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Abstract 
Aims: Steadily the clinicians of our team in inflammatory bowel disease en-
counter ulcerative colitis patients that develop deep ulcers during their treat-
ment. Currently, these practitioners are only equipped with their grade of ex-
pertise in inflammatory domains to decide what new therapy maybe use in 
such cases. Encouraged by the limited knowledge of this frequent pathology, 
we seek to determine the molecular conditions underlying the recurrent for-
mation of deep ulcerations in certain group of patients. Method: The goal of 
this strategy is to expose differences between groups of patients based on si-
milarities computed by random walk graph kernels and performing functional 
inference on those differences. Results: We apply the methodology to a co-
hort of eleven miRNA microarrays of ulcerative colitis patients. Our results 
showed how the group of ulcerative colitis patients with presence of deep ulc-
ers is topologically more similar (0.35) than ulcerative colitis patients (0.18) to 
control. Such topological constraint drove functional inference to complete 
the information that clinicians need. Conclusions: Our analyses reveal highly 
interpretable in the guidance of practitioners to eventually correct initial 
therapies of ulcerative colitis patients that develop deep ulcers. The metho-
dology can provide them with useful molecular hypotheses necessaries prior 
to make any decision on the newest course of the treatment. 
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1. Introduction 

Acute severe ulcerative colitis (ASC) is a multifaceted complication affecting 
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about 25% of ulcerative colitis (UC) patients nowadays. Such a complication is a 
chronic threatening state often requiring emergent colectomy in case of 
intensive medical treatment failure. Additionally, the presence of deep ulcers 
expose patients to serious episodes such as sepsis, toxic mega-colon, perforation 
or death [1] [2] [3]. Despite many efforts, the molecular conditions leading to 
ulcers formation are still not clear. As showed in following sections, our graph 
kernel analysis provides practitioners with an excellent medical tool to approach 
this serious episode of inflammatory disorder. In this sense, we infer plausible 
hypothesis that sheds light into such a pressing medical problem and fits 
previous experiments reported in the literature. 

Graphs naturally model many types of structured data by means of nodes and 
edges. While nodes are representing general entities edges describe type of 
relations between such entities. On the other hand, machine learning methods 
applied to biomedical contexts [4] [5] concern about capturing relationships 
between structured entities. This tight coupling is of major interest in domains 
like medicine, where the seek of similarity between structures, here patients, is 
essential in preventing and fighting diseases. Kernel algorithms [6] provide an 
excellent framework to measure similarity ( )( ),o oκ ′  between objects o  and 
o′ . Notwithstanding, some few mathematical properties must be ensured first, 
i.e., symmetry ( ) ( )( ), ,o o o oκ κ′ ′=  and positive semi-definite (p.s.d.). Kernel 
methods may be used both to compare nodes within the same graph [7] and in 
inter-graph [8] [9] comparisons. The only constraint is its interpretability since 
we need to capture the pith of data encapsulated by the construction of a graph 
while we find ways suitable for the kernel evaluation. In this paper we evaluate in 
a novel scenario, inflammatory bowel disease, an extension of kernel methods 
[10] looking for topological similarity and combine functional context with the 
idea of performing medical inference in ulcerative colitis (UC). The paper maybe 
dissected in sections, namely: Section 2 portrays the inflammatory medical issue 
underlying this work; Section 3 gives us a reasonable landscape of the methods: 
spectral graph analysis, Conjugate Gradient Methods (CGs) to calibrate random 
walk graph kernel, and functional inference on our topological model; section 4 
confirms our approach is valid when it is used in a real cohort of 11 patients 
having been diagnosed with acute severe ulcerative colitis; we provide our 
concluding remarks in Section 5.  

2. Motivation: The Deep Ulcer Problem in ASC 

Practitioners and scientists based at the “Centre de Recherche sur l’Inflammation” 
(INSERM, UMRS1149); Université Paris-Diderot Sorbonne have recently, 
conducted a primary pilot study targeted to determine why some patients having 
been diagnosed with ulcerative colitis, an idiotypic inflammatory bowel disease, 
develop a haemorrhagic mucosa with deep ulceration. Indeed, ulcerative colitis is 
characterised by superficial inflammatory damages in the colonic mucosa. 
Currently, there are no pathogenic factors identified to explain the occurrence of 
deep ulcers in severe form of UC, such as ASC. This newest complication of the 
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disease is an indicator of a poor response to medical therapy. Upon multiple 
medical assays as well as statistical approaches (i.e., supervised hierarchical 
clustering, etc.) aiming at establishing predictive signatures to be used as dia- 
gnostic and prognostic; such phenomenon, apparently, seems to be “stochastic” 
within the treatment of ASC patients. 

3. Material and Methods 

This section provides the reader with a summary description of the three 
constituent methods, i.e., spectral graph theory, CGs in the efficiently computation 
of the graph kernel, and functional inference on topological models needed to 
understand the results showed in section 4.  

3.1. Human Samples 

All the biopsies analysed in the study were extracted from non-inflamed mucosa 
of the sigmoid colon. Paraffinised samples of colectomy were selected among 
three groups of patients: a first group consisting of four patients operated on UC 
in presence of deep ulcerations (ASC), what is a constituent marker of severity; a 
second sample made of three healthy subject with normal colonic mucosa and a 
last sample of four patients with refractory UC, i.e., superficial inflammation 
without deep ulcers (Figure 1(a)). The extracted RNA derives from low 
inflammatory areas of the colon. MicroRNA (small non-coding RNA containing 
between 22 - 25 nucleotides) expression was measured by specific chip of 
microarray Affymetrix. 

3.2. Differential miRNA Expression 

Differential miRNA expression was performed using limma [11] by fitting a 
log-normal (LN) generalized linear model (GLM) that accounts for expression 
(mucosal) as well as group (UC/ASC). 
 

 
Figure 1. Human samples’ scheme (a) and differential analysis of miRNA expression 
profiles per group of patients (b); UC, ASC and Control patients are highlighted in red, 
green and blue respectively. 

https://doi.org/10.4236/jamp.2017.511183


I. Morilla et al. 
 

 

DOI: 10.4236/jamp.2017.511183 2247 Journal of Applied Mathematics and Physics 
 

3.3. Multi-Omic Graphs Integration 

In this stage a cohort of eleven miRNA microarrays was used with the aim of 
co-integrating the differential miRNA expression profiles not present in the 
intersection in pairwise of UC patients (i.e., UC, ASC and Control) and known 
human Protein-Protein Interaction (PPI, defined as miRNA-gene target 
product) from Genemania database [12]. Our approach is based on the 
assumption that genes with similar gene expression levels are translated into 
proteins that are more likely to interact. Recent works on gene expression and 
protein interaction data at genome-wide level expose such a conjecture: 
“Protein pairs encoded by co-expressed genes are much more likely to interact 
mutually than with any other type of proteins [13] [14]. Specifically, the 
rationale to transform the miRNA expression of a patient into a network is like 
this: We may want to represent a node in the graph for every protein encoded 
by a miRNA target gene provided its expression level was measured on this 
patient’s microarray. We create an edge between two given proteins of this 
type if these proteins are reported as interacting by Genemania, and genes are 
up or down-regulated at the same time with respect to a provided measure tag 
(see previous subsection). Herein, no distinction is made between coding gene 
and protein. 

3.4. Spectral Graph Properties 

Briefly, we initially explore the geometric and algebraic behaviour of each 
co-integrated omic graph (UC, ASC and Control) by means of some few key 
spectral properties, namely: their spectra; i.e., the eigenvalue for a given factor 
measures the variance in all the variables which is accounted for by that factor. 
Their algebraic connectivity calculated in the Laplacian matrix as its second 
smallest eigenvalue. Eigencentrality; i.e., to weight the relative importance of a 
given ith node in linking motifs within the graphs and defined as the ith com- 
ponent of the eigenvector corresponding to the greatest eigenvalue; and their 
modularity by calculating the Fiedler’s vector; i.e., the vector corresponding to 
its algebraic connectivity [15] [16]. All the calculations were performed using 
MATLAB R2011a (maci64 architecture on a machine with a single 2.8 GHz 
processor and 8GB RAM distributed in two cores). 

3.5. Fixing the Context: Reproducing Kernel Hilbert Space 

Definition 1 Lets r cM ×∈  and p qM ×′∈  be two real matrices, the  
Kronecker product rp cqM M ×′⊗ ∈  and column-stacking operator  

( ) rcvec M ∈  are defined as 

11 12 1

21 22 2

1 2

: ,

c

c

r r rc

M M M M M M
M M M M M M

M M

M B M M M M

′ ′ ′ 
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where *kM  amounts the kth column of M . 
The Kronecker product and vec  operator meet the following relationship 

(e.g., [17], Proposition 7.1.9): 

( ) ( ) ( )T .vec MNP P M vec N= ⊗           (1) 

Another standard condition of the Kronecker product exploited in this work 
is ([17], Proposition 7.1.6): 

( )( ) .M M N N MN M N′ ′ ′ ′⊗ ⊗ = ⊗           (2) 

All these ideas are extendable to Reproducing Kernel Hilbert Spaces (RKHS). 
Let   be such a space, hence it is defined by a p.s.d. kernel :κ × →  , 
where   is a set of labels including the singular label ξ .   generates a 
feature map :Φ →   satisfying ( ) ( ) ( ), ,y y y yκ ′ ′= Φ Φ


 and mapping 

in   ξ  to its zero element. We finally denote by ( )YΦ  the matrix of a 
graph G associated to the feature map that enables lifting tensor algebra from   
to   [18]. 

3.6. General Setup of UC Graphs 

Graphs sG  were constructed for each group of UC patients individually. These 
networks consisted of a set of n vertices { }1 2, , , nV v v v=   endowed with order 
and edges E V V⊂ × . The nature of the measured microRNA expression leads 
us to work on undirected graphs, i.e., if ( ) ( ), ,p q q pv v E v v E∈ ⇔ ∈ . Aditionally, 
( ),p pv v E∉  for any p. Now, we define paths on those UC graphs as a sequence 
of indices 0 , , lp p  ( l  amounts path length) such that 

1
~

s sp pv v
−

, for all 
1 s l≤ ≤ . Our graphs are robustly connected since a path can be traced in each 
direction between each pair of vertices of the graph. We also associate a weight 

0pqw >  to each edge ( ),p qv v  to capture the “strength” of an edge ( ),p qv v . 
Then ( )p qv v  implies 0pqw =  whereas for undirected weighted graphs we 
have pq qpw w= . Now, let 1: qpA w D−=  be the adjacency matrix1 of our weighted 
graphs with D a diagonal matrix measuring the node degrees, that is,  

pp qpqD w=∑ . Thus it may be used as transition matrix in a stochastic process  

since the sum of each of its columns is one. We transform a path on sG  into 
random by applying ( ) 11 1 ,, ,

s ss s p pP p p p A
++ =  what generates sequences of 

vertices 
1 2 3
, , ,p p pv v v   proportionally linked to their weights in pairwise 

following the above probability. Hence, the probability of transition between 
any pair of vertex qv  and pv  through a path of length p can be induced by 
the expression ( )p

pq
A . Finally, we say that two graphs ( ),G V E=  and 

( ),G V E′ ′ ′=  are isomorphic ( G G′≅ ) if ( ),p qv v E∈  iff ( ) ( )( ),p qg v g v E′∈ , 
where :g V V ′→  is a bijection. 

 

 

1In some others context this matrix might be differently defined, e.g., spectral graph theory. 
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3.7. Random Walk Graph Kernel 

Henceforth, we note that all the definitions are generalised to the normalised case, 
whereas the edges are taken on a set with finite number of labels { }1,2, ,d . In 
particular, we can take the induced RKHS d=   endowed with the usual inner 
product. 

Intuitive definition: Random walk graph kernel has been extensively 
reported in literature to classify and measure similarities of graphs [18] [19]. The 
rationale of this algorithm is as follows: The random walk kernel on graph 
counts the number of walks shared by a couple of graphs. Two walks are said to 
be shared if their lengths and label sequences are the same. Subsequently, the 
calculated number of shared walks enables to measure the similarity of the two 
graphs. To infer a formal definition of random walk graph kernel, we might 
want to present some basic concepts in direct product of graphs. The direct 
product of two graphs { },G V E=  and { },G V E′ ′ ′=  is  
other graph, denoted by { },G V E× × ×= , where the node set  

( ){ }, ,p s p sV v v v V v V× ′ ′ ′= ∈ ∈ , and the edge set  

( ) ( )( ) ( ) ( ){ }, , , , , ,p s q t p q s tE v v v v v v E v v E× ′ ′ ′ ′ ′= ∈ ∈ . In particular, G×  can be  

associated to a weight matrix W A A× ′= ⊗  (Definition 1) with non-zero entries 
provided the analogous edge is defined in the graph produced by the direct 
product. A random walk on the direct product graph G×  amounts the trace of 
random walks on G and G′  at once. Let ( )c d  and ( )c d′ ′  be the starting 
(stopping) probabilities of the random walks on G and G′ , respectively. Then, 
the number of shared walks of length l  on the direct product graph G×  is 
calculated by ( )( ) ( )

lT Td d A A c c′ ′ ′⊗ ⊗ ⊗ , where A and A′  are the normalised 
adjacency matrices of G and G′ , respectively [20]. This definition enables the 
review of all the shared walks per each unique lengths. However, this sum might 
not be convergent. Thus, we introduce a non-negative coefficient of decay ( )lµ  
to get rid of the longer walks. 

Kernel definition Formally, the expression for the random walk kernel on 
graph is as follows: 

( ) ( )
0

, : .T l

l
k G G l d W cµ

∞

× × ×
=

′ = ∑                     (3) 

Hence, :c c c× ′= ⊗  ( :d d d× ′= ⊗ ) is the starting (stopping) probability 
distribution associated to the graph produced by the direct product. Therefore, if 
the coefficients ( )lµ  assure the convergence of (3), then (3) is a valid p.s.d. 
kernel ([18], Theorem 3). 

3.8. Conjugate Gradient Methods 

We selected the conjugate gradient method for calculating the random walk 
kernel on our graphs since other methods such as the Sylvester or the spectral 
decomposition are not applicable for kernels on graphs in general [20]. 
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The computation of a random walk kernel on graph with ( ) llµ λ=  stands 
for inverting ( )Wλ ×− , an 2 2n n×  matrix if each graph G and G′  have n 
vertices. Lets M and v be a matrix and a vector respectively, conjugate gradient 
(CG) method is used to solve systems as Mx v=  efficiently [20]. More general, 
since these methods are thought of symmetric p.s.d. matrices, CGs solve as well 
other linear systems efficiently. CG solvers improve their performances as the 
matrix has a small number of different eigenvalues, or is rank deficient. 
Remarkably, in cases where the matrix M is sparse the computation speed of 
matrix-vector products can be increased significantly [21]. 

The computation of the graph kernel (3) using CG maybe firstly described as 
the solution of the following linear system: 

( ) ,W x cλ × ×− =                        (4) 

for x, then we compute Td x× . Next, it ought to contemplate proficient ways to 
solve (4) with the CG solver. We already know that W is a square matrix of size 

2 2n n× . The application of the CG method to a direct approach needs ( )4O n  
iterations to multiply W by a vector y. However, if we exploit the above extended 
vec-MNP formula (1) into RKHS ([18], Lemma 12) with some new matrix 

n nY ×∈  with ( )y vec Y=  and taking into account that in particular 
W A A× ′= ⊗  (A and A′  the normalised adjacency matrix for the graphs G and 
G′  respectively), by ([18], Lemma 12) we can write 

( ) ( ) ( ).TW y A A vec Y vec A YA× ′ ′= ⊗ =                (5) 

If ( )~ dA Φ ⋅ ∈  then we can compute the above multiplication of a matrix 
by a vector in time order of ( )3O dn . Furthermore, even more efficient 
computation of TA YA′  is feasible provided that the matrices A and A′  are 
sparse: Assuming that A and A′  have ( )O n  non-ξ entries, then computing (5) 
takes only ( )2O n  time. 

Finally, note that the nearest Kronecker product [22] is not appropriate to 
approximate W×  since the number d of distinct labels in our labeled graph is 
not large enough. 

3.9. Weisfeiler-Lehman Graph Kernels Cross-Validation 

As validation of our results, we also propose to compare the random walk kernel 
on graph and the family of Weisfeiler-Lehman kernels. The later consists of 
proficient kernels to be used on graphs presenting discrete node labels. Such 
family is built on the Weisfeiler-Lehman test of isomorphism between graphs 
[23] and its valid 1-dimensional variant [24]. It captures topological and label 
information iteratively mapping the graph of reference onto a sequence of 
graphs with nodes displaying characteristic attributes. This catenation of graphs 
originating from the Weisfeiler-Lehman test can establish a family of kernels, 
including an adequate kernel to compare patterns taking subtree shape. Notice 
how the edges and length of such a sequence produce a final complexity in linear 
terms. 
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Definition 2 Given the Weisfeiler-Lehman (WL) graph ( ), ,a aG V E l=  of 
height a , its sequence is denoted by: 

{ } ( ) ( ) ( ){ }0 1 0 1, , , , , , , , , , , , ,h hV G G G V E l V E l V E l= =            (6) 

where h counts iterations, and { }0 , , hG G  and { }0 , , hG G′ ′
  are respectively 

the sequences of G and G′  associated to WL graphs. 
Definition 3 Provided the so-called base kernel κ  is fixed, then the 

definition of Weisfeiler-Lehman kernel for κ  is 
( ) ( ) ( ) ( ) ( )0 0 1 1, , , , ,h
WL h hG G G G G G G Gκ κ κ κ′ ′ ′ ′= + + +           (7) 

where 0G G=  and 0l l= , the WL sequence up to height a of G. 
Finally, ( )hκ  is positive semidefinite if the base kernel κ  is positive 

semidefinite [25], Theorem 3. 
Definition 4 Let kΓ ⊆ Γ  be the set of node labels matching at least once in 

graphs G  or G′  at the end of the k-th iteration of the WL algorithm. We also 
fix 0Γ  as the set of original node labels of G  and G′  while kΓ  are pairwise 
disjoint. Then, we presume every { }1, ,

kk k kσ σ ΓΓ =   is ordered. Define a map 
{ }: ,k kp G G′ ×Γ →  such that ( ),k klp G σ  amounts the count of the letter 

klσ  in a graph G . The Weisfeiler-Lehman subtree kernel on two graphs G  
and G′  is as follows: 

( ) ( ) ( ) ( ) ( ) ( ), , ,h h h
WLsubtree WLsubtree WLsubtreeG G G Gκ φ φ′ ′=           (8) 

where for G (resp. G′ ) 
( ) ( ) ( ) ( ) ( ) ( )( )00 01 0 10, , , , , , , , , , .

h

h
WLsubtree h h h hG p G p G p G p Gφ σ σ σ σΓ Γ=     

This algorithm basically seeks matching of vertex identifiers assuming that the 
corresponding subgraphs match. 

Definition 5 Provided a function w weighting the edges exits, we can 
described the corresponding base kernel Eκ  by  

( ) ( ) ( ) ( )( ), , ,we E e E w e w eδ α α δ β β κ′ ′∈ ∈
′ ′ ′∑ ∑ , where δ  amounts Dirac kernel 

and wκ  is the similarity captured by a kernel between weights. Hence by 6, the 
Weisfeiler-Lehman edge kernel turns into 

( ) ( ) ( ) ( )0 0 1 1, , , ,h
WLedge E E E h hG G G G G Gκ κ κ κ′ ′ ′= + + +  

where ( ) ( ),E E EG Gκ φ φ ′=  and ( )E Gφ  is a vector of matching pairs 
( ),α β , ,α β ∈∑ , which amounts sorted final vertices of an edge in G . 

Definition 6 We also calculate the shortest path version of the Weisfeiler- 
Lehman kernel. Similarly, it is defined as 

( ) ( ) ( ) ( )0 0 1 1, , , ,h
WLshortestpath SP SP SP h hG G G G G Gκ κ κ κ′ ′ ′= + + +  

where ( ) ( ) ( ), ,SP SP SPG G G Gκ φ φ′ ′=  and ( )SP Gφ  denotes a vector composed 
by the counts of matches for triplets ( ), , lspα β  in /G G′ , where ,α β ∈∑  
are sorted final vertices of a shortest path and 0lsp ∈  is the shortest path 
length. 
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3.10. Inference on Random Walk Graph Kernels by Enrichment of 
Functional Annotations 

So far, we described how to compare UC/ASC graphs, enabling the trace of the 
underlying similarity between them and their corresponding control samples by 
gene targets expression profiles from data. Now, we are interesting in performing 
inference on our topological model to characterise the genetic mechanisms of 
miRNA perturbations of gene graph in detail. In section 4, we discuss how 
inference schemes can be used on our estimated model to learn about 
downstream effects of miRNAs perturbations. We note that all of these inference 
schemes are based on enrichment analysis in functional annotations (calculation 
of Fisher’s test [26] is performed to quantitatively capture the functional 
enrichment of genes according to their annotation terms) using the gene 
ontology database (GO) [27]. 

4. Results and discussion 
4.1. Data Integration and Spectral Behaviour between the UC 

Graphs 

We analyse our sequence of graphs individually by comparing some algebraic 
characteristics. 

As describe in section 3.3, we found that 2390 proteins (Figure S1) from 
Genemania [12] were reported by the gene expression levels of our miRNA 
microarrays (Figure 1(b)). The largest amount of those proteins (1071 for 330 
miRNAs differentially expressed (see section 3.2) was identified in the ASC 
sample, whereas the UC patients sample matched in 804 (in 237 miRNAs 
differentially expressed); the remaining 515 (in 92 miRNAs differentially expressed) 
corresponded to the sample of control. These amounts seem to be consistent with 
the medical expectation of discovering, at a larger-scale, perturbed expression 
profiles involved in the pathways leading to deep ulcerations (ASC). Strikingly, 
the comparison of their spectra showed dissimilar conclusions; while the 
eigenvectors of ASC and Control patients exhibit similar patterns regarding UC 
patients (Figure 2(a)), the eigenvalue distributions of the three group of patients 
display the same Gaussian mixture models (Figure 2(b)). However, the algebraic 
connectivity in ASC and UC resembled each other with associated values of 21 
and 18 what means almost twofold greater than the control group with a value of 
10. No significant difference was detected among the remaining spectral 
parameters, i.e., eigencentrality or simple modularity Figure S1. Although we 
enhance important algebraic and geometric characteristics of our graphs, it 
seems that no conclusions might be made regarding their similarities per group. 

4.2. Topological Similarity between Pairs of UC Graphs by 
Random Walk Kernel 

To measure topological similarity among our three groups of graphs, i.e., UC, 
ASC and Control with a biological significant, we established a comparison  
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Figure 2. Distribution of spectra per group of patients. Plots of the 2D and 3D eigenvector distributions of the laplacian matrix 
show how ASC (green) and Control (blue) patients exhibit similar behaviours as compared to UC (red) patients (a); However, the 
three groups of patients display the same type of Gaussian mixture models for their eigenvalue distributions (b). 

 
between interacting and co-regulated groups of target genes per sample of 
patient. To this task a random walk kernel on graph is the appropriate selection, 
as for this graph a random walk amounts a set of target genes in which 
continuous genes by the walk side are co-expressed and interact. To efficiently 
compute the random walk, we made use of the CG methods using the parameter 

0.001λ =  with convergence threshold set to 10−6. In Figure 3(a) we contrast 
the scores of similarity measured by graph kernel computation of the conjugate 
gradient algorithm referred to UC patients modelled as labeled graphs with that 
of the direct sparse method. Our approach demonstrates how the group of ASC  
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(a) 

 
(b) 

Figure 3. Scores of topological similarity between graphs of patients yielded by our random walk graph kernel ( 0.01λ =  and 
tolerance set to 10−6 in its computation with conjugate gradient method). The UC and ASC groups are mutually similar the most; 
however the group of ASC patients resembles topologically better than UC to control (0.35/0.18) (a); Cross-validation of our 
results computed by the three instances of the general Weisfeiler-Lehman graph kernels, the Weisfeiler-Lehman subtree kernel, 
the Weisfeiler-Lehman edge kernel, and the Weisfeiler-Lehman shortest path kernel (b). 

 
patients is topologically more similar to control patients (0.35 as normalised 
score [ ]0,1∈ ) than UC are (0.18). Here, closer to 1 means more similar 
graphs. We recall that the random walk kernel on graph measures the amount 
of walks shared by the couple of graphs involved in G×  (section 3.7). This 
topological relationship between ASC patients and their group of control is, 
although relatively unexpected, entirely plausible from a biological and thus 
medical point of view. Validation of similarities using the Weisfeiler-Lehman 
Graph Kernels The reliability of our results is also validated by comparing the 
performances of the random walk and Weisfeiler-Lehman graph kernels. The 
latter consists of a triplet of robust methods (see methods) in capturing 
topological and label information on graphs. These algorithms confirmed the 
same scheme described in our results, i.e., ASC group is closer than UC 
patients to control group. Whereas a graphical visualisation of these data may 
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be displayed in Figure 3(b), the specific normalised (by all the possible paths 
on the graph) values of the pairwise comparison between patients’ graphs are 
shown in the following Table 1. 

4.3. Inference on the Topological Model: Malfunction of Lymphoid 
Structures Induces Deep Ulcers in UC Patients 

We can perform inference on our topological model combining the similarity 
scores and functional enrichment analysis. Since ASC patients are topologically 
more similar than UC to Control (Figure 3 and Figure 5(a)), one natural idea is 
to explore the lack of or alternatively the low expression levels of miRNA-gene 
targets involved in enriched pathways from both ASC and control data with 
respect to UC patients. In the view of the enrichment analysis using GO (Table 
SI, Table SII and Table SIII) and the above inference constraint, the only 
enriched functional module fitting our topological model in the colon was that 
linked to lymphoid nodules (GO:0048541 with p-value 42.45e−=  and q-value 

25.45e−=  associated to the Fisher Exact test). Such structures are the equivalent  
 
Table 1. Weisfeiler-Lehman graph kernels’ Validation. 

Method/Graph Comparison UC⊗ASC UC⊗Control ASC⊗Control 

WL subtree 0.17 0.10 0.14 

WL edge 0.05 0.01 0.02 

WL shortest path 0.004 0.002 0.003 

 

 
Figure 4. Inference derived from our topological model based on GO analysis of functional enrichment per group of patients. 
Enrichment in lymphoid nodules development is the only major difference between ASC group of patients. While the 
miRNA-target genes involved in lymphoid nodules pathways are over-expressed in the group of UC patients, these target genes 
are poorly under-expressed in ASC. This scenario resembles the molecular behaviour of Control patients (a); UC and ASC 
biological processes shared in GO database (b); GO biological process in common of the three group of patients after prospective 
drug-mediated treatment (c). 
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Figure 5. Description of the medical hypothesis-driven by our graph kernel analysis. Scales of similarity between group of patients, 
i.e., ASC and Control becoming a topological constraint to be considered (a)-(c). Upon functional inference using GO, we deduce 
how the lack of production in sIgA/E for ASC patients (highlighted in green) prevent immune system’s activation face bacteria’s 
threat (d). This behaviour resembles the group of control maybe by a malfunction of lymphoid structures in the first line of 
activation in immune response. Edge colours in panels (a)-(c): purple, rose, blue and green amount to co-expression, physical 
interactions, co-localisation and genetic interactions respectively. 

 
to the Peyer’s patches (PPs) in the Ileum. This fact derives from the no detection 
of such enrichment in the production of immunoglobulins, i.e., sIgA and slgE, in 
ASC patients as compared to UC patients (Figure 4). Such a lack of production 
in sIgA is a consequence of the relative poorly enriched scores associated to the 
coding genes ID2 and STAT5, which control the intestinal immune network for 
sIgA production via negative regulation of class IgA/E class switching [28] 
and“on-off” recombination of immunoglobulin gene in developing pro-B cells 
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[29] (Figure 5(d)—starts highlighted in red). Now, we are equipped with 
enough information to infer the following hypothesis: There exists a very low 
production of immune globulin A (sIgA) within ASC patients occasioned by 
malfunction of lymphoid nodules. Indeed, there is no immune system’s 
activation, whereas in UC patients we have over-expression of lymphoid nodules 
related pathways (Figure 5(d)). 

The sIgA is an antibody—Y-shaped protein—that plays a critical role in 
immune function in the mucous membranes. This scenario matches the 
topological constraint yielded by our model between control and ASC patients. 
Furthermore, it is been already described how sIgA likely contains other 
propitious outcomes in overall immunity by means of a diminished inflammation 
in the digestive tract [30]. There is also evidence that sIgA (low/coding genes 
under-expression) secretion into body cavities in combination with malfunction 
of immune cells in PPs [31] [32] [33] is involved in allergic diseases (type 1 
diabetes, Ulcerative Colitis/Crohn disease, hay fever or asthma). Thus, the 
formation of deep ulcers in some UC patients may be caused by the low 
production of sIgA as a consequence of lymphoid structures malfunction. 

5. Conclusion 

This paper first presented the urgent medical problem derived from the 
occurrence of deep ulcers during the therapy of patients with a severe chronic 
inflammation in the colon mucosa and how the efficiently computation of a 
Random walk graph kernel captures similarity between groups of these patients, 
namely: UC, ASC and Control. We adopt the extended linear algebra in an RKHS 
to overcome some issues of efficiency in kernels computations taking advantage of 
the shared structure intrinsic to these questions. The groups of patients were 
modelled as undirected labeled graphs based on the co-integration of target gene 
expression profiles and interaction. Thus, the nature of our data and the flexibility 
of conjugate gradient algorithm made of this method the most appropriate to 
compute geometrical random walks among other options such as spectral 
decomposition. We made use of models of sparsity, low effective rank, and 
Kronecker product to reduce the computational cost in the calculations and 
exploited specific forms of W× . While other methods of direct comparison to 
measure similarity like spectral properties are not conclusive; this approach reveals 
as much more interpretable. Indeed, our results demonstrate how the group of 
ASC patients topologically resembles Control better than UC patients do. In 
addition, we stress the reliability of our results by means of a robust triple 
validation. Albeit, an important caveat of our kernel approach concerns the 
possible values taken by the parameter λ  in (3) which entirely relies on the range 
of W×  as weight matrix. We also show how the topological constraint imposed by 
the ASC and Control groups drives the analysis of enrichment in functional 
annotations enabling inference on our topological model. As a consequence, we 
are able to guide clinicians with a likely hypothesis regarding the low production 
of slgA and slgE in the ASC group to be conducted during patient’s treatment. 
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Moreover, these results are being further validated by the clinicians and 
scientists of our team in the “Centre de Recherche sur l’Inflammation” as part of 
the future work based on this study. Specifically, we plan to performance 
immunofluorescence experiments, which would experimentally validate our 
results. we will also extend our analysis to a new cohort of patients applying 
improved versions of neighbour matching using deep learning models to capture 
similarities between graph of individual patients. Overall, this work provides 
practitioners with a useful and biologically meaningful tool to find similarities 
among patients profiles in a timely manner. Our approach allows them to avoid 
spending a large amount of time and effort on sweeping lots of experimental 
results to test eventual therapeutic hypotheses done by hand; therefore, the 
diagnosis efficiency and accuracy can be enhanced. 
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Nomenclature 

miRNA: micro-RNAs ASC: Acute Severe Ulcertative Colitis UC: Ulcerative 
Colitis κ : kernel application on graphs PSD: Positive Semi-definite Kernel 
CGs: Conjugate Gradient Methos LN: Log-Normal GLM: Generalized Linear 
Model PPI: Protein-Protein Interaction ⊗ : Kronecker product of two matrices 
vec : column-stacking operator of a matrix RKHS: Reproducing Kernel Hilbert 
Spaces G: a set of ordered points generating a graph V: an ordered set of vertices 
E: set of edges of a graph G ( )YΦ : matrix of a graph G xxw : weight of an edge 
( ),x x  W× : weight matrix associated to the Kronceker product of two matrices 
D: node degrees matrix A: adjacency matrix of a graph G ( )lµ : non-negative 
coefficient of decay for walks of length l WL : Weisfeiler-Lehman kernels WLκ : 
Weisfeiler-Lehman kernel for κ  κΣ : set of node labels matching at least once 
in a graph at the end of the k-ith Weisfeiler-Lehman iteration kp : a map 
counting a specific node label in a graph WLsubtreeκ : Weisfeiler-Lehman subtree 
kernel on two graphs δ : Dirac kernel WLedgeκ : Weisfeiler-Lehman edge kernel 
for κ  WLshortestpathκ : Weisfeiler-Lehman shortest path kernel for κ  GO: Gene 
Ontology database PPs: Peyer’s Patches sIgA/E: immunoglobulins A/E ID2: 
Inhibitor Of DNA Binding 2 STAT5: Signal Transducer And Activator Of 
Transcription 5. 
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