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Abstract 
Reference evapotranspiration is very important parameter in the hydrological, 
agricultural and environmental studies and is accurately estimated by the 
FAO Penman-Monteith equation (FAO-PM) under different climatic condi-
tions. However, due to data requirement of the FAO-PM equation, there is a 
need to investigate the applicability of alternative ETo equations under limited 
data. The objectives of this study were to evaluate twelve mass transfer based 
reference evapotranspiration equations and determine the impact of ETo eq-
uation on long term water management sustainability in Tanzania and Kenya. 
The results showed that the Albrecht, Brockamp-Wenner, Dalto, Meyer, 
Rohwer and Oudin ETo equations systematically overestimated the daily ETo 
at all weather stations with relative errors that varied from 34% to 94% rela-
tive to the FAO-PM ETo estimates. The Penman, Mahringer, Trabert, and the 
Romanenko equations performed best across Tanzania and the South West-
ern Kenya with root mean squared errors ranging from 0.98 to 1.48 mm/day, 
which are relatively high and mean bias error (MBE) varying from −0.33 to 
0.02 mm/day and the absolute mean error (AME) from 0.79 to 1.16 mm/day. 
For sustainable water management, the Trabert equation could be adopted at 
Songea, the Mahringer equation at Tabora, the Dalton and/or the Rohwer eq-
uations at Eldoret, the Romanenko equation at Dodoma, Songea and Eldoret. 
However, regional calibration of the most performing equation could improve 
water management at regional level. 
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Management 

 

1. Introduction 

Evapotranspiration is an important parameter for climatological and hydrologi-
cal studies as well as for agricultural water resources management [1] [2]. The 
accuracy of reference evapotranspiration (ETo) estimates directly feeds into the 
decision making process for regional water resources planning and, especially 
under semi-arid and arid conditions. Different methods of ETo estimation have 
been developed ranging from direct measurements from a reference crop [3] to 
computation from weather data such as temperature based models [3] [4], radia-
tion based models [3] [5], and combination-based energy balance models [6] [7]. 
Numerous worldwide studies have shown that the FAO-56 Penman-Monteith 
(FAO-PM) model is the most accurate one under different climatic conditions 
across the world [6]-[13] and had been adopted and recommended for ETo es-
timation [6] [7]. However, FAO-PM model requires maximum and minimum 
temperature, minimum and maximum relative humidity, solar radiation, and 
wind speed data to be run and these weather datasets are usually incomplete 
and/or not available in most developing countries. This data demand is the main 
constraint of use of the FAO-PM in locations where climate data is limited 
[14]-[17]. Therefore, the application of ETo equations with fewer meteorological 
parameters requirements is necessary under situations where more complete 
weather data are lacking. However, the evaluation of the suitability for each of 
the alternative ETo equations to determine the most suitable for particular loca-
tions using FAO-PM model as reference is required for the East Africa Region 
prior to their application. 

[18] indicated that the Turc ETo equation is recommended for estimating ETo 
using measured maximum and minimum air temperature and estimated radia-
tion in Florida. From a cross comparison of 31 ETo methods, [19] showed that 
the five best methods as compared to the FAO-PM model were the two radiation 
based developed by the authors, the temperature based Blaney-Criddle [20], the 
Hargreaves-M4 equations [5] and the Snyder pan evaporation based equation 
[21]. [22] reported that Hansen and Turc equations were the most useful with 
the least average monthly error from the evaluation of 13 empirical reference 
potential evapotranspiration equations in Greece. Regarding the importance of 
accurate estimation of ETo by the Penman-Monteith method in data-limiting 
conditions, the recent studies [23] [24] have managed to simplify the estimation 
method with good performance and accuracy, even when the available data is 
very limited. The applicability of several other different ETo methods has been 
evaluated under different climatic conditions depending on their complexity and 
the required climatic variables data and their availability [25]-[30]. [2] evaluated 
sixteen ETo models and showed that the Valiantzas, Trabert, Romanenko, 
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Schendel and Mahringer equations were the promising equations that could be 
used for ETo estimation under the Sahelian conditions in the Senegal River Val-
ley. [13] reported that Hargreaves’ method was the most accurate among five 
equations for estimating ETo under a semi-arid climate in Spain. Hargreaves 
equation was also the best model to estimate ETo in eastern arid and semiarid 
regions of Iran [31]. [32] indicated that the Turc equation was the best in the 
Western Balkans in Europe. [22] reported that Hansen and Turc equations were 
the most useful for ETo estimation in Greece. [33] evaluated 24 ETo equation in 
Greece under a Mediterranean forest environmental conditions and indicated 
that the adaptability of some empirical equations and the best performing ones 
were the Copais, original Hargreaves, and one of the Valiantzas’ equations with 
very high equation efficiency and agreement indexes. [34] reported that Berti 
ETo equation was the best alternative of the FAO Penman-Monteith ETo equa-
tion under limited data condition in China. Three mass transfer ETo equations 
of Trabert, Mahringer, and Albrecht had shown good performance as they were 
calibrated to the local semiarid climatic conditions in the Senegal River Valley 
[35]. The mass transfer based Penman ETo equation performed as the best ETo 
equation among several equations in Malaysia [36]. Similar results were reported 
by [37] using data from eight weather stations across Burkina Faso for the 
1998-2012 period. Different sets of equations have been tested in different re-
gions and sub-regions under different climatic conditions including Canada 
[38], Iran [28] [39] [40], China [41], Poland [42], Southeast Australia [43], Se-
negal [2], and in Burkina Faso [44].  

While the aforementioned studies have been conducted at different parts of 
the world, extremely limited data and information is available on this very im-
portant topic in Eastern Africa, particularly in Tanzania and Kenya. Therefore, it 
is critical to assess the applicability of ETo models for sustainable water man-
agement. Thus, the objectives of this study were to: 1) evaluate twelve mass 
transfer based ETo equations with comparison to the FAO-PM method, and 2) 
determine the impact of ETo equation on long term water management sustai-
nability in Tanzania and Kenya. 

2. Materials and Methods 
2.1. Data Source and Type 

Climatic data required for evaluating the FAO-PM ETo equation and the se-
lected ETo models were collected at five weather stations across Tanzania and 
four weather stations in South-Western Kenya, for the period of 1998-2012. 
Maximum and minimum air temperature (Tmax and Tmin), maximum and 
minimum relative humidity (RHmax and RHmin), solar radiation (Rs) and wind 
speed (u2) were collected from Dodoma, Morogoro, Songea, Kilimanjaro, and 
Tabora in Tanzania; and Nakuru, Jomo Kenyatta, Kisumu, and Eldoret in Kenya 
with the geographic coordinates presented in Table 1. Tanzania is characterized 
by tropical climate with hot and humid coastal areas and cool and temperate  
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Table 1. Geographic coordinates of the nine weather observatories. 

Country Weather station 
Latitude  

(Degree North) 
Longitude  

(Degree East) 
Altitude(m) 

Tanzania 

Dodoma −6.17 35.77 1120 

Morogoro −6.83 37.65 526 

Songea −10.67 36 1036 

Kilimanjaro −3.43 37.07 896 

Tabora −5.08 33 1182 

Kenya 

Nakuru −0.16 36.6 1901 

Jomo Kenyatta −1.32 36.92 1624 

Kisumu −0.09 34.73 1146 

Eldoret 0.48 35.3 2120 

 
northwestern highlands. The northern and eastern areas of Tanzania experience 
two distinct rain seasons; the short occurring during October to December and 
the long rains from March to May. However, the southern, western, and central 
parts of the country experience one wet season that continues from October 
through to April or May. The central plateau in Tanzania tends to be dry and 
arid throughout the year. Kenya’s spatial extent lies astride the equator and thus 
characterized by a tropical climate. Similar to Tanzania, Kenya’s coastal zone is 
hot and humid, has a temperate inland, very dry in the north and northeastern 
areas and the western area is hot and wet throughout the year [45] [46]. Most of 
Kenya has a bimodal rainfall pattern, with the longer season occurring during 
March to May (MAM) and the shorter season during October to December 
(OND). Some areas in the western and central parts of the Kenyan Rift Valley 
experience a tri-modal rainfall pattern. The climate is influenced by systems 
such as the migration of Inter-Tropical Convergence Zone (ITCZ) from south to 
north and vice versa, Sub Tropical High Pressure systems (STHP), El 
Niño/Southern Oscillation(ENSO), Monsoon winds, tropical cyclones, the In-
dian Ocean, Lake Victoria circulation and the topography [46] [47] [48].  

2.2. Reference Evapotranspiration Models 

1) Penman-Monteith model (FAO-PM) 
Daily reference evapotranspiration was computed using the Penman-Monteith 

(FAO-PM) equation (ETo-Ref) [6]. The Penman-Monteith ETo equation with 
fixed stomatal resistance values for grass surface is: 

( ) ( )( )( )
( )

0.408 2 273
ETo

1 2
Rn G Cnu T es ea

Cdu
γ
γ

∆ − + + −
=

∆ + +
          (1) 

where: ETo is the reference evapotranspiration (mm/day), Δ is the slope of satu-
ration vapor pressure versus air temperature curve (kPa·˚C−1), Rn = net radia-
tion at the crop surface (MJ·m−2·d−1), G = soil heat flux density at the soil surface 
(MJ·m−2·d−1), T = mean daily air temperature at 1.5 - 2.5 m height (˚C), u2 = 
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mean daily wind speed at 2 m height (m·s−1), es = the saturation vapor pressure 
at 1.5 - 2.5 m height (kPa), ea = the actual vapor pressure at 1.5 - 2.5 m height 
(kPa), es − ea = saturation vapor pressure deficit (kPa), γ = psychrometric con-
stant (kPa·˚C−1), Cn = 900˚C·mm·s3·Mg−1·d−1, Cd = 0.34 s·m−1 for grass, γ is the 
psychrometric constant (kPa·˚C−1). All parameters necessary for computing ETo 
were computed according the procedure developed in FAO-56 by [6].  

Twelve mass transfer ETo equations were selected based on their applicability 
to regions with similar characteristics and compared with the FAO-PM equation 
for their accuracy in estimating daily ETo and to determine the best performing 
equations at each weather station.  

2) [49] 

( )( )ETo 3.648 0.7223u es ea= + −                    (2) 

3) [50] 

( )ETo 3.075 u es ea= −                        (3) 

4) [51] 

( )( )ETo 0.375 0.05026u es ea= + −                   (4) 

5) [52] 

( )( )ETo 3.3 0.891u es ea= + −                     (5) 

6) [53] 

( )( )ETo 0.35 1 0.98 100u es ea= + −                  (6) 

7) [54] 

( )( )ETo 0.1005 0.297u es ea= + −                   (7) 

8) [55] 

( ) ( )2ETo 0.0018 25 100Ta RH= + −                  (8) 

9) [56] 

( )0.456ETo 0.543u es ea= −                      (9) 

10) [57] 

( )( )ETo 1.298 0.934u es ea= + −                  (10) 

11) [58] 

( )ETo 2.5 ems ea= −                       (11) 

12) [59] 

( )ETo 0.15072 3.6u es ea= ∗ ∗ −                 (12) 

13) [60] 
2

ETo 4.5 1 1
25

Tmean ea
es

    = ∗ + ∗ −        
              (13) 

where ETo is in mm/day, ems, ea and es in kPa, u in m/s, Tmean is mean daily 
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temperature in (˚C), RH is daily mean relative humidity in %.  

2.3. ETo Method Evaluation Criteria 

Comparisons were developed using graphics and simple linear regression. For 
further comparison, root mean squared error (RMSE), relative error (RE), mean 
bias error (MBE) and the absolute mean error (AME) were used to evaluate the 
simplified reference evapotranspiration models [61] [62]:  

( )2

0RMSE n
i

Pi Oi
n=

−
= ∑                    (14) 

RMSERE 100
ETomean

= ×                      (15) 

1
1MBE )(nn Pi Oi−= −∑                      (16) 

1
1AME nn Pi Oi−= −∑                     (17) 

where, Pi is the estimated ETo with the radiation based ETo models; and Oi is 
ETo estimated with FAO-PM model with full dataset, at the ith data point and n 
is the total number of data points. 

3. Results and Discussion 
3.1. Evaluation of the ETo Equations with Comparison to the  

FAO-PM Model 

The evaluation of the twelve mass transfer based ETo equations showed different 
degrees of performance of the equations with comparably reasonable coefficient 
of determination across the study area. The Brockamp-Wenner equation ob-
tained the highest ETo overestimation with the RMSE ranging from 3.18 to 6.19 
mm/day, an average relative error of 95% of ETo estimates and the highest AME 
range of 1.78 - 5.47 mm/day (Table 2). [30] indicated overestimation of ETo by 
mass transfer based equations, compared to the Penman-Monteith model simi-
lar to the results reported by [63]. [30] reported a maximum overestimate of 17.7 
mm/day by the Albrecht equation in Iran. The Albrecht, Dalton, Meyer, Rohwer, 
and Oudin equations also systematically overestimated the daily ETo across the 
study area with an average regression slope of 1.323, 1.288, 1.218, 1.263 and 
1.451, respectively, and average RE of 71%, 41%, 34%, 41%, and 52%, respec-
tively. The WMO and the Papadakis equations systematically underestimated 
the daily ETo at all weather stations. The RMSE varied from 1.09 to 1.97 
mm/day and from 1.20 to 2.27 mm/day for WMO and the Papadaki equations, 
respectively (Table 2). The Penman, Mahringer, Trabert, and Romanenko equa-
tions overall showed satisfactory performance with some site specificities. The 
regression slope varied from 0.749 to 1.106, 0.812 to 1.15, from 0.867 to 1.149, 
and from 0.849 to 1.188 for the Penman, Mahringer, Trabert, and Romanenko 
equations, respectively, and averaged 0.929, 0.957, 1.017, and 1.002 for the re-
spective equations. The RMSE for these four equations averaged 0.98, 1.38, 1.48,  
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Table 2. Comparison between the ETo estimates by different mass transfer equation with FAO-PM ETo estimates at all nine 
weather stations for the 1998-2012 period. 

Index Locations Alb Pen B-W Dal Mah Mey Tra WMO Pap Roh Oud Rom 

Regression slope 

Dodoma 1.951 0.806 2.094 1.400 1.150 1.285 1.236 0.942 0.638 1.423 1.407 0.988 

Morogoro 0.929 1.061 1.524 1.317 0.806 1.281 0.867 0.680 0.750 1.267 1.601 1.090 

Songea 1.458 0.895 1.813 1.266 0.983 1.186 1.056 0.682 0.627 1.263 1.429 0.996 

Kilimanjaro 1.625 1.081 2.108 1.498 1.139 1.412 1.123 0.903 0.759 1.486 1.609 1.089 

Tabora 1.397 1.106 1.992 1.472 1.068 1.403 1.149 0.812 0.779 1.444 1.684 1.188 

Nakuru 1.121 0.923 1.642 1.218 0.879 1.164 0.945 0.688 0.560 1.192 1.404 0.902 

Jomo Kenyatta 1.178 0.806 1.163 1.132 0.879 1.063 0.945 0.695 0.566 1.128 1.306 0.849 

Kisumu 1.141 0.936 1.170 1.236 0.894 1.181 0.962 0.700 0.660 1.121 1.415 0.916 

Eldoret 1.108 0.749 1.500 1.052 0.812 0.988 0.874 0.644 0.525 1.047 1.202 1.000 

Average 1.323 0.929 1.667 1.288 0.957 1.218 1.017 0.750 0.652 1.263 1.451 1.002 

R2 

Dodoma 0.55 0.70 0.69 0.75 0.68 0.76 0.78 0.66 0.69 0.73 0.71 0.65 

Morogoro 0.33 0.53 0.47 0.63 0.46 0.63 0.46 0.54 0.51 0.63 0.42 0.43 

Songea 0.48 0.68 0.62 0.67 0.61 0.68 0.61 0.60 0.67 0.66 0.66 0.61 

Kilimanjaro 0.55 0.80 0.72 0.79 0.71 0.80 0.71 0.70 0.79 0.78 0.77 0.67 

Tabora 0.44 0.64 0.58 0.64 0.57 0.65 0.57 0.58 0.63 0.64 0.65 0.58 

Nakuru 0.39 0.58 0.52 0.58 0.51 0.58 0.51 0.52 0.57 0.57 0.60 0.50 

Jomo Kenyatta 0.55 0.73 0.70 0.74 0.69 0.74 0.69 0.67 0.72 0.73 0.74 0.68 

Kisumu 0.41 0.60 0.55 0.60 0.54 0.61 0.54 0.54 0.59 0.59 0.62 0.52 

Eldoret 0.42 0.67 0.57 0.62 0.56 0.64 0.56 0.53 0.67 0.60 0.70 0.70 

Average 0.46 0.66 0.60 0.67 0.59 0.68 0.60 0.59 0.65 0.66 0.65 0.59 

RMSE 

Dodoma 5.95 0.81 6.19 2.40 1.45 1.79 1.81 1.09 1.99 2.56 2.35 0.80 

Morogoro 2.73 0.88 3.42 1.74 1.67 1.57 1.67 1.62 1.20 1.62 2.79 1.00 

Songea 3.20 0.84 4.00 1.61 1.14 1.29 1.25 1.32 1.66 1.65 2.11 0.90 

Kilimanjaro 4.36 0.83 5.77 2.67 1.49 2.24 1.79 1.21 1.26 2.67 3.07 0.96 

Tabora 3.63 1.18 5.56 2.78 1.58 2.43 1.81 1.42 1.31 2.71 3.63 1.62 

Nakuru 2.29 0.93 3.77 1.64 1.32 1.40 1.30 1.76 1.80 1.58 2.23 0.96 

Jomo Kenyatta 2.29 1.05 3.18 1.08 1.02 0.86 0.96 1.55 1.99 1.10 1.59 0.91 

Kisumu 2.27 0.89 3.80 1.66 1.25 1.41 1.25 1.68 1.73 1.60 2.28 0.92 

Eldoret 2.87 1.39 3.21 1.32 1.52 1.14 1.47 1.97 2.27 1.39 1.39 0.86 

Average 3.29 0.98 4.32 1.88 1.38 1.57 1.48 1.51 1.69 1.88 2.38 0.99 

RE 

Dodoma 113.81 15.43 118.50 45.95 27.67 34.26 34.57 20.92 38.00 48.92 45.02 15.26 

Morogoro 67.62 21.75 84.95 43.13 41.43 38.84 41.38 40.19 29.68 40.20 69.21 24.81 

Songea 77.01 20.24 96.51 38.92 27.46 31.17 30.06 31.92 40.05 39.79 50.89 21.69 

Kilimanjaro 94.81 18.06 125.48 58.13 32.47 48.59 39.00 26.19 27.36 58.07 66.69 20.81 

Tabora 76.31 24.87 116.81 58.52 33.17 51.09 38.04 29.87 27.55 56.89 76.23 33.98 

Nakuru 48.09 19.65 79.28 34.43 27.80 29.38 27.39 36.94 37.75 33.32 46.96 20.27 

Jomo Kenyatta 52.39 23.96 72.74 24.65 23.32 19.62 21.98 35.40 45.46 25.16 36.38 20.75 

Kisumu 48.39 18.97 81.16 35.40 26.76 30.17 26.63 35.85 36.82 34.15 48.69 19.54 

Eldoret 63.02 30.49 70.55 28.94 33.46 25.04 32.19 43.15 49.90 30.51 30.54 18.77 

https://doi.org/10.4236/jwarp.2017.912086


K. Djaman et al. 
 

 

DOI: 10.4236/jwarp.2017.912086 1354 Journal of Water Resource and Protection 
 

Continued 

Average 71.27 21.49 94.00 40.90 30.40 34.24 32.36 33.38 36.95 40.78 52.29 21.76 

MBE 

Dodoma 4.57 −0.47 5.47 1.98 0.64 1.40 1.08 −0.44 −1.91 2.08 2.13 -0.08 

Morogoro −0.67 0.27 1.78 1.22 −0.97 1.10 −0.74 −1.40 −0.98 0.99 2.52 0.41 

Songea 1.56 −0.48 3.12 0.98 −0.21 0.67 0.08 −1.03 −1.58 0.95 1.75 -0.06 

Kilimanjaro 2.28 0.33 4.69 2.11 0.40 1.76 0.78 −0.65 −1.13 2.03 2.84 0.43 

Tabora 1.47 0.43 4.36 2.07 0.12 1.77 0.49 −0.91 −1.10 1.92 3.18 0.80 

Nakuru 0.36 −0.41 2.86 0.94 −0.68 0.70 −0.38 −1.56 −1.69 0.81 1.90 -0.48 

Jomo Kenyatta 0.94 −0.90 2.51 0.47 −0.65 0.18 −0.37 −1.44 −1.93 0.43 1.31 -0.68 

Kisumu 0.44 −0.34 2.94 1.01 −0.61 0.77 −0.30 −1.49 −1.63 0.88 1.97 -0.41 

Eldoret 0.46 −1.23 1.95 0.06 −1.04 −0.21 −0.77 −1.77 −2.22 0.02 0.82 -0.08 

Average 1.27 −0.31 3.30 1.20 −0.33 0.91 −0.02 −1.19 −1.58 1.12 2.04 −0.02 

MBE 

Dodoma 4.98 0.67 5.57 2.04 1.15 1.49 1.48 0.86 1.91 2.17 2.14 0.63 

Morogoro 2.03 0.69 2.70 1.38 1.34 1.26 1.30 1.47 1.03 1.24 2.55 0.77 

Songea 2.18 0.68 3.22 1.21 0.88 0.98 0.95 1.16 1.58 1.22 1.79 0.74 

Kilimanjaro 2.91 0.63 4.76 2.18 1.10 1.83 1.30 1.02 1.15 2.11 2.85 0.74 

Tabora 2.46 0.95 4.52 2.19 1.23 1.91 1.40 1.21 1.16 2.09 3.19 1.29 

Nakuru 1.55 0.77 2.97 1.12 1.08 0.94 1.00 1.63 1.70 1.06 1.91 0.81 

Jomo Kenyatta 1.61 0.93 2.56 0.80 0.88 0.65 0.80 1.46 1.93 0.81 1.35 0.78 

Kisumu 1.52 0.72 3.03 1.15 1.02 0.96 0.95 1.56 1.63 1.08 1.97 0.76 

Eldoret 1.84 1.29 2.19 0.90 1.36 0.85 1.26 1.85 2.22 0.96 0.96 0.62 

Average 2.34 0.82 3.50 1.44 1.11 1.21 1.16 1.36 1.59 1.42 2.08 0.79 

 
and 0.99 mm/day (Table 2), however, they had low corresponding magnitude of 
RE, MBE and AME compared to the Brockamp-Wenner, Albrecht, Dalton, 
Meyer, Rohwer, and Oudin equations.  

The results indicate that there is site specific adaptability of the ETo equations 
under this study. The Albrecht equation showed the best performance at Moro-
goro. The Penman equation seems to be non-applicable only at Dodoma, Jomo 
Kenyatta and Eldoret weather stations, however with site calibration the perfor-
mance of the Penman equation could be improved and the adjusted Penman 
equation may be applicable across the study area. The Dalton equation showed 
its best performance at Eldoret while the Mahringer equation is adapted to the 
Songea station and the Trabert equation could be used at Songea, Nakuru, Jomo 
Kenyatta, and Kisumu stations. The Rohwer equation showed the best perfor-
mance at Eldoret and the Romanenko equation performed satisfactorily at all 
weather stations, except Tabora and Jomo Kenyatta weather stations. Overall, 
the best four ETo equations can be ranked as Romanenko, Penman, Trabert and 
Mahringer with a decreasing performance levels. The Romanenko and Penman 
equations had almost similar performance in terms of RMSE, MBE and AME 
(Table 2). The Trabert and Mahringer equations also showed similar perfor-
mance. The Penman equation was the best performing equation among mass 
transfer equations across 15 provinces in Iran with the least ETo overestimate of 
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0.03 mm/day as the Papadakis equation [30] [40]. [2] reported that the Roma-
nenko equation showed better performance under dry and semiarid condition 
than under the humid semiarid conditions in the Senegal River Valley. Roma-
nenko equation produced a 6% ETo underestimation and obtained a mean ratio 
of 1.0 and a regression slope of 0.92 [2]. Similarly in Iran, the Romanenko equa-
tion was reported as the best mass transfer equation [19]. The Trabert and Ma-
hringer equations performed relatively well under the sahelian climatic condi-
tions as reported by [2]. [19] reported that Trabert and Mahringer equations 
underestimated ETo with average error of 26% and 31%, respectively in Iran 
while [2] reported average ETo underestimation of 16% and 31% at Ndiaye 
(coastal area) and at Fanaye (inland area) in the Senegal River Valley and Delta, 
respectively. [64] reported the FAO24-Radiation method to be the best among 
twenty ETo equations evaluated in the sub-humid Udham Singh Nagar district 
of Uttarakhand (India). Adversely, poor performance of the Mahringer equation 
was reported in Poland [42]. [38] indicated reasonable performance of the Mey-
er, Dalton, and Rohwer equation for free water evaporation estimation from four 
weather stations in north-western Ontario, Canada. The results of this study 
showed the specificity of each ETo equation and this might have been due to the 
sensitivity of the models to the climatic variables used in each model [30].  

3.2. ETo Equation Adoption for Sustainable Water Management  
across the Study Area 

Reference evapotranspiration is a very important parameter for the hydrological, 
environmental and agricultural water management and it is much critical under 
water scarcity and changing climate conditions under semiarid and arid cli-
mates. Crop actual evapotranspiration (ETa) is indirectly estimated by the two 
steps method as a product of daily ETo and the crop coefficients Kc that is de-
pendent on crop type and growth stages, climate, soil type, crop and water 
management practices and other environmental conditions (ETa = Kc*ETo) [6] 
[65] [66]. The effectiveness of this procedure depends upon the accuracy of data 
collection and ETo estimation method used. Since crop water requirement is 
dependent on ETo it is necessary to evaluate the impact of the choice of ETo es-
timation method on water resources management at local scale. The impact of 
using each ETo equation for water management at all weather stations is pre-
sented in Figure 1 showing the large discrepancies between the ETo estimates by 
the FAO-PM equation and the mass transfer ETo equations during the period of 
1998 to 2012. As a selection criterion for sustainable water management, the 
model showing the closest cumulative ETo estimate to the cumulative FAO-PM 
ETo estimate (Figure 1) should be adopted for that location. Average annual to-
tal ETo estimates difference of each mass transfer ETo equation at each weather 
station relative to the FAO-PM ETo estimates is presented in Table 3. At Do-
doma, annual average ETo difference varied from −697 to 1997 mm with the 
highest overestimation by the Brockamp-Wenner equation while the lowest an-
nual absolute difference of 29 mm representing ETo underestimation of 0.08  
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Figure 1. Long-term cumulative daily ETo estimated from the mass transfer equations with comparison to the FAO-PM equation. 

 
Table 3. The 1998-2012 period average total annual ETo difference between the mass transfer ETo equations and the FAO-PM 
equation at all nine weather stations. 

Locations Alb Pen B-W Dal Mah Mey Tra WMO Pap Roh Oud Rom 

Dodoma 1671 −171 1997 722 233 512 394 −159 −697 759 777 −29 

Morogoro −245 99 649 444 −355 403 −271 −511 −360 362 919 151 

Songea 569 −176 1141 357 −78 245 31 −375 −576 346 639 −24 

Kilimanjaro 833 121 1712 772 147 642 284 −236 −414 741 1037 158 

Tabora 536 156 1593 755 44 647 178 −334 −404 701 1160 291 

Nakuru 132 −150 1046 344 −249 255 −137 −571 −619 297 693 −174 

Jomo Kenyatta 345 −327 917 171 −238 67 −136 −527 −706 159 478 −247 

Kisumu 160 −125 1075 369 −222 281 −110 −546 −594 322 718 −150 

Eldoret 170 −450 714 21 −379 −77 −282 −648 −812 8 298 −29 

 
mm/day was obtained by the Romanenko ETo estimates. The original Roma-
menko mass transfer ETo equation can therefore be recommended for ETo es-
timation at Dodoma area for appropriate and sustainable water management. 
On the other hand our results suggest, that the Brockamp-Wenner, Albrecht, 
and the other ETo equations should be avoided when choosing ETo estimation 
method for the Dodoma area. The Penman equation provided the least annual 
ETo difference of 99 mm representing a reasonable daily ETo overestimation of 
0.3 mm at Morogoro weather station and should be adopted for water manage-
ment in Morogoro. Similarly, the Trabert and/or the Marhringer equations at 
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Songea, the Marhinger, Penman at Kilimanjaro, the Mahringer equations at Ta-
bora, the Meyer equation at Jomo Kenyatta and the Rohwer, Dalton and/or Ro-
mananko equations at Eldoret could be adopted at the respective locations with 
non-significant overestimation or underestimation of the annual ETo that could 
be detrimental to water resources management sustainability across Tanzania 
and the South Western Kenya. The least annual absolute ETo difference was 130 
mm at Nakuru and 110 mm at Kisumu which represented 1300 and 1100 m3/ha. 
Site specific calibration of the best performing ETo equation (Trabert equation) 
should be performed to improve the performance of the equation under the Ki-
sumu and Nakuru climate conditions. Moreover, other ETo estimation models 
should be investigated for accurate ETo estimation at Kisumu and Nakuru. Al-
ternatively, the FAO-PM equation or the Valiantzas equation with complete data 
could be used in place even under limited data conditions as proposed by [44] 
for the study area. 

In cases of ETo overestimation, estimated irrigation water requirement be-
comes tremendously high and which will still increase when taking the low effi-
ciency of the irrigation system into account. The Albrecht, Brockamp-Wenner, 
Dalton, Meyer, Rohwer and Oudin equation should be carefully investigated and 
adjusted through proper calibration across Tanzania and Kenya for sustainable 
water management since considerable discrepancies are revealed under long 
term water management as presented in Figure 1. At an irrigation scheme level 
and basin level, water losses become considerable and the implications in terms 
of pumping cost, labor and time requirements result in economically unviable 
products due to high pricing level that is unaffordable for the majority of small 
household farmers. In the case of ETo underestimation, there is a risk to put 
crops under water stress that will impact the yield and the quality of the har-
vested products and environmental pollution particularly soil pollution by ni-
trates [67]. The best performing ETo equation that could be adopted at a site is 
as the Mahringer equation at Tabora, the Trabert equation at Songea, the Rohw-
er equation at Eldoret and the Romanenko ETo equation at Dodoma, Songea 
and Eldoret (Table 3). 

4. Conclusion 

Performance of twelve mass transfer based reference evapotranspiration equa-
tions was investigated in comparison to the FAO-PM method for accurate ETo 
estimation across Tanzania and South Western Kenya and the impact of the use 
of each method on water management sustainability was assessed. The Albrecht, 
Brockamp-Wenner, Dalto, Meyer, Rohwer and Oudin ETo equations systemati-
cally overestimated the daily ETo at all nine weather stations with relative errors 
that varied from 34% to 94% relative to the FAO-PM ETo estimates. The Dalton, 
WMO, and Papadakis ETo equations systematically underestimated the daily 
ETo at all weather stations. The Penman, Mahringer, Trabert, and the Roma-
nenko equations were revealed to be the best performing equations across Tan-
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zania and the South Western Kenya however, the root mean squared errors were 
within the range from 0.98 to 1.48 mm/day, which are relatively high and MBE 
varying from −0.33 to 0.02 mm/day and the AME from 0.79 to 1.16 mm/day. 
For sustainable water management, The Trabert equation could be adopted at 
Songea, the Mahringer equation at Tabora, the Dalton and/or the Rohwer equa-
tions at Eldoret, the Romanenko equation at Dodoma, Songea and Eldoret. The 
15-year absolute cumulative daily ETo differences compared to the FAO-PM 
ETo estimates were only 99 mm with the Penman equation at Morogogo, 21 mm 
with the Dalton equation at Eldoret, 44 mm with the Mahringer equation at Ta-
bora, 67 mm with the Meyer equation at Jomo Kenyatta, 31 mm with the Travert 
equation at Songea, 8 mm with the Rohwer equation at Eldoret, and 29, 24 and 
20 mm with the Romanenko equation at Dodoma, Songea and Eldoret, respec-
tively. However, regional or sub-regional calibration of the best performing 
Penman, Mahringer, Trabert and the Romanenko equation could improve water 
management in Tanzania and Kenya under the conservative and sustainable 
agriculture. This study provides a pragmatic solution for the region that can be 
used as a guide to choose which method(s) would be a reasonable alternative to 
estimate ETo when all climatic data are not available at particular locations. 
However, other reference evapotranspiration equations including the radiation 
based and the combination equations should tested to determine the best alter-
native ETo equation to the Penman-Monteith equation for sustainable water 
management in Tanzania and Kenya. Given the current status of weather station 
networks in the region, the results of this study can enhance crop water use es-
timation and thus feeds into the decision making process for regional water re-
sources planning by irrigators, water managers and other agricultural profes-
sionals. 
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