−

=

= > < ∞∑ �              (3.15) 

By the rC  inequality and assumption ( )1
n r

nii a O n
=

=∑ , we have  

( )1
n

nii a O n
=

=∑ . Under the condition 1
pE X < ∞ , we consider two cases  

0 1p< ≤  and 1p >  respectively, and we can easily get 

1
0

n

ni ni
i

n a EYα−

=

→∑ .                    (3.16) 

From (3.16), the Chebyshev inequality and Corollary 2.1 we know 
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( )

( )

( ) ( )

2
2 11 1

2

11 1

1 2
22

1 1 1 1

21 22

max 2

max

1

: .

k
p

ni ni nik nn i

rk
p r

ni ni nik nn i

r rn n nrp r r
ni ni ni ni

n i i i

I n P a Y EY n

n E a Y EY

n C q i E a Y E a Y

I I

α α

α α

α α

ε
∞

−

≤ ≤= =

∞
− −

≤ ≤= =

−∞
− −

= = = =

 
− > 

 

−

      + +     
       

= +

∑ ∑

∑ ∑

∑ ∑ ∑ ∑�

�

�

�

 (3.17) 

By condition ( )1
r

n q n∞

=
< ∞∑ �  and the rC  inequality 

( )

( ) ( ){ }

1
2

21
1 1 1

2
1 1 1

1 1

211 212

1

: .

rn n rp r r
ni ni

n i i

n rp r r r
ni

n i

I n C q i E a Y

n a E X I X n n P X n

I I

α α

α α α α α

−∞
− −

= = =

∞
− −

= =

  = +  
   

≤ + >

= +

∑ ∑ ∑

∑ ∑

�

�      (3.18) 

No matter 0 2p< <  or 2p ≥  we have r p> . Using assumption  

( )1
n r

nii a O n
=

=∑  and the method of (3.11) we get 

( ) ( )2
211 1 1 1

1 1
,

n r pp r r
ni

n i
I n a E X I X n E Xα α

∞
− −

= =

= ≤ < ∞∑ ∑ �        (3.19) 

and 

( ) ( )( )2
212 1 1

1 1
 by 3.15 .

n pp r
ni

n i
I n a P X n E Xα α

∞
−

= =

= > < ∞∑ ∑ �    (3.20) 

From (3.18), (3.19) and (3.20) we know 21I < ∞ . 

( )

( ) ( )

( ) ( )

2
22

22
1 1

2
2 2 2 2

1 1 1
1 1

2 2
2 2 2 2 2

1 1 1
1 1 1

221 222: .

rn
p r

ni ni
n i

rn
p r

ni
n i

r rn n
p r

ni ni
n i i

I n E a Y

n a EX I X n n P X n

n a EX I X n a n P X n

I I

α α

α α α α α

α α α α α

∞
− −

= =

∞
− −

= =

∞
− −

= = =

 =  
 

  ≤ + >   
     ≤ + >    
     

= +

∑ ∑

∑ ∑

∑ ∑ ∑

�

�

 

(3.21) 

Since ( )1 , 2n r
nii a O n r

=
= ≥∑  and the rC  inequality, we know 2

1
n

nii a n
=∑ � . 

Therefore 

( )

( )( )

2
2 2 2

221 1 1
1 1

22 2 2
1 1

1
.

rn
p r

ni
n i

rp r r

n

I n a EX I X n

n EX I X n

α α α

α α α

∞
− −

= =

∞
− + −

=

 = ≤ 
 

≤

∑ ∑

∑�
           (3.22) 

We consider the following two cases: 
1) If 0 2p< < , then 2r = , taking the method of (3.11) we have 

( )2 1 2
221 1 1 1

1
.pp

n
I n EX I X n E Xα α α

∞
− −

=

≤ < ∞∑� �         (3.23) 
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and 

( )

( )
( )( )

2 2 2 2
222 1

1 1

1
1

1

1  by 3.15 .

n
p

ni
n i

p

n
p

I n a n P X n

n P X n

E X

α α α α

α α

∞
− −

= =

∞
−

=

= >

>

< ∞

∑ ∑

∑�

�

           (3.24) 

2) If 2p ≥ , then ( ) ( )1 1 2r p pα α> − − > . From ( )2
1 1EX I X nα≤ < ∞   

and (3.22) we get 

( ) ( )1 1 2 1
221

1

p r

n
I n α α

∞
− − − −

=

= < ∞∑ ,                 (3.25) 

and 

( )

( )
( )( ) ( )

2
2 2 2

222 1
1 1

2
2 2 2

1
1

1 1 2 1

1
 since 1, 2 .

rn
p r

ni
n i

rpp pr r

n

p r

n

I n a n P X n

n E X

n p r

α α α α

α α

α α

∞
− −

= =

∞
− + −

=

∞
− − −

=

 = > 
 

< ∞ > >

∑ ∑

∑

∑

�

�

         (3.26) 

Thus 221I < ∞  follows from (3.23) and (3.26), 221I < ∞  from (3.24) and 
(3.26). So 22I < ∞  by (3.21). Hence 2I < ∞  by (3.17). (2.2) is proved. 

As for (2.3), inspired by Gut [7] (page 318_319), we have 

( )

( )

1

1 1

1

2

1 1

2 1
2

1 12

2 1
2

1 12 2
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Thus (2.3) follows from (2.2) and (3.27). The proof of Theorem 2.2 is com-
pleted. 
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