
Journal of Modern Physics, 2011, 2, 1166-1171 
doi:10.4236/jmp.2011.210145 Published Online October 2011 (http://www.SciRP.org/journal/jmp) 

Copyright © 2011 SciRes.                                                                                 JMP 

On Two-Dimensional Above-Barrier Penetration and 
Sub-Barrier Tunneling for Non-Relativistic Particles  

and Photons 

Vladislav S. Olkhovsky, Mariya V. Romaniuk 
Institute for Nuclear Research of NASU, Kiev, Ukraine 
E-mail: olkhovsky@mail.ru, romanyukmariya@ukr.net 

Received July 27, 2011; revised September 1, 2011; accepted September 11, 2011 

Abstract 
 
We study the two-dimensional above-barrier penetration and the sub-barrier tunneling of non-relativistic par-
ticles and photons, described in the quasi-monochromatic approximation by simple plane waves. Our scheme 
represents the motion from the left free-motion zero-potential region to the right zero-potential region 
through the intermediate region with a one-dimensional rectangular potential barrier along the axis, normal 
to the both parallel interfaces between all three regions, and with the zero potential along the axis, parallel to 
the those interfaces. We have firstly obtained the analytical expressions for the infinite series of multiple in-
ternal and external reflections and also of multiple transmitted waves of particles and photons, with equal 
shifts between them along the interfaces for the above-barrier penetration and with various shifts between 
them in the case of the sub-barrier tunneling. Finally the Hartman and Fletcher effect for any transmitted 
wave is established. 
 
Keywords: Two-Dimensional (2D) Penetration and Tunneling, Quasi-Monochromatic Approximation, 

Propagating Plane Waves, Evanescent and Anti-Evanescent Waves 

1. Introduction 
 
The one-dimensional (1-D) non-relativistic-particle and 
photon penetration and tunneling through a potential 
barrier had been studied in many papers in the stationary 
and non-stationary descriptions (for instance, in [1-6]; 
see also a lot of the relevant refs therein). However, there 
are not very much papers with analysis of multiple in-
ternal reflections during tunneling (see, for instance, 
[7-11] for 1-D tunneling and [12] for 3-D tunneling). 
Here we shall study the simple geometrical 2-D scheme, 
described by the two-dimensional (2-D) time-independ-
ent Schrödinger equation 

      0 2 2 2 2 22 , ,x y m E V x y x y         

(1) 

for non-relativistic particles in the quasi-monochromatic 
(and initially stationary) approximation, where  ,x y  
is the stationary wave function for a particle, m is its 
mass, ħ is Planck’s constant divided by 2π,  ,V x y  is 

its potential (barrier), and E is its total energy. The space 
regions I, II and III are defined as the regions with zero 
potentials     0V x V y   (I for 0x   ,    
y    and III for a x   , ) and the 

space region III contains the barrier 0V x
y  

 


0V  , 
 V y 0  ( 0 x   , y   

 y

), all three regions 
being infinite along the y - axis (parallel to the interfaces 
between I and II and also between II and III), and due to 
the translation symmetry the V  has the same y— 
dependence in all three regions ( permanently zero po-
tential 



 V y  along the y-axis). We neglect the bound-
ary effects in the regions with large y  due to the infi-
niteness of all three regions along the y axis. Then, using 
the particle-photon similarity, established in [3-5,13], we 
study the behavior of photons, propagating in isotropic 
glass media I and III, penetrating or tunneling through 
the isotropic air layer II. Further we briefly discuss an 
alternative too much simplified approach from [14], pre-
sented without rigorous verification and neglecting mul-
tiple internal reflections. 
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2. The Scheme of 2-D 
Non-Relativistic-Particle Penetration and 
Tunneling through a Barrier, Considering 
Multiple Internal Reflections along the 
x-Axis 

 
In the simple 2-D geometrical schemes (Figures 1-3) all 
plane waves in regions I and III are represented, in a 
usual way for stationary pictures, by straight lines with 
arrows1. At the bottom of Figure 1, the initial 2-D plane 
wave  exp ikr  (where  ,x xk kk ,  ,x yr , 

 1/22 2
x yk k   kk , 2 2 22 ,x xk m E  2 2 22y yk m E , 

where   is the total and at the same time 1/22 2
x yE E E 

kinetic particle energy in I and III ) describes in I the free 
particle moving towards point ( ).  0x y 

Firstly we analyze the above-barrier penetration with 
. 0x

At point ( ) the first reflected plane wave 
E V

0x y 
,1ex

RA exp Rik r   (where ,1ex
RA  is the amplitude of the 

firstly externally reflected wave from the left interface 

into I,  ,ex ex
R x yk k

II 

 k ) and the firstly penetrated (into 

II) plane wave  (where penik r 1 1 exppenA 1
penA  is 

the amplitude of the firstly penetrated wave, 

  0, ,pen
x yk k 2m( )xE V pen

xk penk  , ) ap-  0VxE 

pear. Further, at the first exit point (x = a, y = y), y 
being the first shift upwards in II due to the motion with 
ky along the y axis, the firstly transmitted plane wave 

 1 1 expIII TA i  kr  (where 1
TA  is the amplitude of the 

firstly transmitted (into II) wave) and the firstly inter-

nally reflected wave  (where ,1 ,1expin in
R RA ik r ,1in

RA  is the 

amplitude of the firstly internally reflected (into II) wave, 

 ,in pen R x yk k k ) appear. Here y can be evidently 

evaluated as 

　 tan , tan open
y xy a k k          (2a) 

or  

  , tanPh pen
y xy k m a           (2b) 

where ,Ph pen open
x x  is the phase time2 of particle 

moving with the velocity 

inside II evaluated in the stationary-phase approxima-
tion). 

Successively, at point ( ,0x  2y y  ) the second 
penetrated (into II) wave, or the second internally re- 

 

 

Figure 1. A schematic representation of multiple 2D reflec-
tions, above-barrier penetrations and transitions of a non- 
relativistic particle. 

 

 

am k  
yk m  along the distance a 

(i.e., the time for a quasi-monochromatic particle to 
transfer the interval from x = 0 to x = a along the x axis  

1Then we assume, as one does usually assume in the approximation of 
the stationary picture, that the straight line represents the axis of the 
moving quasi-monochromatic wave packet, neglecting its transversal 
dimensions which are unessential in the initial approximation. 
2The definition of  phase time  see, for instance, [1,3] (and correspon-
dent refs therein). 

Figure 2. A schematic representation of multiple 2D reflec- 
tions, sub-barrier tunneling and transitions of a non-rela- 
tivistic particle. 
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Figure 3. A schematic representation of the alternative 2D 
tunneling with one transmitted and one reflected propa-
gating waves.  
 
flected (from the left interface II) wave  2 exppen penA ik r  
(where 2 in

pen R
,2A A

 ik r

 is the amplitude of the second pene-
trated (into II) wave, or, which is the same, of the second 
internally reflected (from the left interface into II) wave) 
and the second externally reflected (into I) wave 

R  (where,1 expex
RA ,1ex

RA  is the amplitude of the 
second externally reflected (into I) wave) appears. And 
so on (it can be continued up to any n-th externally re-
flected (into I) wave  A ik r,1 expex

R R

From the matching conditions of the waves and their 
first derivatives 

, ). 2n 

x   at points ( ), (0x y  x a , 
y y  ), ( ,0x  2y y  ), ( x a 3 , y y  ), …, we 

obtain, considering that we can neglect the plane waves 
 due to the translation symmetry in the both 

interfaces, that  
exp yik y

   
 

   
 

,1 ,2
3

2

,3
4

, 1 ,

4
, exp 2

4
exp 4 , ,

2
( 1,2, )

pen penpen
x x x xex ex penx x

R R xpen pen
x x x x

pen pen
x x x xex pen

R x
pen

x x

pen
ex n in n x
R R pen

x x

k k k kk k
A A ik a

k k k k

k k k k
A ik a

k k

k
A A n

k k



 

 


 

,



  


  

(3) 

   
 

   
 

1 2
2

3

3
4

1 ,

22
, exp 2

2
exp 4

( 1, 2, )

pen
x x xpenx

pen pen xpen pen
x x x x

pen
x x xpen

pen x
pen

x x

pen
n in n x x
pen R pen

x x

k k kk
A A ik a

k k k k

k k k
A ik a

k k

k k
A A n

k k



 

 







  



,



 

(4) 

   
 

   
 

   
 

 

,1
2

2

,2
3

3

,3
4

,

2
exp 2 ,

2
exp 4 ,

2
exp 5 ,

exp 2 , ( 1, 2, )

pen
x x xin pen

R x
pen

x x

pen
x x xin pen

R x
pen

x x

pen
x x xin pen

R x
pen

x x

pen
in n pen n x x
R x pen pen

x x

k k k
A ik a

k k

k k k
A ik a

k k

k k k
A ik a

k k

k k
A ik a A n

k k












    


  



 

(5) 

   
 

   
 

,1

,2
3

2

,3
4

, 1 ,

,

4
exp 2 ,

4
exp 4 ,

2
, ( 1, 2,

pen
ex x x
R pen

x x

pen pen
x x x xex pen

R x
pen

x x

pen pen
x x x xex pen

R x
pen

x x

pen
ex n in n x
R R pen

x x

k k
A

k k

k k k k
A ik a

k k

k k k k
A ik a

k k

k
A A n

k k

















)  


 

(6) 

 
 

   
 

   
 

 

1
2

2
3

3

3
5

,

4
exp ,

4
exp 3 ,

4
exp 5 ,

2
exp , ( 1, 2, )

pen
pen x x

T x x
pen

x x

pen pen
x x x xpen

T x x
pen

x x

pen pen
x x x xpen

T x x
pen

x x

pen
n pen in n x
T x x R pen

x x

k k
A i k k a

k k

k k k k
A ik ik a

k k

k k k k
A ik ik a

k k

k
A i k k a A n

k k

    


    


    

       

 

(7) 

For xk k , when 0   (see Figure 1) and the ini-
tial plane wave is normal to the first interface and 

0y  , we see that 

2 21 ,1 1
pen

esx
pen R

x

k
A A

k
   

and 

2 21 ,1pen pen in
x pen x R x Tk A k A k A 

21  

due to the flux conservation in the first passing through 
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points ( ) and (0x y  0,x y a  ). By the way, here 
we have evidently generalized (practically repeated) the 
introducing of multiple internal reflections from [10,11] 
for our simple scheme of 2-D penetration. And in the 
case of 1-D penetration (namely when 0   (see Fig-
ure 1) and the initial plane wave is normal to the first 
interface and ) all the expressions, including the 
last expressions , in (3)-(7) are coincident with 
the relevant 1D expressions in [11], where had been pre-
sented the direct time approach to the penetration and 
tunneling with the multiple internal reflections. 

0
1,

y 
n 2, 

Now let analyze the sub-barrier tunneling with Ex < V0. 
We assume that the angle  is sufficiently large  

( crit crit
tan

2
y

x

k

k
 

   , where crit
xk  is defined by equa- 

lity  22 crit
02xk m  V ), so that 0xE V  and pen

xk  is 

imaginary, i.e. 
pen
xk i  with 0   and yk k2 2 2  . 

So, in this case we have the under-barrier tunneling. In 
this case, instead of the above-barrier penetration, which 
is described by formulas (3)-(7), in order to describe the 
sub-barrier tunneling, we have to insert  instead pen

xk , 
utilizing relation pen

xk i
exp ik

. So, instead of the propagat-
ing in II waves , we have the evanescent 
and anti-evanescent waves 

 pen
x x

 exp x , and instead of 
the amplitudes n

penA  and ,in n
RA  of the propagating 

waves  we have the coefficients n pen
xik xexp    

and n  the evanescent and anti-evanescent waves 
 exp x , respectively. The correspondent scheme is 

represented by Figure 2. Thus, for such case, we exploit 
a simple analytic continuation from real (over-barrier) 
wave numbers to imaginary (sub-barrier) wave numbers, 
strictly following the first method from [11]. And they 
obtained results, similar to (3)-(7) after the substitutions 

pen
xk i , n

pen nA  , ,in n
R nA  , do coincide with 

the similar 1D results in [11]. Namely the same results 
will be obtained, if one uses the Fourier expansion over 
the virtual momentum space or the instant on approach 
(these two methods are also presented in [11]). 

And instead of the shift y along the y axis, defined 
for the above-barrier penetration by Equations (2a) and 
(2b) and represented in Figure 1, we have to use, some-
what similarly to (2b), the relations 

　   ( ),
( ), (0)

Ph ex n
y T R x any k m              (2c) 

where  

,
, argPh n n

T x a T
x

a
A

v E
 


 


         (8) ( 1,2,n  )

and 

,, , ,
, 0 argPh ex n ex n

R x RA
E

 




        (9) ( 1, 2,n  

are the phase times (i.e., times for quasi-monochromatic 
particle evaluated in the stationary-phase approximation 
—see, for instance, [1,3] and refs therein) of the n-th step 
for sub-barrier tunneling through the point x = a and of 
the n-th step for the external reflection from the first bar-
rier wall in the point x = 0, respectively. Of course, the 
shifts n y  with the different values of  are 
different (slightly numerically growing for the growing 
numbers n, but always being proportional to 

1,2,3,n 

2 v  in 
the limit a  ), and also the transmitted and exter-
nally reflected waves are quickly damping with the final 
vanishing, due to presence of the evanescent-wave fac-
tors  aexp 

n
T

 of the growing order in the expressions 
for A  and ,ex n

RA  with the growing number n. 
In [14], without strict theoretical verification and with 

the disregard of multiple internal reflections and transi-
tions, it was used for the kx-component inside the region 
II the only one usual linear combination of evanescent 
and anti-evanescent waves    exp expx x      
and for the ky-component inside the region II only one 
propagating wave  exp yik y , and it was obtained the 
following expression for the only one shift along y axis at 
the second interface (between II and III)  

  ,
Ph

y T x ay k m                (2d) 

which is represented in Figure 2, where  

 
  

 


,

2 2 2
0,1

2 2 2 2
0,

arg

sh 2 2

4 sh

Ph
T x a tun T

x x

x x

a v A E

k a ak k
v

k k a

 

  


 





    
2   

  



   (10) 

where 

 
1

4 expn
T T x x

n
xA A ik a ik a F 





    , 

 2 2 2x x xF k D ik D     , 

 1 4exp 2D a    , 

2 2 2
0, 02x xk k mV   2 . 

And, consequently, here one obtains the only one 
transmitted (into region III) 2D propagating wave 

 expT xA ik y   exp yik y which moves in a parallel way 
to the incident wave. 

So, here we compare two different approaches for 2-D 
sub-barrier non-relativistic-particle tunneling. Our ap-
proach, which generalizes [11], is represented by Fig.2 
with an infinite series of multiple internal reflections and 
transmitted waves and by formulas (3)-(7), with the sub-
stitutions pen

xk i , n
pen nA  , ,in n

R nA  , and also 
by shifts (2c). The second one follows [14] and is repre-
sented by the Figure 3 with one shifted line of tunneling 

)
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and one transmitted wave, moving in a parallel way to 
the incident wave, and also with one reflected wave, with 
the complete disregard of multiple internal reflections 
and transmitted waves. But both approaches indicate to 
the non-local behavior of the sub-barrier tunneling,which 
brings to the Hartman-Fletcher effect for tunneling phase 
time in the limit a  . This effect consists in the 
independence of the tunneling phase time from the bar-
rier width (see, for instance, reviews [1,3]): precisely this 
time is equal to 2/v  for any phase time (8) and (9), 

, as well as for the general tunneling time (10) 
in the both approaches.  

1, 2,3n  

Of course, it remains to confirm experimentally which 
of the approaches will be real for the sub-barrier tunnel-
ing. Up to now only our approach is verified by several 
methods, described in [11], and confirmed by the pre-
liminary (apparently without the real data processing) 
experimental observations, published in [15,16]. 
 
3. The Scheme of 2D Photon Penetration and 

Tunneling through a Barrier, Considering 
Multiple Internal Reflections along the 
x-Axis 

 
Now, starting from the strict particle-photon similarity, 
formulated in [2,4,5,13] (see also revelant refs therein), 
we can extend the established in the previous section 2 
(for particles) results for the case of photon 2-D penetra-
tion and tunneling. One can see that Figures 1-3 can be 
also applied for photons, propagating in isotropic glass 
media I and III, penetrating or tunneling through the iso-
tropic air layer II. In this case the quantity 

sin

sin
n





              (11) 

is the index of light refraction in the glass (taking the 
index of light refraction in the air as 1), and Figure 1 
describes the penetration through layer II for the angles 

lesser than the critical angle crit crit
tan y

x

k

k
  , i.e., the an-  

gle of the total internal reflection for the incident photons 
of the s-polarized (i.e., polarized perpendicularly to the 
x-y pane of the incidence) light.  

As to the light, Figure 2 and 3 can in this relation de-
scribe the frustrated total internal reflection (FTIR) of the 
s-polarized light tunneling through the layer II for the 
incident angles  > crit (frustrated-in the sense of the 
partial transmission through the layer II into the glass 
media III). They describe it differently, really in accor-
dance with the cardinally different approaches: either by 
the extension of the 2D non-relativistic-particle tunneling 
with multiple internal reflections presented above here 
and also earlier in a slightly different form for light in 

[11], or by the extension of the 2D non-relativistic parti-
cle and photon tunneling presented in [14], respectively. 
We expect that future precise and accurate experiments 
for both non-relativistic particles and photons can estab-
lish which of the both pictures will be observed really for 
the sub-barrier penetration, as it was earlier analyzed in 
[15,16] (as a preliminary). 
 
4. Conclusions and Perspectives. 
 
1) Starting from the theoretical analysis, elaborated in [5] 
for 1-D tunneling, and also from the preliminary (at least 
in the data processing) 2-D photonic experimental papers 
[15,16], we have firstly theoretically developed an ap-
proach, resulting by infinite multiple penetrating (or 
tunneling) waves and by infinite internally (and exter-
nally) reflected waves in the simple but realistic geo-
mentrical 2-D scheme, described by Figures 1, 2 and 
formulas (2)-(10). 

2) But if one starts from the physical analysis, de-
scribed in [14], then an alternative approach with only 
one transmitted wave and only one reflected wave will be 
obtained in the both 1-D and 2-D schemes. It is namely 
because that the authors of [14] had completely ne-
glected multiple internal reflections and also multiple 
transmissions. 

3) For the concluding analysis of such cardinal diver-
gence between these two approaches it will be instructive 
to undertake decisive thorough and precise experiments 
for a clear description of the above-barrier penetration 
and sub-barrier tunneling. 

4) And also it will be rather interesting to research ex-
perimentally the possibility of the photon superluminal 
group velocities in the parallel transmitted and externally 
reflected parallel propagation lines connected with the 
Hartman and Fletcher effect during the sub-barrier tun-
neling, generalizing the results of 1-D photon tunneling, 
described in reviews [1,3] (including refs to the experi-
mental results). 

5) In the future we intend to present additionally the 
results of the numerical study of 2D Gaussian wave 
packets incident to the first interface normally and at the 
angle  to the axis, normal to the interface. 
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