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For weighted sums of asymptotically almost negatively associated (AANA)
random variables sequences, we use the Rosenthal type moment inequalities
and prove the Marcinkiewicz-Zygmund type complete convergence and ob-
tain the complete convergence rates. Our results extend some known ones.
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1. Introduction

A sequence {Xn, nz 1} of random variables is said to be asymptotically almost
negatively associated (AANA, in short) if there exists a nonegative sequence
q(n) —>0 as n—> oo such that

Cov(f(X,),9(X,0 X X

' n+k

)

< q(n)[Varf (X, )Var(g(X . X, XM))T/2

nlr g0t

(1.1)

for all n,k>1 and for all coordinate wise nondecreasing continuous functions
f and g whenever the variances exist. {q(n),n>1} is said to be the mixing
coefficients of {Xn ,n> l} .

Chandra and Ghosal [1] firstly introduced this concept, and gave a following
example. Let X, =(1+a, )71/2 (Y, +a,Y,,),n=1, where {Y,,n>1} are inde-
pendent random variables with common distribution N (0,1) , then {Xn, n> 1}
is an AANA sequence. At the same time, the Kolmogorov type inequality and
strong law of large numbers (SLLN) were proved.
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From then on, many authors have studied the various limit properties for
AANA sequences. For example, Chandra and Ghosal [2] [3] obtained the almost
sure convergence of weighted average, Kim, Ko and Lee [4] established the Ha-
jek-Renyi type inequalities and Marcinkiewicz-Zygmund type SLLN, Cai [5] in-
vestigated the complete convergence of weighted sums, Yuan and An [6] got the

Rosenthal type inequalities, L convergence, complete convergence and Mar-

p
cinkiewicz-Zygmund type SLLN, Wang, Hu and Yang [7] obtained the complete
convergence and SLLN, etc. and so on. We see the following theorems.

Theorem A. (Kim, Ko and Lee [4]) Let {ani,lﬁ i<n,n 21} be a sequence of
real numbers with sup,., > [a,| <o andlet {X,,n>1} bea sequence of

identically distributed, mean zero AANA random variables with

E|X,)® <o0,0<p<2.1f " ¢*(n)<oo, then
1/pZamX -0 as. (1.2)
n

Theorem A generalizes the Marcinkiewicz-Zygmund SLLN (Chow and Teicher
[1], or Gut [8]) for the independent identically distributed (i.i.d.) sequences to
the weighted sums of AANA sequence.

Theorem B. (Cai [5]) Let {a 1<i<n,n >1} be a sequence of real numbers

ni?

with Z. 1,a3=0(n), and let {X,,n>1} be a sequence of mean zero AANA

random variables. Let Z:zlqz(n)<oo.lf E|X|p<oo,f0r 0<p<2 and
P(|Xi|>x)<P(|X|>x),x>0.Then forall £>0,

Zamx

Theorem C. (Yuan and An [6]) Let {Xn, n= 1} be an AANA sequence of
identically distributed random variables with mixing coefficients
{q(n),n 21},ap >1,a >1/2, and suppose that EX, =0 for a<1.If

Z P[max

= n 1<k<n

>8n1/pJ<oo (1.3)

Z:zlqz/(a")(n)<oo where r:(ap—l)/(a—1/2)+ p+2, then E|Xl|p<oo is

equivalent to

X

=1

Zn““ 2P(max

=1 1<k<n

>gnaj<oo. (1.4)

The main purpose of this paper is to further investigate the complete conver-
gence, almost sure convergence and complete convergence rate of weighted
sums for AANA random variable sequences. In the following sections, theorem
2.1 (Section 2) extends theorem A to some more relaxed conditions and gets a
more general result. Theorem 2.2 is about complete convergence rates which ex-

tends theorem B and theorem C to the cases of weighted sums.

2. Main Results

Throughout this paper we use the following notations: |(-) denotes the indi-

cator function, C stands for a positive constant its value may be different on
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different places, <« represents the Vinogradov symbol O, = means defined
as and ||||p denotes the L, norm.

Theorem 2.1. Let {X,,n>1} be a sequence of mean zero, identically
distributed AANA random variables with Y " g?(n)<o. Let {a,i>1n>1}

be a sequence of real numbers satisfying sup,, Zin:l al <o If

E|Xl|p <m,0< p<2,then

1
——Mmax
nYP 1<ksn

Zamx ‘ — 0 completely. (2.1)

Remark 2.1. As we known, complete convergence leads to the almost sure

convergence but its converse does not hold. So the result of theorem 2.1 is

2
stronger than theorem A. On the other hand, zl L i _( in:1|ani|) <C<w

under the condition of SUpnaZ::1|ani| <o . Thus theorem A is a corollary of

theorem 2.1.

Theorem 2.2. Let {X,,n>1} be a sequence of centered identically distri-
buted AANA random variables with mixing coefficients {q (n), n> 1} S
E|X,|” <o,ap>1a>1/2. Suppose that EX,=0 for p>1.Let

{a,i=Ln> l} be a sequence of real numbers with Zin:1|ani |r =0(n),
r>(ap-1)/(a-12) if p=2;0or r=2 if 0<p<2:Take
r :(1/2k’l —2/r)r/(r—1) , where Kk is a positive integer number satisfying

X <r<2"tIf Z:Zqu(n)<oo,thenf0rany e>0

Zn“p 2P(max XX, >5n“J<oo (2.2)
=1 1<k<n )
and
k
Zn‘”’ 2P(sup “> ayX; >£]<oo. (2.3)
n=1 k>n i=1
3. Proofs

To prove our results we need the following two lemmas.

Lemma 3.1. (Yuan and An [6]) Let {XH,HZl} be a sequence of AANA
random variables with mixing coefficients {q(n),nzl}. Let f,f,,--- be all
nondecreasing (or all nonincreasing) functions, then {fn (X,).n Zl} is still a
sequence of AANA random variables with mixing coefficients {q (n),n> 1} .

Lemma 3.2. (Yuan and An [6]) Let {XH,HZl} be a sequence of AANA
random variables with mean zero and mixing coefficients {q(n),n 21} , then

there exists a positive constant C, depending onlyon p such that
p n o LS 2/p
E| max|> ZX <C, §E|Xi| [Zlq DX, ] 3.1)

forall n>1 and 1< p<2,and such that
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p

ZX

Jec e (S (o,

max
j<n i=l i=l

(3.2)

n-1 K1 P

J{qu/z 2/p (i)||Xi||pj }
i
forall n>1 and 2°< p<2“" where integer number k >1.
In particular, if )" g°(n) <o, then

P n
[max X JSCPZE|Xi|p (3.3)

j=n i=L

forall n>1 and 1<p<2.

Remark 3.1. It’s obvious that if p=2, taking k=0 on the right hand of
(3.2), the two inequalities (3.1) and (3.2) are the same.

Corollary 3.1. Under the conditions of Lemma 3.2, we have the following

moment inequality

E(@%ixip]scpﬂ}m(iqf j }ZE|X|" [gExfjp/z} (3.4)

i1
forall n>1 and 2*< p< 2% where integer number k>0,
F=(Y2"-2/p)p/(p-1).

Proof of Corollary 3.1. For 2 < p<2*, we know ]/Zk *-2/p<2/p. Since
q( ) - O(n - OO) ,for n large enough, there exists a positive constant C such
that

[qu/"(i>llxillpjp sc(?zf,qwl2/p(i)||xi||pjp. 35

i=l

Applying the Holder inequality on the right hand of (3.5) we get

(Sa e, | < Seo) (Lexr) eo

Thus (3.4) follows from (3.2), (3.5) and (3.6).
Proof of Theorem 2.1. Without loss of generality we may assume a
all n>1i>1.Let

Yy ==n"PH(X, <=0 )+ X (| X[ <n?®)+ 0PI (X, > n?),

>0 for

ni =

Yo = X, =Yy = (X 0P (X <=n?) (X, =P )1 (X, > n?P).
>

ni ' ni?

Since Lemma 3.1, {Y;,i>1} and {a,Y,.,i>1} are AANA for all n>1.It’s
easy to see that

<nY? max n”pmax

1<k<n

n~YP max
1<k<n

Za X, Zam i Zam p

To prove (2.1) it suffices to prove |, -0 completely, and |, >0 com-

=1, +1,.

pletely.
By assumption sup,, Z a’ <o andthe C, inequality we have

i=1 ni
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z a. <n?. For EX, =0, considering two cases 0<p<1 and 1<p<?2

i=1 ni

we can easily get

nYp =nYP —0. (3.7)

i ani EYni
i=1

i ani EYn'i
i=1

Thus, to prove |, -0 completely it suffices to prove

Za (Yy —EYy)

n P max
1<k<n

— 0 completely. (3.8)

By the Chebyseve inequality, Z::lqz (n)<oo and (3.3) of Lemma 3.2 we get

N Yp
;P(m«n >én j

2
<<Zn 2/"Emax(Za \# EYni)j

Py} 1<k<n

3

Z (Yni - EYni )

< Zn Z/pZam EY? (3.9)

< Zn*z/pZa (EXZ1(X| <0’ )+n?PP(|x | > n??))

n=1

< Zn’z/pEXfI (|X.] <)+ n?PP(IX,|> V) =1+ 1y,
n=1
It’s easy to see that

|1”=ip(|xl|>n]“’)s E|X,|" <. (3.10)
n=1

For | we have

I’:in’z/pEXfl (X, <n*°)

72/szx |((] 1 <|x|<Jl/p)

=1

-3 XP((5-2)"7 <%, < Jﬂp)infz/p (3.11)
' n=]

<3 e ((5-1) <|x,|< 77)
i

<SEPG (-7 <[X,]< ) =[x <o
=

Thus (3.8) follows from (3.9), (3.10) and (3.11). Consequently |, <oo.
Since (3.7), to prove 1, - 0 completely it suffices to prove

k
nYe max|>"a (Y, —EYy; )| 0 completely. (3.12)
<ksn [z

In fact, according to the Chebyshev inequality, (3.3) and assumption

SUanZ. 1anI <o,
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iP[max 2y (Y —EY)

nel 1<k<n

>gn]”’j
<<Zn 2/"Emax{Za (Y, EYn’i)j2

1 1<k<n

< Z n#r Z aiEY”?

< ;n’z/pEXfI (|X]>n"?)
(3.13)

=S EXE (K <|X,| < (k+1)"7)

n=1 k=n

< Y EXI (K <[%,[ < (k +1)”")in-2/p
n=1

o
k=1

< SR (k)P E X1 (K <X < (k+2)"?)

k=1

E|X Pk <], < (k+2)"7)

< E|X1|p <o,

From (3.12) and (3.13) we know 1, -0 completely. The proof of Theorem
2.1 is complete.

Proof of Theorem 2.2. Without loss of generality we assume a,; >0 for all
n>1i>1. Let

Yo ==n“E(X; <=n)+ X, (| X[ <n)+nT (X, > n%).

By Lemma 2.1 we see that {Yni,i 21} and {a Y I>1} are AANA for all

ni ' ni?
n>1.So
>gn“j

ap-2
Zn P P[{ljfx Zam ,
sin““P(O{|Xi|>n“}j+Zn“ 2P(max

n=1 i=1 I<ksn

[

leaniYni

>en"‘j (3.14)
=1, +1,.

To prove (2.2) it suffices to prove |, <o and 1, <.
Since ap>1 we have

Il:in“p‘lP(|Xl|>n“)<< E|X,|" <o, (3.15)
n=1
. . . n o_r
Bythe C, inequality and assumption )’ a; =0O(n), we have

Z. @, =0(n). Under the condition E | X1| P <o, we consider two cases

0<p<1 and p>1 respectively, and we can easily get

(3.16)

ni

From (3.16), the Chebyshev inequality and Corollary 2.1 we know
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2.8 (Yo —EYy)

k

2 2 (Y —EYn)

1<k<n

I, < Zn“p 2P(max

>gn“/2j

< Zn‘”’ *"-2F max
N1 1<k<n

<<Znap ar- Zﬂuc(iqf j }ZE|am Yl +(|Zn;E(an,Ym) jr/z}

(3.17)

=1, +1,.

By condition Z:zqu (n)<o andthe C, inequality

:inapmz[uc(znjq’ j }ZEF%. Yul

n=1 i=1
< gnapfar—zga;i {E|Xl|" | (|X1| <n“ )+ narp(|xl| > n“ )} (3.18)

=y + Ly
Nomatter 0<p<2 or p>2 wehave r> p.Using assumption

Z. a5, =0(n) and the method of (3.11) we get
Ly = 3023 At E X[ (|X.|<n*) < E[X,|" <0, (3.19)
n=1 i=1
and
Ly, = inap-zia;ip(|x1| >n") <E|X,|" <o (by (3.15)).  (3.20)
n=1 i=1
From (3.18), (3.19) and (3.20) we know |,, <c0.

S (S

o r/2
< nzz‘zn“p*m*z {Z a2 [Exﬁ (1%, <n*)+nP(|X,| > n” )]}

=1

<3 peper? {(gaji EXZ1(|X,[<n” )]r (Z agn®P(|X,[>n* ))r/z}

n=1

=l + 1.
(3.21)

Since z|1am_ (n),r>2 and the C, inequality, we know Z al <n.

i=1 i
Therefore

00 n r/2
| =Y. NP2 (Zaji EXZI(|X,]) < n“j
n=1 i=1

(3.22)
2 2
< Znap —ar+r/2— Z(EX I (|X1|)< a)r/
We consider the following two cases:
1)If 0<p<2,then r=2,taking the method of (3.11) we have
lpps < D NP2 EXT L (X, <n) < E[Xy|" <o, (3.23)
n=1
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and
Ly = in"p 2a- 2Z¢':12n2"‘P(|X1|>n"‘)
<<inap4p(|x1| >n®) (3.24)
< nE1|x1|p <o (by (3.15)).

2)If p>2,then r>(ap-1)/(a-12)> p.From EXlzl(|X1|$n“)<oo
and (3.22) we get

I = z nle PV o (3.25)
n=1

and

» r/2
222 znap ar— Z[ZaZ n2ap(|xl| >n? )]
n=1
<« inaP*aPF/ZH/ZfZ (E|X1|p)r/2 (3.26)

n=1

<Y =PI o (since ap >1,r>2).
n=1

Thus 1, <o follows from (3.23) and (3.26), |, <o from (3.24) and
(3.26).So 1,, <o by (3.21). Hence |, <o by (3.17).(2.2) is proved.
As for (2.3), inspired by Gut [7] (page 318_319), we have

k
Zn“p 2P[sup > agX; >5J
i=1
>€j

n=1 k=n
k- Zamx
>£j Z 2ilar-2)

n=2i1
>gj

—i Z n%P- 2P[sup

j=1p=2it k>n

<<ZP(sup k™ Zamx

j=1  \kz2it

k™ Zamx

j=1 1> ek <!

< ZZ“‘”’ = P(sup max

<3 20D max [ a X|>g2!
J-Z:; E‘ 1<k<2! ,21: mi (3.27)
:zp( zamx > g2 jzz“a"”
o \1<k<2! =
<Y 2l tp (max >a, X |>e2! j
=1 1<k<2' i3
w 24 ) k 1
<Y 3 2l [max DagX, >52(‘)“]
1=1 = ol-1 1<k< i=1
w 241
<> > n*" 2P(max Z X, >g’n“J (Where g’=2‘“g)
1=1 p=p!-1 1<k<
) k
ap- (PN
<<n2‘1n P m%z;amxi >e'n” |
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Thus (2.3) follows from (2.2) and (3.27). The proof of Theorem 2.2 is com-
pleted.

Fund

This work is supported by the Projects of Science and Technology Research of
Chonggqing City Education Committee (KJ1307XX), and Major Social Science
Commissioned Research Project of Chongqing “Research on Frontier Theory of
Census Quality Assessment” (2016 WTO03).

References

[1] Chow, Y.S. and Teicher, H. (1997) Probability Theory: Independent, Interchangea-
bility, Martingales. 3rd Edition, Springer, Berlin.

[2] Chandra, T.K. and Ghosal, S. (1996) Extensions of the Strong Law of Large Num-
bers of Marcinkiewicz and Zygmund for Dependent Variables. Acta Mathematica
Hungarica, 71, 327-336.

[3] Chandra, T.K. and Ghosal, S. (1996) The Strong Law of Large Numbers for
Weighted Averages under Dependence Assumptions. Journal of Theoretical Proba-
bility, 9, 797-809.

[4] Kim, T.S., Ko, M.H. and Lee, LH. (2004) On the Strong Laws for Asymptotically
almost Negatively Associated Random Variables. Rocky Mountain Journal of Ma-
thematics, 34, 979-989.

[5] Cai, G.H. (2004) Complete Convergence for Weighted Sums of Sequences of AANA
Random Variables. Glasgow Mathematical Journal, 17, 165-181.

[6] Yuan, D.M. and An, J. (2009) Rosenthal Type Inequalities for Asymptotically Al-
most Negatively Associated Random Variables and Applications. Science in China
Series, 52, 1887-1904.

[7] Wang, X.J., Hu, S.H. and Yang, W.Z. (2011) Complete Convergence for Arrays of
Rowwise Asymptotically Almost Negatively Associated Random Variables. Discrete
Dynamics in Nature and Society, Article ID: 717126.
https://doi.org/10.1155/2011/717126

[8] Gut, A. (2005) Probability Theory: A Graducate Course. Springer, Berlin.

DOI: 10.4236/am.2017.811120

1670 Applied Mathematics


https://doi.org/10.4236/am.2017.811120
https://doi.org/10.1155/2011/717126

	Complete Convergence of Weighted Sums for Asymptotically Almost Negatively Associated Sequences
	Abstract
	Keywords
	1. Introduction
	2. Main Results
	3. Proofs
	Fund
	References

