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Abstract 
A graph G is said to have a perfect dominating set S if S is a set of vertices of G 
and for each vertex v of G, either v is in S and v is adjacent to no other vertex 
in S, or v is not in S but is adjacent to precisely one vertex of S. A graph G may 
have none, one or more than one perfect dominating sets. The problem of de-
termining if a graph has a perfect dominating set is NP-complete. The prob-
lem of calculating the probability of an arbitrary graph having a perfect do-
minating set seems also difficult. In 1994 Yue [1] conjectured that almost all 
graphs do not have a perfect dominating set. In this paper, by introducing 
multiple interrelated generating functions and using combinatorial computa-
tion techniques we calculated the number of perfect dominating sets among 
all trees (rooted and unrooted) of order n for each n up to 500. Then we cal-
culated the average number of perfect dominating sets per tree (rooted and 
unrooted) of order n for each n up to 500. Our computational results show 
that this average number is approaching zero as n goes to infinity thus sug-
gesting that Yue’s conjecture is true for trees (rooted and unrooted). 
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1. Introduction 

A vertex v in a graph G is said to dominate itself and its neighbors. A set S of 
vertices in a graph G is said to be a dominating set for G if every vertex of G is 
dominated by at least one member of S. A set S of vertices in a graph G is said to 
be a perfect dominating set for G if every vertex of G is dominated by exactly 
one member of S. If a graph G with vertex set V has a perfect dominating set of 

{ }1 2, , , kS u u u=  , then V can be partitioned into k subsets ( )iN u , ( )1 i k≤ ≤ , 
where ( )iN u  is the set of vertex iu  together with its neighbors, i.e. 
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. The concept of perfect domination set in a graph has wide range 
of applications. For example, resource allocation and placement in parallel 
computers [2], code error detecting and correcting [3]. In social networking 
context, if G is the graph presentation of a social network and if G has a perfect 
dominating set S, then the members of S are independent influencers that will 
completely influence the entire network, and each non-influencing member of G 
will be influenced by exactly one influencer from S. For such a social network G, 
if we can identify one perfect dominating set S, we can focus on S instead of 
entire social network when we want to influence, do campaign for instance, on 
the entire network. In the context of a common UNIX file system in which we 
consider only directories, a rooted tree T can be used to completely represent the 
entire file system. If we can configure T so that T has a perfect dominating set S, 
then each node in S can be assigned an agent, these agents are independent and 
can carry out monitoring or security checks on entire system in very efficient 
manner. 

A graph can have none, one or more than one perfect dominating sets. See 
Figure 1. In Figure 1, graph 1G  has no perfect dominating set, 2G  has one 
perfect dominating set {1, 4, 7} and 3G  has two perfect dominating sets {1, 4, 7} 
and {2, 8, 6}. 

For a graph G, three questions can be asked: “Does G have a perfect 
dominating set?” “If G has perfect dominating set(s), how many are there, what 
are they?” “What is the probability of one arbitrary graph G having a perfect 
dominating set?” The problem of determining if a graph has a perfect dominating 
set is NP-complete [4] [5], and the problem remains NP-complete even if the 
graphs are restricted to 3-regular planar graphs. Thus the problem of determining 
if a graph has a perfect dominating set is quite difficult. The second question also 
seems very difficult. For the third question, in 1994 Yue [1] conjectured that 
almost all graphs do not have a perfect domination set. 

For a given tree, Livingston and Stout have obtained linear algorithms to 
answer the first question and the second question [6]. In this paper, we will focus 
on and study trees (rooted and unrooted) by using combinatorial computational 
techniques to answer a part of the second question (how many perfect 
dominating sets) and the third question from completely different standpoint. 

From onwards unless otherwise stated, the trees considered are rooted and 
unrooted. 

We first compute the number of perfect dominating sets among all trees of  
 

 
Figure 1. Three Graphs. 
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order n for each n up to 500 then we calculate the average number of perfect 
dominating sets per tree of order less than or equal to n for each n up to 500. 
Since a tree can have at most finite number of perfect dominating sets, if this 
average number is approaching zero as n gets bigger then we can say that it 
provides computation evidence of Yue’s conjecture being true for trees. 

Unlike other graph counting problems, it appears impossible to obtain 
recursive formulas for the number of perfect dominating sets among all trees 
directly. So, instead of using a single generating function, we introduce four 
interrelated generating functions and obtain recursive formula for each, then we 
use these formulas to find the number of perfect dominating sets among all trees 
of order n for each n up to 500. We then calculate the number of trees of order n 
for each n up to 500 and finally calculate the average number of perfect 
dominating sets per tree of order less than or equal to n for each n up to 500. 

The notation and terminology in this paper follow that in Harary and Palmer 
[7] and Chartrand [8]. In particular, ( ) ( )1 2; , , ,n n nZ S Z S s s s=   is the cycle 
index for the symmetric group nS  acting on n objects. This is a polynomial in n 
variables 1 2, , , ns s s . For any generating function ( )g x , ( )( );nZ S g x  is a 
shorthand representing the substitution ( ) ( )2

1 2, ,s g x s g x= =   in ( )nZ S . 
For related results see [2] and [3], for terminologies readers are referred to [7] 

[8] and [9]. 

2. Generating Functions for Rooted Trees 

In order to compute the number of perfect dominating sets among all rooted 
trees we would like introduce four generating functions. We let 

( )
1

n
n

n
P x P x

∞

=

= ∑  

be the generating function in which nP  is the number of perfect dominating 
sets among all rooted trees of order n. Unlike other graph counting problems, it 
is not possible to obtain recursive formulas for the number of perfect dominating 
sets among all trees directly, so we introduce other three interrelated generating 
functions. 

Let 

( )
1

n
n

n
R x R x

∞

=

= ∑
                        

(1) 

be the generating function in which nR  is the number of perfect dominating 
sets among all rooted trees of order n which have the root in the dominating set. 
(The root is dominated by itself.) We call these rooted trees as perfectly dominated 
rooted trees of type I. 

Let 

( )
1

n
n

n
C x C x

∞

=

= ∑
                        

(2) 

be the generating function in which nC  is the number of perfect dominating 
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sets among all rooted trees of order n which have the root dominated by one of 
its children. (The root is dominated from inside.) We call these rooted trees as 
perfectly dominated rooted trees of type II. 

We let the forth series be 

( )
1

n
n

n
B x B x

∞

=

= ∑
                        

(3) 

In this series ( )B x , we would like to count sets that are nearly perfect 
dominating sets among all rooted trees of order n. For each such a rooted tree T, 
we should like to count the sets with the property that for each such a set S, with 
the exception of the root, every vertex is perfectly dominated by a unique vertex 
in the set S. But the root is neither in S nor is it dominated by any vertex in S. 
Such a tree T is not perfectly dominated, but it can be a branch in a larger 
perfectly dominated tree of type I. (The root is dominated from outside.) We call 
these branches as branches of type B. 

Observe that the number of perfect dominating sets among all rooted trees of 
order n equals the sum of perfectly dominated rooted trees of type I of order n 
and perfectly dominated rooted trees of type II of order n, i.e. n n nP R C= + , 
since for any perfect dominating set S, the root must either be in S or be 
dominated by one of its children. 

Thus we have 

( ) ( ) ( ).P x R x C x= +                       (4) 

It may seem that ( )B x  is not involved in the process of counting the 
number of perfect dominating sets, but we shall soon see we need it to calculate 
( )R x  and ( )C x . 

3. Functional Relations among the Counting Series 

Our object is to find the number of perfect dominating sets among all rooted 
trees of order n. In the previous section we saw that this number is equal to 

n nR C+ . We first find the functional relations among ( ) ( ),R x C x  and ( )B x  
then generate nR  and nC  for every n up to 500.  

Theorem 1. For the functions introduced in (1), (2) and (3) the following 
equations hold:  

( ) ( )( )
0

,k
k

R x x Z S B x
∞

=

 =   
∑

                    
(5) 

( ) ( ) ( )C x R x B x=                        (6) 

( ) ( )( )
0

,k
k

B x x Z S C x
∞

=

 =   
∑

                    
(7) 

Proof: First observe that for any rooted tree T, if T has a perfect dominating 
set, every branch of T must be one of perfectly dominated trees of type I, or 
perfectly dominated trees of type II or one branch of type B. Also observe that 
any rooted tree that is perfectly dominated tree of type I, perfectly dominated 
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tree of type II or branch of type B must have the property that it is built by a root 
and some (maybe none) branches of perfectly dominated tree of type I, or some 
(maybe none) perfectly dominated tree of type II or some (maybe none) branch 
type B. 

Now we would like to examine the structure of rooted trees of perfectly 
dominated tree of type I, perfectly dominated tree of type II and branch of type 
B respectively. 

For perfectly dominated tree of type I, any branch of perfectly dominated tree 
of type I is invalid since otherwise both root of the tree and root of the branch 
will be in the dominating set, contradicting the property of perfectly dominating 
set. Any branch of perfectly dominated tree of type II is invalid since otherwise 
the root of the branch will be dominated twice, contradicting the property of 
perfectly dominating set. On the other hand, it can have any number of branches 
of type B. See Figure 2. 

This allows us to deduce the Equation (5):  

( ) ( )( )
0

, .k
k

R x x Z S B x
∞

=

 =   
∑  

In this expression, the factor x accounts for the root. Each ( )( ),kZ S B x  
allows for k branches of type B. Thus the structure shown in Figure 2 leads us to 
Equation (5). 

For rooted trees of perfectly dominated tree of type II, it must have exactly 
one branch of perfectly dominated tree of type I and the rest of it must be a 
branch of type B. See Figure 3. 

That gives us the Equation (6): 
 

 
Figure 2. The structure of rooted of perfectly dominated tree of type I. 

 

 

Figure 3. The structure of rooted of perfectly dominated tree of type II. 
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Figure 4. The structure of rooted tree of type B. 

 

( ) ( ) ( )C x R x B x=  

For a branch type B, any branch of perfectly dominated tree of type I is invalid 
since otherwise the root of the tree will be dominated, contradicting the property 
of branch of type B. It can have any number of branches of type type II. It 
cannot have any branch of type B since otherwise the root of the branch would 
not be dominated, contradicting the property of rooted tree of type B. See Figure 
4. 

So we have the Equation (7): 

( ) ( )( )
0

, .k
k

B x x Z S C x
∞

=

 =   
∑  

4. Recurrence Relations and Numerical Values  
for Rooted Trees 

Although the following two equations can be derived from (5) and (7) (see [7]), 
we would like to use combinatorial arguments to obtain them. 

( ) ( )2

1
1 kBk k

k
R x x x x

∞

=

= + + +∏ 

                  
(8) 

( ) ( )2

1
1 kCk k

k
B x x x x

∞

=

= + + +∏ 

                  
(9) 

See Figure 2 again, we examine the following expression: 

( )2

=1
1 .kBk k

k
x x x

∞

+ + +∏   

In this expression, x counts the root. The number 1 represents no branch of 
order k; the term kx  represents one branch of order k, 2kx  represents two 
branches of order k, and so on. The number kB  represents the number of ways 
to select a branch of type B of order k. 

Then observe that the product of all these is, by the structure of perfectly 
dominated tree of type I, ( )R x . That is Equation (8). By similar arguments, we 
can get (9). 

Knowing that 1 1R = , 1 1B = , 1 0C = , theoretically these recurrence relations 
allow us to compute nR , nB , nC  for any particular n. For example if we want 
to calculate mR , mB , mC , we only need to know nR , nB , nC  for each n up 
to 1m − . 
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By using (8), (9) and (6) on on a 64bit-based PC with a CPU process of T4200 
(Pentium(R) Dual-Core) and RAM of 4 GB we can determine nR , nB , nC  for 
each n up to 10 in 0.165 seconds, for each n up to 15 in 29.2 seconds and for 
each n up to 20 in 5719.8 seconds. At n equals 25, the same PC failed to manage 
the complexity of calculations. In order to determine nR , nB , nC  for each n 
up to 500 more efficiently we need to modify (8), (9) and (6). 

In Equation (8) we rewrite the geometric series and then use the binomial 
theorem with negative exponents to get 

( ) ( )

( )

2

1

1

01

1

1

1
.

k

k

Bk k

k

Bk

k

k kl

lk

R x x x x

x x

B l
x x

l

∞

=

∞ −

=

∞ ∞

==

= + + +

= −

+ − 
=  

 

∏

∏

∑∏



 

Similarly, from (9) we have 

( )
01

1
.k kl

lk

C l
B x x x

l

∞ ∞

==

+ − 
=  

 
∑∏  

Formally expanding the product of two series in (6) gives 

( )
1

2 1
.

k
k

l k l
k l

C x R B x
∞ −

−
= =

 =  
 

∑ ∑  

To find out the formulas to calculate nR , nB , nC  for each n up to 500, we 

first introduce some notation. Let ( )
0

n
n

n
f x f x

∞

=

= ∑  be any power series, then 

( )n
nx f x f  =  . For example 

( )1
e

!

n
n xx

n
− −

  =  . 

Now suppose we would like to find ,m mR B  and mC  ( )2 500m≤ ≤ , then 

1
1

01

1
m

m k
km kl

m
lk

B l
R x x x

l

− 
 −  

==

 
+ −   =        

∑∏  

1
1

01

1
m

m k
km kl

m
lk

C l
B x x x

l

− 
 −  

==

 
+ −   =        

∑∏  

1

1
.

m

m k m k
k

C R B
−

−
=

= ∑  

With the aid of the same computer and Mathematica, these three formulas 
provide nR , nB ,and nC  for each n up to 500.  

5. Equation and Numerical Values for Unrooted Trees 

Now we are in the position to determine the number of perfect dominating sets 
among all unrooted trees of order p.  
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We have seen that (4): 

( ) ( ) ( )P x R x C x= +  

is the generating function in which nP  is the number of perfect dominating sets 
among all rooted trees of order n. 

We let 

( )
1

n
n

n
p x p x

∞

=

= ∑  

be the generating function in which np  is the number of perfect dominating 
sets among all unrooted trees of order n.  

Theorem 2. The counting series ( )p x  satisfies  

( ) ( ) ( ) ( )2 21 .
2

p x R x C x C x = − −                 (10) 

Proof: We will use the following Theorem (Dissimilarity characteristic 
theorem for trees) due to Otter [10] and presented in [7]. 

For any tree T of order n 
* *1 .n q s= − +                         (11) 

In the equation *n  is the number of dissimilar vertices of T, or more 
precisely, the number of equivalence classes of vertices of T under action of the 
symmetric group of nS ; *q  is the number of dissimilar edges of T, or more 
precisely, the number of equivalence classes of edges of T under action of the 
symmetric group of nS ; s is the number of symmetric edges of T under action 
of the symmetric group of nS . 

To illustrate the Theorem 2, we look the ordinary tree 1T  and the ordinary 
tree 2T  both of order 6 in Figure 5. 

For tree 1T , * 4n = , * 3q =  and 0s = , so * *1 n q s= − + . For tree 2T , 
* 2n = , * 2q =  and 1s = , hence * *1 n q s= − + . 
Observe that each unrooted tree T can give rise to exactly *n  different 

rooted trees and each unrooted tree T can be “rooted” at an edge in *q  
different ways. Also observe that for any unrooted tree T, two end vertices of a 
symmetric edge (if there is any) must be in the center of T. So s equals 0 or 1.  

Now we apply Theorem 2 to our tree problem. Sum (11) over all unrooted  
 

 
Figure 5. Two trees of order 6. 
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Figure 6. Two valid ways of attaching two branches to an edge. 

 
trees that have a perfect dominating set and that have exactly n vertices. The 
result is 

* *1 n q s= − +∑ ∑ ∑ ∑  

but 1 np=∑  and *
nn P=∑ . Furthermore, *q∑  is the number of perfect 

dominating sets among all trees that are rooted at an edge and have the order of 
n. There are six possible ways to attach two branches to an rooted edge, i.e. 
{ } { } { } { } { }, , , , , , , , ,R R R B R C B B B C  and { },C C  but only two ways are valid. 
First, if one branch is type R then another branch must be type B. Secondly, if 
one branch is type C then another branch must be type also C. See Figure 6. 

Hence we have  

( ) ( ) ( )( )*
2 , .q R x B x Z S C x= +∑  

Observe that for a tree that is rooted at an edge and s equals 1, then the two 
branches attached to the rooted edge must be exactly same two branches of type 
C, so  

( )2 .s C x=∑  

Finally, we have 

( ) ( ) ( ) ( ) ( )( ) ( )2
2 , ,p x P x R x B x Z S C x C x = − + +   

or  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 21 .
2

p x P x R x B x C x C x C x = − − + +   

Recalling that ( ) ( ) ( )P x R x C x= +  and ( ) ( ) ( )C x R x B x= , we get (10): 

( ) ( ) ( ) ( )2 21 .
2

p x R x C x C x = − −   

We have nR  and nC  for every n up to 500 in hand, using (10) we can 
determine np  for each n up to 500. 

6. Enumeration Results 

Enumeration results of , , ,n n n nR B C P  and np  for each n up to 20 are presented 
in Table 1. 

Using similar techniques we calculated the number rooted trees nT  of order 
n for each n up to 500 and the number of unrooted trees nt  of order n for each 
n up to 500. Then we calculated the average number of perfect dominating sets 
per rooted tree n n nP P T=  of order n for each n up to 500 and the average 
number of perfect dominating sets per unrooted tree n n np p t=  of order n for 
each n up to 500. 
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Table 1. Results of , , ,n n n nR B C P  and np  (1 20n≤ ≤ ). 

n nR  nB  nC  nP  np  

1 1 1 0 1 1 

2 1 0 1 2 1 

3 1 1 1 2 1 

4 2 1 2 4 2 

5 3 3 4 7 2 

6 6 5 8 14 4 

7 12 12 17 29 6 

8 25 24 37 62 12 

9 53 56 81 134 20 

10 118 122 182 300 42 

11 264 283 414 678 80 

12 602 646 953 1555 169 

13 1389 1516 2215 3604 347 

14 3242 3546 5200 8442 755 

15 7625 8421 12,291 19,916 1624 

16 18,087 20,038 29,262 47,349 3611 

17 43,161 48,085 70,069 113,230 8025 

18 103,614 115,798 168,679 272,293 18,165 

19 249,976 280,421 407,955 657,931 41,282 

20 605,850 681,454 990,865 1,596,715 948,931 

 
Let 

1
k n

n kkPP P=

=
= ∑ , 

1
k n

n kkTT T=

=
= ∑ , 

1
k n

n kkpp p=

=
= ∑ , 

1
k n

n kktt t=

=
= ∑  be the total 

number of perfect dominating sets among all rooted trees of order less than or 
equal to n, the total number rooted trees of order less than or equal to n, the 
total number of perfect dominating sets among all unrooted trees of order less 
than or equal to n and the total number unrooted trees of order less than or 
equal to n respectively, if n nPP TT  is approaching zero as n getting larger then 
we may assert that it is the computational evidence of Yue’s conjecture being 
true for rooted trees. For the same reason, if n npp tt  is approaching zero as n 
getting larger then we may assert that it is the computational evidence of Yue’s 
conjecture being true for unrooted trees. 

We can prove that (see [9] [11]) n nPP TT  is approaching zero as n getting 
larger whenever nP  is approaching zero as n getting larger and that n npp tt  
is approaching zero as n getting larger whenever np  is approaching zero as n 
getting larger. Hence if nP  is approaching zero as n getting larger then we can 
claim that it is the computational evidence of Yue’s conjecture being true for 
rooted trees and if np  is approaching zero as n getting larger then we can claim 
that it is the computational evidence of Yue’s conjecture being true for unrooted 
trees. During the conversation with Paul Erdös, Erdös suggested to look at the 
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nth roots of n
nP  and n

np  since these two values can tell us the “rate” of nP  
and np  approaching zero. 

Results of nP , np , n
nP  and n

np  for each various n are presented in 
Table 2. 

7. Some Observations and Open Problems 

From Table 2 we see n
nP  and n

np  are approaching to about same value of 
0.88 ... as n getting larger. Can we prove that they are actually convergent to the 
same limit? Can we find the limit? 

We know for a perfect dominating set of rooted tree, the root is either 
dominated by itself or by one of its children, hence the number of perfect 
dominating sets among all rooted trees of order n is n n nP R C= +  (4). We may 
ask what is the contribution of nR  (or nC ) to nP ? The ratio of n nR P  
measures the contribution of nR  to nP . 

We have seen the average number of perfect dominating sets per rooted tree 

nP  is somewhat bigger than the average number of perfect dominating sets per 
unrooted tree np . Another interesting question to ask is on what percentage  

 
Table 2. Results of nP , np , n

nP  and n
np  for each various n. 

n nP  np  n
nP  n

np  

1 1.00000 1.00000 1.00000 1.00000 

2 2.00000 1.00000 1.41421 1.00000 

3 1.00000 1.00000 1.00000 1.00000 

4 1.00000 1.00000 1.00000 1.00000 

5 0.77778 0.66667 0.95098 0.92211 

6 0.70000 0.66667 0.94229 0.93466 

7 0.60417 0.54546 0.93054 0.91705 

8 0.53913 0.52174 0.92568 0.92190 

9 0.46853 0.42553 0.91921 0.90943 

10 0.41725 0.39623 0.91630 0.91158 

50 0.00347 0.00322 0.89292 0.89159 

100 68.995140 10−×  68.364300 10−×  0.89031 0.88966 

150 82.333520 10−×  82.171050 10−×  0.88945 0.88902 

200 116.055720 10−×  115.635600 10−×  0.88902 0.88870 

250 131.571730 10−×  131.462930 10−×  0.88876 0.88851 

300 164.079620 10−×  163.797620 10−×  0.88859 0.88838 

350 181.058950 10−×  189.858330 10−×  0.88847 0.88829 

400 212.748820 10−×  212.559160 10−×  0.88838 0.88822 

450 247.135440 10−×  246.643430 10−×  0.88831 0.88817 

500 261.852260 10−×  261.724600 10−×  0.88825 0.88812 
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Table 3. Results of n nR P , n nP p  for each various n. 

n n nR P  
n nP p  

1 1.000000 1.000000 

2 0.500000 2.000000 

3 0.500000 1.000000 

4 0.500000 1.000000 

5 0.428571 1.166670 

6 0.428571 1.050000 

7 0.413793 1.107640 

8 0.403226 1.033330 

9 0.395522 1.101050 

10 0.393333 1.053050 

50 0.374106 1.077140 

100 0.372444 1.075420 

150 0.371899 1.074840 

200 0.371628 1.074550 

250 0.371466 1.074370 

300 0.371359 1.074260 

350 0.371282 1.074170 

400 0.371224 1.074110 

450 0.371179 1.074060 

500 0.371144 1.074020 

 
does one rooted tree can give rise to more perfect dominating sets than that of 
one unrooted tree? The ratio of n nP p  measures the difference. 

Results of n nR P , n nP p  for each various n are presented in Table 3. From 
Table 3 we see about 37% of perfect dominating sets for rooted trees in which 
the root is dominated by itself. On average per tree, rooted trees can give rise to 
about 7% more perfect dominating sets than unrooted trees. 

In this paper, by introducing multiple interrelated generating function and 
using combinatorial computation techniques, we are able to compute the number 
of perfect dominating sets among all trees of order n for each n up to 500. As we 
observed earlier, a tree may have no perfect dominating set. We can define 
perfectly dominated tree to be a tree that has at least one perfect dominating set. 
Thus we can ask a question: “Can we develop an enumeration method to find 
the number of perfectly dominated trees of order n?” We also observed earlier, a 
tree may have more than one perfect dominating set. We can define maximal 
tree of order n to be a tree with largest possible number perfect dominating sets 
among all trees of order n. Then we can ask other questions: “Can we develop an 
algorithm to search maximal trees?” “What are characteristics a maximal trees?” 
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