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Abstract 
 
The stabilization effect of a strong HF electric field on beam-plasma instability in a cylindrical warm plasma 
waveguide is discussed. A mathematical technique “separation method” applied to the two-fluid plasma 
model to separate the equations, which describe the system, into two parts, temporal and space parts. Plasma 
electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential in-
fluence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a 
low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by 
a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma 
electrons have not affected the solution of the space part of the problem. 
 
Keywords: Separation Method, Beam-Plasma Interaction, Warm Plasma Waveguide 

1. Introduction 
 
A great number of publications [1-4], and refs. Cited 
therein, are devoted to theoretical study of beam-plasma 
instability. 

The investigation of beam-plasma instabilities evokes 
interest only from the point of view of understanding of 
this particular type of instability but also as a method of 
modeling the instabilities caused by resonant interactions 
in more complex cases, in particular in that of modeling 
the transition from the laminar to the turbulent state, the 
turbulence resulting from instabilities, and the control of 
instabilities. 

It is well known that (e.g. [1,5]) propagation of charged 
particle beams through plasma leads to development of 
great variety of instabilities. Sometimes such an instabili-
ties could be used as a basis for the construction of an 
effective generators of electromagnetic radiation, for 
heating of magnetically confined plasmas, and for parti-
cle acceleration. But often beam instabilities are undesir-
able. This is true particularly for the experiments on 
magnetic fusion research where instabilities may cause 
an appreciable enhancement in the transport of particles 
and heat across the confining magnetic field. Therefore 
stabilization of instabilities excited by a beam of charged 
particles in plasmas is an important part of the more gen-

eral problem of controlling instabilities in magnetic traps. 
The stabilization effect of a uniform HF electric field 

on a two-stream (Buneman) instability in uniform un-
bounded plasma has been for the first time investigated 
in [6]. The dispersion equation for characteristic fre-
quencies of electrostatic oscillations excited by relative 
motion of electrons and ions in a HF electric field has 
been obtained and analyzed. The presence of a pump 
wave strongly modifies the dispersion equation of Bun-
eman instability. As a consequence the growth rate of 
instability reduces in comparison with the growth rate at 
vanishing external field amplitude.  

The extremely interesting properties of plasma located 
in a strong high frequency (HF) electric field have stimu-
lated a broad range of theoretical investigations in this 
promising field of physics.  

A broad class of instabilities was predicted to accom-
pany the processes taking place in plasma placed in a HF 
field. On the other hand, for a number of cases the stabi-
lizing effect of a HF field on unstable plasma states was 
pointed out. A detailed review of the theory of the 
plasma HF field interaction was given in ref. [7]. 

Parametric interaction of external HF electric field 
with an electrostatic surface wave in an isotropic nonuni-
form plasma has been investigated in ref. [8] using spe-
cial method based on the separation of variables. 
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Different from previous works on beam-plasma insta-
bility [9-11], we study the effect of both the effects of 
both plasma inhomogeneity and the thermal electron 
motion on the quenching of the beam-plasma instability. 
Investigation of beam-plasma interaction presents a great 
interest for development of effective methods via plasma 
stability, amplification and generation of electromagnetic 
waves, acceleration of charged particles in plasma, high 
frequency heating of plasma, and so on [12-14]. 

It has been shown that [15] dispersion equation de-
scribing parametric excitation of surface waves at the 
boundary of isotropic plasma-vacuum to within the eigen 
frequency renormalization coincide with the equations 
that determine the parametric excitation of volumetric 
waves in uniform unbounded plasma. Proceeding from 
this conclusion the method for investigation of paramet-
ric interaction of external HF electrical field with elec-
trostatic oscillations in isotropic bounded nonuniform 
plasma has been proposed [8]. The method makes it pos-
sible to separate the problem into two parts. The “dy-
namical” part describes the parametric build up of oscil-
lations and corresponding equations within the renor-
malization of eigen frequencies coincide with equations 
for the parametrically unstable waves in an infinite uni-
form plasma. Natural frequencies of oscillations and spa-
tial distribution of the amplitude of the self - consistent 
electrical field are determined from the solution of a 
boundary-value problem (“space” part) taking into ac-
count specific spatial distribution of the plasma density. 
The proposed approach (“separation method”) is signifi-
cantly simpler than the method ordinarily employed in 
the theory of parametric resonance in nonuniform plasma 
[10,15,16]. Therefore it is of special interest to apply the 
separation method to solution of different problems in-
volving parametric excitation of electrostatic waves in 
bounded nonuniform plasma. 

In the present work we investigate the suppression of 
HF electric field on beam-plasma interaction in the cy-
lindrical warm plasma waveguide. 
 
2. The Influence of HF Electric Field on the 

Instability of a Low-Density Electron 
Beam Passing through Plasma Waveguide 

 
We assume that a uniform cold electron beam propagat- 
ing along radially nonuniform cylindrical plasma wave- 
guide. The radius of the beam R is supposed to coin- 
cides with the radius of  the plasma cylinder. 

Let us now assume that an electron beam of low den- 
sity 0 0( b bn n 1)    is passing through a quasineutral 
plasma with the velocity 

0b . We shall also suppose that 
both plasma components are at rest 

0 0
( 0e i . We 

take the vector of the external HF field 

u
) u u
 0 0sinP tE E  

g the axis of the plasma cylinder. Equi-
librium density of plasma 

0
n

to be oriented alon

  varies along the radius. 
The “separation method” has been described [6,17] in 

application to the problem of parametric excitation of 
surface waves in a cold isotropic plasma. Here we shall 
follow this paper. Representing the perturbations of ve-
locity, density and electrical potential in the form 

 , , ~ expn i m kz     V  the linearized set of hy-
er with Poisson equation 

can be reduced to the form 
drodynamical equations togeth
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0
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where, 0 0b bn n  . 

Here nfwe shall co ine our analysis for the influence of 
th

ger formula [18-20], 

e

e HF electric field on the dispersion characteristics of 
unstable surface waves excited in a plasma waveguides 
by an electron beam. 

Using the Jacobi-An

 0 0sin( )ia t im t
m

m

e J a 


 



   

 mJ a  are the Bessel functions, we obtain from where, 
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s (3):
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where, 

   0

1 1

20

0
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The system of Equations (4) coincides (if 0,thV   

0 0,b   2 2 ,
eP p   n  2 2

iP e im m p  ) with the  
ta two-stream insta-

bility in a uniform (or nonuniform) unbounded (or 
bounded) plasma [8] or [17]. 

If there is no externally inje

system
describing the HF s bilization of the 

cted beam 
(  0 0 0b bn n   ) then the system of
co  system describing the HF stabilization 
of the Buneman instability in a nonuniform bounded 
relativistic cold (warm) plasma [20-24]. 
 

 Equations (4) 
incides with the

. Solution of the “Temporal”  

 
ccording to Equations (4), plasma oscillations are then 

3
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In the case of vanishing electric field amplitude 

0 0) , then Equation (5) agrees with the dispersion 
which describes the unstable oscillations that 

excited in a uniform unbounded (bounded) plasma by a 
low - density electron beam [8,17]. Same as in [8,17] we 
shall analyze Equation (5) in two cases: 
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the roots of Equation (7) are complex and one of them 
corresponds to an instability with the growth rate  
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where  is determined by the equation of the space 
th

ressions (8)-(11) that the HF elec-
tri

 agreement with the 
co

p
part of e problem. 

It follows from exp
c field has no essential influence on the dispersion 

characteristics of unstable surface waves excited in a 
plasma waveguides by a low-density electron beam. The 
region of instability only slightly narrows and the growth 
rate decrease by a small parameter. 

The results obtained are in a full
nclusion that an external HF field may have a stabiliz-

ing effect on the electron beam-plasma interaction in 
uniform (or nonuniform) plasma [8,17]. The warm plasma 
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rowth rate of the electron beam- 
pl

. Solution of the Space (Spatial) Part of the 

 
he main feature of the expression (6), (7) and (9) con-

nt  it is 
ne

reduced the growth rate. 
We conclude that the g
asma interaction decreases more in a warm plasma 

than in a cold plasma [17]. 
 
4

Problem 

T
sists in an existence of a separation constant p , which 
enables us to consider the plasma boundaries. 

To find an explicit expression for the consta  p
cessary to solve the following differential equation (for 

details see [8]).  
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ePp r r p   . If the radial profi

ma density and bounda

l

ch case the relations determine the solution of 
Eq

le of 
the plas ry conditions are speci-
fied, the solution of Equation (12) gives us desired value 
of the separation constant p . The feature of the Equation 
(12) is that neither the amp itude of HF electric field nor 
electron beam parameters enters into it. Therefore Equa-
tion (12) coincides with equation describing propagation 
of natural (free of external influence) electrostatic sur-
face waves in a nonuniform plasma cylinder (see e.g., 
[25] and ref. therein). Supposing that plasma density is 
uniform and the interface between plasma and vacuum is 
sharp.  

In su
uation (12)  
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functio 1,2C  are the constants. Using the continuity 
condition of  nd 

ns and 

2  a 2d dr   at the boundary, the fol-
lowing equation is found (see e.g. [25] and refs. therein) 
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where the stroke means differentiation with respect to the 
argument. Equation (14) gives us the relation between 
the separation constant p , electron plasma frequency 

eP  and the axial wave number k :  

1/2      1/2
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In the limiting case of small radius of plasma wave- 

guide ( 1kR ), from (16) we find  
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For (“thick” waveguide) alwayskR m    1m kR   
and we have 2

eP . 
This equati

p
on is the same equation in cold plasm

w

. Conclusions 

he paper deals with parametric excitation of the poten-

stabiliza-
tio

a 
aveguide [8,17] i.e.; the warm plasma waveguide has 

no effect on the space part of the problem. 
 
5
 
T
tial surface waves in bounded nonuniform warm plasma 
by monochromatic HF electrical field. It is shown that 
the problem can be reduced to the solution of the “tem-
poral” (parametric) and “stationary” (spatial) parts. The 
“temporal” part determining frequencies and growth 
rates of unstable oscillations coincides with accuracy to 
redefinition of natural frequencies with equations de-
scribing parametric resonance in homogeneous plasma. 
Natural frequencies of oscillations and spatial distribu-
tion of the amplitude of the self-consistent electrical field 
are determined from the solution of a boundary-value 
problem (“space” part) taking into account specific spa-
tial distribution of the plasma density. The method de-
scribed is used to solve the effect of HF field on the exci-
tation of surface waves by an electron beam under the 
development of instability of low-density beam passing 
through a cylindrical warm plasma waveguide. 

The method was used for the solution of the 
n effect of a strong HF electric field on beam-plasma 

interaction in a cylindrical warm plasma waveguide. We 
solved the “temporal” (time-dependent) equations and 
obtained the corresponding dispersion Equation (5) in a 
cylindrical geometry, which was analyzed for two cases: 
nonresonant instability ( bku )HF , and resonance one 
( )b HFku  . In both cases the frequency growth rates of 

ns are obtained (relation (9) and (11)). The 
separation constant p  is obtained from relation (16), the 
results are compared with the case when the external 
electric field is absent ( 0 0E ) and a cold plasma 
( 0thV

the oscillatio

 ). 
cluIn con sion at a HF electric field has 

no
it is shown th

 essential influence on dispersion characteristics of 
unstable surface waves excited in a warm plasma 
waveguide by a low-density electron beam. The region 
of instability only slightly narrowing and the growth rate 
decreases by a small parameter and this result has been 
reduced compared to cold plasma. Also, it is found that 
the plasma electrons have not affected the solution of the 
space part of the problem. 
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