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Abstract 
In this work, the general nonrelativistic classical statistical theory presented in 
an earlier paper (J. Mod. Phys. 8, 786 (2017)) is applied in detail to the Euler 
angle and center-of-mass coordinates of an extended rigid body with arbitrary 
distributions of mass and electric charge. Results include the following: 1) The 
statistical theory spin angular momentum operators are independent of the 
body’s morphology; 2) These operators obey the usual quantum commutation 
rules in a non-rotating center-of-mass (CM) reference frame, but left-handed 
rules in a rotating body-fixed CM frame; 3) Physical boundary conditions on 
the Euler angle wavefunctions restrict all mixed spin wavefunctions to a su-
perposition of half-odd-integer spin eigenstates only, or integer spin eigens-
tates only; 4) Spin s eigenfunctions are also Hamiltonian eigenfuctions only if 
at least two of the body’s principal moments of inertia are equal; 5) For a spin 
s body with nonzero charge density in a magnetic field, the theory automati-
cally yields 2 1s +  coupled wave equations, valid for any gyromagnetic ratio; 
and 6) For spin 1/2 the two coupled equations become a Pauli-Schrödinger 
equation, with the Pauli matrices appearing automatically in the interaction 
Hamiltonian. 
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1. Introduction 

In an earlier paper [1], hereafter referred to as [I], we proved that any possible 
statistical treatment of all possible nonrelativistic classical motions of any 
Lagrangian system that is acted upon by a stochastic force field always yields the 
corresponding Schrödinger equation, with its usual boundary conditions and 
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solutions, as an essential statistical equation that must be obeyed by the system, 
once an unknown constant is set equal to  . We derived the conventional 
canonical quantization rule between each coordinate and its conjugate momentum 
operator, and also the conventional prescription for the Hamiltonian operator, 
namely, that it must be the classical Hamiltonian in the N-dimensional metric 
configuration space specified by the classical kinetic energy of the system, with 
the conjugate momentum N-vector replaced by i−   times the vector gradient 
operator in that space. These results imply that a classical statistical analog of the 
quantum spin operator should exist for all nonrelativistic rigid rotations of any 
extended model particle. 

Many authors have considered classical spinning top models and their 
possible connections to quantum spin and magnetic moment; we refer to a few 
examples that seem important in regard to this work [2]-[12]. These treatments 
either postulate the usual commutation rules for the Cartesian components of 
the spin operator in the non-rotating coordinate system by analogy with the 
rules for orbital angular momentum, or they begin with an Euler angle 
description of rigid rotations, and simply postulate that the momenta conjugate 
to the angles become operators given by i−   times derivatives with respect to 
the angles, in analogy with conjugate translational momenta. As discussed below, 
our statistical treatment does not require any such postulates. 

There are two well-known objections to nonrelativistic spinning top models. 
One is that tangential speeds involved in any rigidly rotating object with mass 
and effective radius as small as those of an electron must far exceed the vacuum 
speed of light in order that the model have spin angular momentum of order   
[13]. The other objection is that if the spin eigenfunctions must be single-valued 
periodic functions of the Euler angles with period 2π, then half-odd-integer spin 
is not allowed. These objections were addressed and at least partially resolved in 
[I], where we concluded that rotations and translations of electrons and other 
particles having extremely small mass and size must always be treated 
relativistically, while larger particles often may be treated non-relativistically. We 
also showed that half-odd-integer spin is allowed. (Some further rationale for 
half-odd-integer spin is provided in the paragraphs following Equation (52) 
below.) 

This paper concentrates on applying the general classical statistical theory 
(CST) derived in [I] to a nonrelativistically rotating and translating massive rigid 
body having arbitrary internal structure and containing a co-moving electric 
charge distribution. The body is immersed in a stochastic force field, a specified 
magnetic field, and perhaps other specified fields. In [I], only a spherically 
symmetric body immersed in a stochastic force field but not in magnetic or 
other specified fields was treated. Following several authors [2] [5] [6], a rigid 
spherically symmetric extended particle model is used for simplicity in the text 
below to represent a magnetic dipole; Appendix A provides a new treatment of 
a rigid extended particle magnetic dipole model having arbitrary structure. 
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Section 2 defines center-of-mass (CM) and Euler angle coordinates and obtains 
a new general tensor calculus representation of the nonrelativistic classical 
Lagrangian, Hamiltonian, and rotational motion equations in terms of the 
metric in the Euler angle 3-space. Section 3 utilizes these new results and other 
results obtained in [I] to derive the statistical theory spin and Hamiltonian 
operators and thus the general statistical Schrödinger equation for the system. 
The Cartesian components of the spin angular momentum operator in both the 
non-rotating and rotating CM frames of reference are linear combinations of 
derivatives with respect to the Euler angles; they are actually derived from the 
theory, not just postulated or inferred by analogy. While the non-rotating frame 
components satisfy the usual commutation rules for spin operators, the 
body-fixed frame components satisfy left-handed commutation rules. A new 
derivation of the simultaneous eigenfunctions of the square of the spin operator 
and its rotating and non-rotating frame z-components is provided. For 
example, for spin 1/2, this nonrelativistic theory automatically yields a modified 
Pauli-Schrödinger equation involving the Pauli spin matrices and a two-element 
spinor wavefunction. The new modified equation contains a rigid rotator term 
and a term involving the square of the magnetic field, as well as an interaction 
Hamiltonian having the usual form but valid for any magnetogyric ratio. 
Application of physical boundary conditions with respect to the Euler angles 
provides a new derivation of known behavior, namely, that a general wavefunction 
must be a superposition of half-odd-integer spin eigenstates only, or integer spin 
eigenstates only. Section 4 provides a summary and discussion of the results of 
this work, including a comparison of orbital and spin angular momentum in 
rotator models. Section 5 considers conclusions that may and may not be drawn 
from this work. Appendix A provides a new derivation of the Lagrangian and 
Hamiltonian for a rigid charged rotator of arbitrary morphology in an 
electromagnetic field, as well as consequences for a rotator having cylindrical but 
not spherical symmetry. This appendix also provides a new derivation of the fact 
that the Euler angle spin angular momentum operators are independent of the 
structure of the model rotator, whereby any object in a nonrelativistic rigid 
rotator spin eigenmode must have either odd-half-integer or integer spin. 

2. Classical Nonrelativistic Rotator 
2.1. Euler Angles and Angular Velocity 

Some of what follows in this section is treated in textbooks and/or in [I], but we 
present it here for clarity and to establish notation. We use a conventional choice 
of Euler angle coordinates, the “zyz” set [14] used in several textbooks on 
mathematical methods of physics, e.g., Arfken [15]. We designate these 
coordinates bα , where indices , , ,b c d   from the first part of the alphabet 
range and sum from 1 to 3. With this set of angles, a general transformation of 
Cartesian coordinates from a non-rotating system with Cartesian unit basis 
vectors ˆie  to a rotating system with Cartesian unit basis vectors ˆ

ie , with the 
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origin of both systems at the body CM, is obtained by specifying 
right-hand-screw rotations about the non-rotating system z-axis by angle 1α , 
then about the new y-axis by angle 2α , then finally about the new z-axis by 
angle 3α . In general, the ranges of the angles should be ( ),−∞ ∞ , because the 
body may just keep on rotating about any axis. However, physical objects should 
look the same modulo 2π in all angles, so observable functions such as 
coordinate probability densities should be periodic in each Euler angle with 
period 2π. The Cartesian basis vectors in the two systems are related by  

( ) ( ) ( ) ( )3 2 1ˆ ˆ ˆ ,z y z
i ij jk kl l il lR R R Rα α α α= =e e e              (1) 

where the matrices zR  and yR  are given by  

( ) ( )
cos sin 0 cos 0 sin
sin cos 0 ; 0 1 0 ,
0 0 1 sin 0 cos

z yR R
µ µ µ µ

µ µ µ µ
µ µ

−   
   = − =   
   
   

     (2) 

where here µ  is a dummy variable. Thus, the complete rotation is specified 
by the matrix ( ) ( ) ( ) ( )3 2 1z y zR R R Rα α α α= , which is orthogonal with 
determinant +1 (as are the constituent matrices). The set of all such 3 3×  
matrices forms the defining irreducible representation of the rotation group 

( )3SO . 
The angular velocity 3-vector can be found from the relations defining rigidly 

rotating Cartesian coordinates,  
ˆ ˆd di it = ×e eω                         (3) 

where ω  is the instantaneous angular velocity, and × here indicates the 
cross-product. The Cartesian components ˆi iω = ⋅e ω  in the non-rotating frame, 
and ˆ

i iω = ⋅e ω  in the rotating frame, can be obtained using Equations (1)-(3). 
The results are  

; ,b b
i ib i ib ik ka b Rω α ω α ω= = =                   (4) 

where we have specified the time-dependent trajectories of the Euler angles by 
( )b b tα α= . The matrices ( )a  and ( )b  are given by  

( ) ( )

1 2 1 2 3 3

1 2 1 2 3 3

2 2

0 sin sin cos sin cos sin 0
0 cos sin sin ; sin sin cos 0 .
1 0 cos cos 0 1

a b
α α α α α α
α α α α α α

α α

   − −
   

= =   
   
   

   (5) 

Note that Equation (4) implies ( ) ( )( )b R a= . 

2.2. Classical Nonrelativistic Rotator Dynamics 

As mentioned above, we first consider a very simple model rotator, a rigid 
extended spherically symmetric object having only the attributes of an electric 
charge distribution with total charge q which may be nonzero or zero, a mass 
distribution with mass 0m > , a principal moment of inertia I about the CM, 
and the 3-vectors CM position ( )tX , intrinsic magnetic dipole moment ( )tµ , 
and angular velocity ( )tω , both of the latter about the CM. (In Appendix A, 
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we consider a rigid object of arbitrary morphology in a magnetic field, which we 
did not treat in [I].) We neglect gravitational interactions. The classical 
definition of intrinsic magnetic moment (Gaussian units) is  

( ) ( ) ( )1 32 d , ,t c x t− ′ ′= ×∫ x J xµ                     (6) 

where ( )t′ = −x x X , and ( ), tJ x  is the electric current density. For a 
spherically symmetric translating and rigidly rotating model,  

( ) ( ) ( ) ( ), ,qt q t t f x′ ′ = + × J x X x ω                 (7) 

where x′ ′= x , and the electric charge density is ( )qqf x′ , so that 

( )3d 1qx f x′ ′ =∫ . Combining these equations and noting that ( )3d 0qx f x′ ′ ′ =∫ x  
yields  

( ) ( ) ( ) ( )1 3 222 d .
3 qt q c x x f x t−  ′ ′ ′=   ∫µ ω                (8) 

The nonrelativistic kinetic spin angular momentum is  

( ) ( )( ) ( ) ( )3d ,K
mt m x t f x I t ′ ′ ′ ′= × × = ∫S x xω ω           (9) 

where ( )mmf x′  is the mass density, so that ( )3d 1mx f x′ ′ =∫ , and the moment of 
inertia I  is given by  

( )3 22 d .
3 mI m x x f x′ ′ ′= ∫                      (10) 

Combining Equations (8)-(10) yields  

( ) ( ) ( )2 ,Kt gq mc S gI t= = µ ω                   (11) 

where the dimensionless parameter g is defined by  

( ) ( )3 2 3 2d d ,q mg x x f x x x f x′ ′ ′ ′ ′ ′= ∫ ∫                (12) 

and the magnetogyric ratio g  is defined by  

2 .g gq mc=                          (13) 

We provided the detailed derivation above not only for clarity but also to 
emphasize that the intrinsic magnetic moment of a spherically symmetric rigidly 
rotating charged body is proportional to the kinetic spin angular momentum 

KS , not to the spin angular momentum S  to be defined below that is 
canonically conjugate to the Euler angles. This point has been emphasized by 
several authors [6] [11] [12]. 

The original Pauli-Schrödinger treatment and the Dirac equation yield 2g =  
for a bare electron. For nonrelativistic spherical rotators with q mf f= , i.e. with 
charge density proportional to mass density, Equation (12) clearly yields 1g = . 
It may be interesting that a circular disk geometry with charge uniformly 
distributed around the circumference and mass uniformly distributed in the disk 
yields exactly 2g = . This result can be derived easily from the analogs of 
Equation (12) for nonspherical objects, as shown in Appendix A. 

The conventional nonrelativistic Lagrangian for the charged translating rigid 
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rotator system considered here can be derived quite easily as the sum of the 
translational kinetic energy (KE) of the CM, the rotational KE about the CM, 
and the interaction Lagrangian  

( )3 1dint qL x cρ ϕ −= − + ⋅∫ J A  

for the interaction of external electromagnetic potentials ( ),ϕ A  with any 
electrical charge-current densities ( ),qρ J . For the model particle used here, 
sharply localized around ( )t=x X , the appropriate approximation for the 
interaction Lagrangian is obtained by a Taylor expansion of the external fields 
about the CM and use of Equation (7) for J . The resulting expression for L that 
is valid through dipole moment interactions is  

2 1 21 1 ,
2 2

L m q c q I gIϕ −   = − + ⋅ + + ⋅      
V A V B 

ω ω          (14) 

where ˆ i
i X=V e   is the 3-vector CM velocity, and the fields ,ϕ A  and the 

magnetic field (flux density) B  are evaluated at the CM. Clearly, the first 
bracket is trL , the Lagrangian involving the translational motion of the CM, and 
the second bracket is rotL , the Lagrangian involving the rotational motion, 
including the usual interaction ⋅Bµ  of a magnetic dipole moment with a 
magnetic field. Of course, if the magnetic field is anything other than a constant 
vector, this rotational interaction term influences the translational motion as 
well, as will be discussed below. Note that the electric dipole moment about the 
CM is zero for this model extended particle, since the CM is also the center of 
charge. 

Using the general boldface notation developed in [I], the Hamiltonian can be 
obtained without specifying the rotational coordinates. First, define the 
conjugate momentum 3-vectors  

;L m q c= ∂ ∂ = +P V V A                      (15) 

,L I Ig= ∂ ∂ = +S Bω ω                     (16) 

where P  is the translational momentum conjugate to the CM velocity V , and 
S  is the intrinsic (spin) angular momentum about the CM, conjugate to ω . 
Then the Hamiltonian is given as usual by H L= ⋅ + ⋅ −V P S  ω . Applying 
Equations (14)-(16) yields  

( ) ( )
2 21 1 .

2 2
H q c Ig q

m I
ϕ= − + − +P A S B

             (17) 

This Hamiltonian is clearly equal to the sum of the kinetic and potential 
energies. It is conserved if neither of the potentials A  and ϕ  depend explicitly 
on the time. Note that the effective interaction Hamiltonian involving the spin is 
the cross-term in the second term, g− ⋅B S , which is generally misinterpreted as 
− ⋅Bµ . This form of the classical Hamiltonian for a system of one extended 
spherically symmetric rotating charged particle in electromagnetic fields was 
presented e.g. by Young [6], but has not been included in standard textbooks, 
despite the fact that once the angular velocity is expressed in terms of a set of 

https://doi.org/10.4236/jmp.2017.812114


G. H. Goedecke 
 

 

DOI: 10.4236/jmp.2017.812114 1917 Journal of Modern Physics 
 

Euler angles, Hamilton’s canonical equations yield the correct Euler-Lagrange 
equations of motion for the rotation only if the second term in Equation (17) is 
present in its entirety. 

At this point we should note that the treatment above also accomodates 
rigidly rotating objects that possess a magnetic moment and nonzero charge 
density but zero total electric charge. For such objects, one may put 0q =  in 
the Hamiltonian (17), and simply choose a nonzero value of g and a nonzero 
reference value such as q e=  in the definition of g , Equation (13). 

Now, using Equation (4), we express the rotational kinetic energy rotT  in 
terms of the Euler angles:  

1 1 ;
2 2

b c
rot i i ib ic

IT I m a a
m

ωω α α = =   
                 (18) 

1 1 .
2 2

b c
rot i i ib ic

IT I m b b
m

ωω α α = =   
                 (19) 

These expressions immediately reveal the covariant metric  
rot
bc ib ic ib ic

I Ig a a b b
m m

= =  in the Euler angle 3-space. Since rot
bc b cg = ⋅e e  in terms  

of the covariant (subscripted) coordinate basis vectors in that space, and 
bc b c
rotg = ⋅e e  in terms of the contravatiant (superscripted) basis vectors, and also 
c c
b bδ = ⋅e e , these basis vectors must satisfy  

ˆˆ ;b ib i ib i
I Ia b
m m

= =e e e                    (20) 

1 1 ˆˆ ;c
cj j cj j

m ma b
I I

− −= =e e e                   (21) 

These relations imply that 1 1cd
rot cj dj

mg a a
I

− −= , which in turn implies rot cd d
bc rot bg g δ= ,  

which must be the case. Also, it is straightforward to show from Equations (20) 
and (21) that the affine connections d

bcΓ , which are defined by the relation  

,d
b c bc d∂ = Γe e                        (22) 

are not symmetric under interchange of their lower indices. Therefore, the Euler 
angle space is a space with torsion, and the affine connections are not equal to 
the corresponding Christoffel symbols, as they are in a torsion-free space. 
However, the connections may all be evaluated using Equation (22) and 
Equations (20) and (21) and their inverses. We will need only one of the 
connections in this paper, which we derive below. (A feature of Euler angle 
metric 3-spaces that is interesting in its own right is that the Riemann-Christoffel 
curvature tensor, given by d d d d e d e

cab a bc b ac ae bc be acR = ∂ Γ − ∂ Γ + Γ Γ −Γ Γ , is zero, so the 
space is a flat space with torsion.) Note that our use of the coordinate basis 
vectors and the definition of the affine connection given above correspond to the 
usages in [I] and in the textbooks by Lichnerowicz [16] and Hartle [17]. 

The 3 3×  matrix of the covariant components of the metric is given by  

( ) ( ) ( ) ( )T Trot I Ig a a b b
m m⋅ = = ; both expressions yield  
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( )
2

2

1 0 cos
0 1 0

cos 0 1

rot Ig
m

α

α
⋅

 
 

=  
 
 

                  (23) 

Each covariant metric component has physical dimension (length)2. We may 
show fairly easily from Equations (5) and (21) that  

( ) ( )1 2 2cotb c b c
b b bj jc bca a α−∂ = ∂ = −Γ = −e e e e  

Also, from Equation (23), ( )3 2 2sing I m α⋅ = , so that  

( )2 2ln cotc
c g α⋅∂ =e e  

Therefore, the general torsion-free N-space identity  

d 0N x g f⋅ ∇ =∫                        (24) 

is still valid for 3-dimensional Euler angle subspaces, despite their nonzero 
torsion. (In Equation (24), the integration extends over all N-space, and f is any 
function of the coordinates 1 2 3, , , , Nx x x x  that satisfies periodic boundary 
conditions.) This identity is necessary in establishing the Hermitean character of 
the Euler angle spin operators. 

Writing out rotT  yields  

( ) ( ) ( )2 2 21 3 1 3 2 21 2 cos .
2rotT I α α α α α α = + + +  

               (25) 

The magnetic interaction term in the Lagrangian is then  

,mag b b
int i ib i ibL gI gIB a gIB bα α= ⋅ = =B    ω               (26) 

where here the iB  are defined by i ik kB R B= , as if they were the barred 
(rotating) frame Cartesian components of an ordinary 3-vector. Note that the 

iB  depend on the Euler angles and thus are time-dependent even if the iB  are 
not. Thus, the rotational part of the Lagrangian (14) may be expressed as  

1 1 .
2 2

rot b c b rot b c b
rot bc i ib bc i ibL mg gIB a mg gIB bα α α α α α= + = +             (27) 

The momenta conjugate to the angles are  

( ) ( ).b c c
b ib ic i ib ic iP L Ia a gB Ib b gBα α α= ∂ ∂ = + = +            (28) 

These momenta have the dimension of angular momentum. Contraction with 
1

bka−  and 1
bkb−  and comparison with Equation (16) yields  

( ) ( )1 1; ,k bk b k k k bk b k kS a P I gB S b P I gBω ω− −= = + = = +          (29) 

where the ( ),k kS S  are the (non-rotating, rotating) Cartesian components of 
the conjugate spin angular momentum 3-vector, respectively. Then, from the 
definition of the rotational part of the Hamiltonian, b

rot b rotH P Lα= − , where 

rotL  is given by Equation (27), one easily obtains the rotational part of  

Equation (17), ( )21
2rotH Ig

I
= −S B . Altogether, the classical Lagrangian and  

Hamiltonian in terms of Cartesian CM coordinates and the three Euler angle 
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coordinates are given by  

11 1 ,
2 2

i j i rot b c b
ij i bc i ibL m X X q qc X A mg gIB aδ ϕ α α α−   = − + + +      
  

       (30) 

( )( ) ( )( )1 11 1 ,
2 2i i i i i i i iH P qc A P qc A q S IgB S IgB

m I
ϕ− −= − − + + − − 

     (31) 

where we have used the non-rotating frame components 1
i bi bS a P−=  and iB  

since the latter are presumed known and may be constants, as mentioned above. 
The classical motion equations are derived from Equations (30) and (31) 

directly. After some algebra, the Euler-Lagrange (EL) equations applied to 
Equation (30) yield the following 3-vector classical motion equations for 
translation and rotation:  

( )1 ,m q c gI−= + × + ∇ ⋅V E V B B

 

 ω                  (32) 

.I gI gI= × − ⋅∇B V B

  ω ω                     (33) 

In these equations, ∇  is the usual 3-vector operator given by ˆi
i∇ = ∂e . The 

last term in Equation (32) is the expected force ∇ ⋅B µ  on a magnetic dipole 
moment in any (nonuniform) magnetic field, time-dependent or not. The 
second term in Equation (33) is the expected torque ×Bµ , while the last term 
is another torque that is omitted from most textbook presentations. As 
emphasized by Young [6], that torque must present in order to predict  

conservation of the total kinetic energy 2 21 1
2 2

m I+V ω  for the case of a  

nonuniform static magnetic field and zero electric field. During the course of 
deriving Equations (32) and (33) from the EL equations, the following useful 
identity must be proved:  

( )( )1 1 1 1 ,b
bi cj bj ci kc ijka a a a a α− − − −− ∂ ∂ =                  (34) 

where ijk  is the Levi-Civita completely antisymmetric three-index symbol. 
This identity was not trivial to prove. (The author could not find a simple 
general derivation, and resorted to brute force, calculating and verifying the 
identity for each symbol, starting from Equation (5) for the matrices ( )a  and 

( ) 1a − .) A similar identity exists among the elements of ( )b . We note that if and 
only if B  has no intrinsic time dependence, one may apply Equation (16) and 
write Equation (33) as g= ×S S B

 , because in such a case d dt⋅∇ =V B B . 

3. Spin Operators and Statistical Wave Equation 
3.1. Wave Equation for Arbitrary Spin 

The relevant statistical wave equation for any nonrelativistic system having six 
coordinates is the six-dimensional version of the general statistical wave 
Equation (24) of [I], with the unknown constant Γ  replaced by  :  

( )21 .
2ti i m W

m
ψ ψ ψ∂ = − ∇ − +u                  (35) 
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Here, the 6-vector field u  and the 6-scalar W are the functions that appear 
in the classical Hamiltonian (31), namely,  

( ) ( ), , ,0 ,q mc g I m W qϕ= =u A B                (36) 

and the 6-space gradient operator is given by  

ˆ ,i b
i b= ∂ + ∂e e∇                         (37) 

where b
b α∂ = ∂ ∂ . The Hamiltonian operator in terms of u  and W is given by 

Equation (26) of [I]. However, as shown above, for the model system considered 
here the classical Hamiltonian may be written as Equation (17) or Equation (31). 
One need only note that the rotational part of the 6D gradient operator in 
Equation (37) is b

b∂e , so that in Equation (31) the conjugate classical momenta 
must be replaced by the momentum operators  

; ,op op
i i i b b bP p i P p i→ = − ∂ → = − ∂

                 (38) 

Making these substitutions in Equation (31) yields  

( )( ) ( )( )1 11 1 ,
2 2

op op op op op
i i i i i i i iH p qc A p qc A q S IgB S IgB

m I
ϕ− −= − − + + − −    (39) 

where, from Equations (29) and (38),  
1 1 .op op

i bi b bi bS a p i a− −= = − ∂                      (40) 

Earlier, we showed that despite the torsional character of the Euler angle 
3-space, Equation (24) is valid, which ensures that the operators opH  and opS  
are Hermitian provided the coordinate probability density obeys periodic 
boundary conditions w.r. to the Euler angles. It is easy to show that the spin 
operators op

iS  satisfy the usual commutation rules for angular momentum,  

, .op op op
i j ijk kS S i S  =                         (41) 

One way to obtain this result is to combine Equations (40) and (34). Another 
way is to write out Equation (40) as a matrix equation, using Equation (5), and 
then calculate each commutator directly. Equations (29) and (38) also yield the 
expressions  

1 1 .op op
i bi b bi bS b p i b− −= = − ∂                      (42) 

Using this equation, and Equation (5) to obtain the matrix ( )b  and its 
inverse, one may use Equation (42) directly, or Equation (41) with op op

i ij jS R S= , 
to show that the rotating system spin operators op

iS  satisfy  

, .op op op
i j ijk kS S i S  = −                         (43) 

Note the minus sign, compared to Equation (41)! To the best of our 
knowledge, these left-handed rotating system commutation relations are not 
mentioned in quantum mechanics textbooks. Evidently, an observer at rest in 
the coordinate system that rotates with the rigid body would observe this 
left-handedness in some way. (One would expect that these left-handed rules 
have been presented in the literature, but we have been unable to locate a 

https://doi.org/10.4236/jmp.2017.812114


G. H. Goedecke 
 

 

DOI: 10.4236/jmp.2017.812114 1921 Journal of Modern Physics 
 

reference.) After some algebra, either Equation (40) or Equation (42) yields the 
expression for ( )2opS  in terms of the Euler angles: 

( ) ( ) ( )2 2 1 3 1 3

2 22 2 2 2 2 2 2cot sin 2cos .op
α α α α α α

α α α
− = − ∂ + ∂ + ∂ + ∂ − ∂ ∂  

S 
  (44) 

The operators ( )2

3 3, ,op op opS SS  all commute and thus have simultaneous 
eigenfunctions. These eigenfunctions, sometimes called Wigner harmonics, are 
proportional to the elements of the matrices of the irreducible representations of 
the group SU(2). We shall use Dirac notation and denote them by , ,s ss m m . 
They satisfy  

( ) ( )
2 2, , 1 , , ,op

s s s ss m m s s s m m= +S                (45) 

3 3, , , , , , , , , ,op op
s s s s s s s s s sS s m m m s m m S s m m m s m m= =      (46) 

where 0,1 2,1,3 2,2, ,s =   and sm  and sm  run independently from s  to 
s−  in integer steps. In terms of the Euler angles, all these spin eigenfunctions 

have the general form [18]  

( ) ( )1 3 2
,, , exp ,

s s

s
s s s s m ms m m i m m uα α α= +             (47) 

where the ( )2
,s s

s
m mu α  can be determined. One can verify this form easily using 

Equations (40), (45), and (46). We define the raising and lowering operators as 
follows:  

1 2 1 2; .op op op op op opS S iS S S iS± ±= ± =                  (48) 

Note the change in signs for the rotating frame components. The spin 
eigenfunctions also satisfy  

( )( ), , 1 , 1, ,op
s s s s s sS s m m s m s m s m m± = ± + ±           (49) 

( )( ), , 1 , , 1 ,op
s s s s s sS s m m s m s m s m m± = ± + ±           (50) 

except for phase factors that multiply the square roots but can be set equal to 
unity with no loss of generality. The relations (45), (46), (47), (49), and (50) may 
all be derived without reference to Euler angles from the commutation relations 
(41) and (43) and the physical requirement that the maximum values of sm  
and sm  not exceed s; see any modern textbook on quantum mechanics, e.g. 
that by Shankar [19], for the conventional derivation that does not consider the 
rotating frame contributions. We chose the juxtaposition of signs in the second 
term of Equation (48) in order that opS+  indeed acts to raise the index sm  by 
unity, etc. 

The statistical/Schrödinger wave equation for the system is  

,op
ti Hψ ψ∂ =                           (51) 

where opH  is given by Equation (39). At first glance, it might seem that the 
general solution could be written as a superposition of the eigenfunctions 

, ,s ss m m  over all allowed values of s, both integer and half-odd-integer. 
However, that would violate the boundary condition mentioned above, that all 
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observable functions of the Euler angles must be single-valued in intervals of 2π, 
i.e., they must be periodic functions with period 2π, despite the fact that the 
angles themselves have infinite range. A simple example suffices: Consider a 
superposition 1exp 2C D iψ α= + , where C and D are nonzero functions of 

,x t , and the other angles, which is a superposition of 0sm =  and 1 2sm =  
terms. Then the observable probability density *ψ ψ  is periodic in 1α  with 
period 4π, not 2π. Reasoning from this example, it is easy to see that in order to 
ensure Euler angle periodicities of 2π for any probability density and for all other 
observable functions (which are always bilinear in *ψ  and ψ ), the general 
solution of Equation (51) must be written as a superposition of the spin 
eigenfunctions with integer s only, or with half-odd-integer s only. (Also, the 
integer-s eigenfunctions are not orthogonal to the half-odd-integer ones in 
azimuthal angle inervals ( )0,2π , which reinforces the above restriction.) Since 
in this paper we are most interested in the spin-1/2 example, we adopt the 
superposition of the spin eigenfunctions with half-odd-integer s as the relevant 
solution of Equation (51). Furthermore, since the opH  for a spherical model 
particle, Equation (39), contains the op

iS  but not the op
iS , the sum over sm  is 

redundant; we may choose any allowed value of sm  with no loss of generality. 
Therefore, the relevant general solution of the statistical wave Equation (51) may 
be written  

( ) ( ),
1 2,3 2,

, , , , ,
s s

s

s
s
m m s s

s m s
x t x t s m mψ α ψ

= =−

= ∑ ∑


            (52) 

where any half-odd-integer value of ,s sm s m s− ≤ ≤ , may be used. Substitution 
of Equation (52) in Equation (51) yields 2 1s +  coupled equations for each s. In 
the next subsection, we write out the equations for 1 2s = . 

Before proceeding, we should discuss briefly why the spin eigenfunctions, 
which have the general form given by Equation (47), are themselves not required 
to be single-valued in angle intervals ( )0,2π , in contrast to eigenfunctions like 
exp imφ  involving the spherical polar or cylindrical coordinate azimuthal angle 
φ . This question has been discussed often; a thoughtful treatment was given by 
Merzbacher [20]. We paraphrase his answers as follows: The angle φ  helps 
locate a point in Euclidean 3-space, so values of φ  outside ( )0,2π  are 
meaningless: φ  and 2 πnφ + , with n an integer, are the same points, since e.g. 
they yield the same Cartesian coordinates for a given choice of the other 
spherical polar coordinates ( ),r θ . Therefore, the eigenfunctions themselves 
must satisfy periodic boundary conditions in the azimuthal angle interval 
( )0,2π , whereby m must be an integer. (There is some difficulty with this 
answer in regard to the Aharonov-Bohm effect, which Merzbacher discusses.) In 
contrast, for the Euler angles, 1α  and 1 2 πnα +  are not the same points, nor 
are 2α  and 2 2 πnα + , etc., because the object may just keep on rotating, as 
mentioned above. (Merzbacher points out that the group space of the rotation 
group is a doubly connected space, whereby the the operation “rotation by 2π 
about an axis” cannot be continuously deformed into the operation “no rotation 
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at all”.) Therefore, in the functions 1exp sim α  and 3exp sim α , the values of 
( ),s sm m  are restricted to integers or half-odd-integers only by the demands of 
the spin commutation rules, as discussed above, or, equivalently, by the 
requirement that all “observable” functions be periodic in Euler angle intervals 
of 2π. 

There is another consideration pertinent to the discussion just above, as  

follows. One may always make the change of variables ( )1 1 31
2

ξ α α= + , 

( )3 1 31
2

ξ α α= − , e.g., see the treatment of SU(2) by Arfken [15]. Then, for the  

fundamental intervals ( )1 30 , 2πα α≤ ≤ , one obtains 10 2πξ≤ ≤ , 3π πξ− ≤ ≤ . 
Furthermore, the eigenfunctions of Equation (47) now involve  

( ) ( )1 3exp s s s si m m m mξ ξ + + −  , which are single-valued in their fundamental 
coordinate intervals because as discussed above sm  and sm  must both be 
half-odd-integers, or both integers. This coordinate transformation does not 
change any of the spin eigenvalues, and it also diagonalizes the metric in the spin 
space. 

Also, it should again be noted that opH  of Equation (39) contains the 
additional terms ( )2

2opS I  and ( )2 2I gB  compared to the conventional 
Hamiltonian operator. In subsection 3.3.3 and the appendix of [I] we analyzed 
the case of a free rotator, and concluded that a nonrelativistic treatment of 
hadrons and more massive objects is appropriate, but that a relativistic 
treatment of leptons is necessary. Such a treatment is beyond the scope of this 
work. 

3.2. Wave Equation for Spin 1/2 

We examine the solutions of Equation (51) for a given spin angular momentum. 
For this example, 1 2s = , we may write  

( ) ( ) ( ), , , , , , , , ,
s

s
m s sx t U x t s m U x t s mψ α + −= + + −           (53) 

for either allowed value of sm , as a suitable general solution of Equation (51). 
Here, U±  are functions to be determined. For notational convenience, , ,s + +   

stands for 1 1, ,
2 2 sm  with 1 2sm = , etc. The orthonormal spin eigenfunctions  

are proportional to the elements of the 2 2×  irreducible representation of SU(2) 
in terms of the Euler angles [15]:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 3 2

1 1 3 2

1 1 3 2

1 1 3 2

, , 2π exp 2 cos 2 ;

, , 2π exp 2 sin 2 ;

, , 2π exp 2 sin 2 ;

, , 2π exp 2 cos 2 .

s i u

s i u

s i u

s i u

α α α α

α α α α

α α α α

α α α α

−
++

−
−+

−
+−

−
−−

 + + = + ≡ 
 − + = − + ≡ 
 + − = − ≡ 
 − − = − + ≡ 

       (54) 

It is very simple to verify that these eigenfunctions are indeed orthonormal 
under integration over the spin space (rotation group) volume, e.g., that  
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2π 2π π1 3 2 2 *
0 0 0

, , , , d d d sin 1,s s u uα α α α ++ +++ + + + = =∫ ∫ ∫  

etc. Using Equations (40), (42), and (44), it is also straightforward to verify that 
these functions satisfy Equations (45), (46), (49), and (50) for 1 2s = . 

We write the Hamiltonian operator (39) as  

1 2 ,op op opH H H= +                         (55) 

where  

( ) ( )2 2 2 2
1

1 1 1 ;
2 2 2

op op opH q c q Ig B
m I

ϕ= − + + +p A S          (56) 

( )2 3 3
1
2

op op op op opH g g B S B S B S− + + −
 = − ⋅ = − + +  

B S           (57) 

Here, opS±  are given by Equation (48), and 1 2B B iB± = ± . Since we may use 
either value of sm , we choose +1/2. Then a little algebra, using Equations (45), 
(46), (49), (50), (51), and (53)-(55), yields two coupled equations,  

( ) ( )

( ) ( )

1 3

1 3

1 0;
2
1 0.
2

op
t

op
t

i H U g B U B U

i H U g B U B U

+ + − −

− − + +

− ∂ + − + =

− ∂ + + − =


 


 

             (58) 

Of course, these two coupled equations may be written as a 2 2×  matrix 
equation. If one defines the matrices  

1 2 3

0 1 0 1 0
; ; ,

1 0 0 0 1
i

i
σ σ σ

−     
= = =     −     

            (59) 

which happen to be the Pauli spin matrices, and also defines the column matrix 
(spinor)  

( ) ,
U

U
U

+

−

 
=  
 

                          (60) 

and applies Equation (58), then one immediately obtains the matrix equation  

( )( ) ( ) ( )1
1 0.
2

op
t i ii H U gB Uσ − ∂ + − = 

 


                (61) 

This is the Pauli-Schrödinger equation, except that 1
opH  contains the  

additional terms ( )2 2 21 1
2 2

op Ig B
I

+S  , which must be present for the reasons  

discussed above. Also, this equation is valid for any value of g in the 
magnetogyric ratio 2g gq mc= , not just for the value 2g =  originally chosen 
for the electron in order to match atomic spectral data. Note that as usual the  

definition 1
2

op
i iS σ=

  yields the conventional matrix representation of the  

non-rotating frame Cartesian components iS  of the spin angular momentum 
operator. Also, we remark again that exactly the same Equations (58) and (61) 
result if we use the spin eigenfunctions for 1 2sm = −  instead of those for +1/2. 
It is also noteworthy that the “magic” factorization  
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( ) ( ) 22op opq c q c − → ⋅ − p A p Aσ  of the translational Hamiltonian (see e.g. 
Sakurai [21]), the nonrelativistic analog of the Dirac factorization, allows only  

2g =  and also does not provide the terms ( )2 2 21 1
2 2

op Ig B
I

+S  . Since 2g =   

is correct for the electron without radiative corrections, and since that factor 
arises from the factorization of the translational Hamiltonian, perhaps the 
electron spin actually originates from translational zitterbewegung induced by 
the SZPF, as has been proposed [8] [10]. After all, as implied by the discussion to 
follow and the material in the appendix, it is not really clear how to distinguish 
spin from orbital angular momentum in models of rotating rigid bodies. 

4. Summary and Discussion 
4.1. Summary 

This work concerned a system of one rigid object having a mass distribution 
with nonzero total mass, an electric charge distribution, and intrinsic or “spin” 
angular momentum and associated magnetic moment, which for nonrelativistic 
motions requires a six-dimensional metric space for three CM coordinates and 
three Euler angle coordinates. In Section 2 we followed the development by R. 
Young [6] and showed that the magnetic field appears in the classical 
nonrelativistic Hamiltonian as a gauge field associated with the space-fixed 
frame Cartesian components of the spin angular momentum conjugate to the 
Euler angles. In Section 3, we applied the new general rules derived in Section 2 
of [I] to obtain the six-dimensional CST Schrödinger equation using the classical 
Hamiltonian. We provided a new proof that the non-rotating CM frame 
Cartesian components of the canonical spin angular momentum become 
operators that are linear combinations of derivatives with respect to the Euler 
angles and obey the conventional commutation rules for quantum angular 
momentum operators. We also provided a proof of a result that apparently is not 
mentioned in textbooks, that the co-rotating-frame Cartesian components of the 
spin operator obey left-handed commutation rules. Furthermore, we showed 
that a particle wavefunction may be a superposition of half-odd-integer or 
integer spin eigenstates, but not both. This correct result follows in a new way, 
from applying physical boundary conditions in the Euler angle description. For a 
particular spin s, we showed that the general six-dimensional Schrdinger 
equation yields 2 1s +  coupled equations for the amplitudes ( ), ,

s s

s
m m x tψ  in 

Equation (52). We also showed that, for spin 1/2, these coupled equations reduce 
to the Pauli-Schrdinger equation, with the usual Pauli matrix representation of 
the space-fixed system spin operators and with two-component spinors, but with 
arbitrary magnetogyric ratio and additional rigid rotator terms in the 
Hamiltonian. In Appendix A, we showed that the usual spin commutation rules 
apply to a rigid rotator of any structure, not just to a spherically symmetric 
rotator. This new derivation yields the well-known fact that any object in a rigid 
rotator eigenmode must have spin equal to one of the eigenvalues 

https://doi.org/10.4236/jmp.2017.812114


G. H. Goedecke 
 

 

DOI: 10.4236/jmp.2017.812114 1926 Journal of Modern Physics 
 

( )0,1 2,1,3 2,s =  , regardless of its internal structure or how many 
subparticles it contains, etc. However, the rotational Hamiltonian and its 
eigenfunctions and eigenvalues do depend on the particle structure. 

4.2. Discussion 

One topic that seems to merit discussion is the distinction between spin and 
orbital angular momentum. The distinction is fuzzy at best. For example, 
consider the classical model of an extended object as a cloud containing many 
point particles; see e.g. Goldstein’s textbook [14]. The total angular momentum 
of the cloud may always be defined with respect to an arbitrarily chosen origin of 
coordinates, and it may always be written (nonrelativistically) as the orbital 
angular momentum of the total mass, located at the CM, as it moves about the 
origin, plus the sum of the orbital angular momenta of each of the constituent 
point particles about the CM. So in general all the angular momentum in such a 
model is orbital. The total orbital angular momentum about the CM is called the 
intrinsic angular momentum of the object. If the point particles in the cloud are 
rigidly bound to each other, so that all their motions relative to the CM can be 
represented in terms of a single angular velocity vector that requires only three 
Euler angle coordinates to describe, then that intrinsic orbital angular momentum 
is called the (classical) spin angular momentum. Given the above, how can we 
justify allowing half-odd-integer spin angular momentum, but only integer 
orbital angular momentum? One response, adopted by many, is that we cannot 
justify it, so we simply go with the predictions of the commutation rules, to be 
used as needed. Another possible response is to note that the Goldstein model 
may not be the appropriate one. In actuality, all collections of particles and thus 
all “rigid” bodies are comprised of electrons, quarks, (and photons and gluons 
and…), as far as we know. The fermions and bosons in this mix have their own 
irreducible spins, analogously to subvortices within larger vortices in fluid 
mechanics, not the case for the subparticles in the Goldstein model. Thus in 
nonrelativistic theory it would seem that only in a model utilizing fundamental 
subparticles having irreducible spins can one hope to distinguish between orbital 
and spin angular momentum. So this argument turns into an argument for the 
existence of such fundamental particles. (In relativistic field theory, the 
distinction between orbital and spin angular momentum follows from Noether’s 
theorem; see e.g. the paper by the author on stress-energy tensors [22].) 

Another topic that should be mentioned is the CST method for treating 
systems of more than one particle. As discussed in [I] in some detail, the CST 
and QM methods are mathematically the same. The SWE for a nonrelativistic 
system of several identical or different particles is the same as the SEQ for the 
system. The CST for nonrelativistic systems of arbitrarily many identical 
particles is the same mathematically as quantum many-body theory for those 
particles. For example, for two identical or different nonrelativistic rigid rotators, 
one needs three CM coordinates and three Euler angles for each rotator, so the 
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configuration space of the SWE/SEQ is altogether 12-dimensional with a 
block-diagonal metric. 

5. Conclusions 

The classical statistical theory (CST) and its statistical wave equation (SWE) 
developed in [I] must apply to any nonrelativistic classical Lagrangian system. 
Furthermore, the SWE is in general the same as the Schrdinger equation (SEQ) 
for the system, and has the same sets of solutions, once an unknown constant is 
set equal to  . The SWE for a classical model charged rigid rotator having 
spherical or cylindrical symmetry or arbitrary morphology is not exactly the 
same as the conventional SEQ for the system; the differences occur because the 
conventional SEQ incorrectly omits terms from the Hamiltonian when an 
external magnetic field is present (see Section 3.2 above, and Appendix A). 
Nevertheless, the spin operators and their eigenfunctions and eigenvalues are 
exactly the same for the SWE and SEQ. 

On the basis of the general results in [I] and the results for the important 
example treated in this paper, it is tempting to conclude that the CST should 
replace conventional quantum mechanics, at least for nonrelativistic systems. 
However, as discussed in [I], the identical solutions of the SWE/SEQ must be 
interpreted differently, and the equation provides only an incomplete 
description of the statistics of such systems, albeit one that must be obeyed. Also, 
after nearly a century, it should require a great deal of evidence and thought to 
reverse the current points of view that coordinate trajectories do not exist and 
quantized energies do. Thus, as stated in [I], we still feel that it is premature to 
reach the abovementioned conclusion. In particular, a similar CST for relativistic 
motions of general many-particle systems should be found before such a 
conclusion might be justified. 
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6. Appendix A: Arbitrary Nonrelativistic Rigid Rotator 

In this appendix we first show that the spin operators and their commutation 
rules for a nonrelativistically rigidly rotating object of arbitrary structure are the 
same as for a spherically symmetric object. Then we obtain the Hamiltonian of 
the former interacting with a magnetic field. 

6.1. Spin Commutation Rules 

We make use of the fact that one may express the inertia tensor of any object in 
a body-fixed principal axis Cartesian frame in which the tensor is diagonal with 
principal moments of inertia , 1, 2,3iI i = . The rotational kinetic energy is  

21 1 ,
2 2

b c
rot i i bcT I mgω α α= =                       (A1) 

where the middle term extends the summation convention to indices repeated 
twice, which is notationally convenient. Applying Equation (4) of the text yields  

1 .bc i ib icg m I b b−=                          (A2) 

Here, m is a parameter having dimension mass that may be chosen as the 
mass of the object, bcg  is the covariant metric in the 3-space of the Euler angles 

bα , and the ibb  are given by Equation (5). It is easy to see that the covariant 
and contravariant basis vectors in the Euler angle space are given by  

( ) ( )1 2 1 2 1ˆ ˆ; ,b
b i ib i i bi iI m b m I b−= =e e e e                (A3) 

where the ˆ
ie  are the Cartesian unit basis vectors in the body-fixed frame. These 

relations are the analogs of Equations (20) and (21). Then  

( ) 1 1 1.bc b c
i bi cig m I b b

− − −= ⋅ =e e                    (A4) 

It is also easy to see that c c
b bδ⋅ =e e  and that bc b

ca ag g δ= , as must be the 
case. Now consider a freely rotating particle, so that its rotational Lagrangian 

rot rotL T= . Than the conjugate (angular) momenta are b c
b rot bcP L mgα α= ∂ ∂ =  , 

whereby  
1 .b bc

cm g Pα −=                           (A5) 

Using Equations (4), (65), and (66), one obtains  
1

1 1 1 1 ,c cS I b Pω −= =                          (A6) 

and similarly for the other spin angular momentum components in the 
body-fixed frame. Then, with op c

c cP p i α→ = − ∂ ∂  as in Equation (38), one 
obtains  

1 .op c
i i ciS S i b α−→ = − ∂ ∂                      (A7) 

These operators are identical to those defined by Equation (42), which means 
that they are independent of the structure of the rigidly rotating particle. 
Furthermore, since ib ij jbb R a=  and op op

i ij jS R S= , one also obtains  
1 ,op c

i ciS i a α−= − ∂ ∂                        (A8) 
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the same as Equation (40). Therefore, the commutation relations of Equations 
(41) and (43) are still valid, and the simultaneous eigenfunctions of 

( )2

3 3, ,op op opS SS  are still the , ,s ss m m  that satisfy Equation (45), (46), (49), 
and (50). However, the free particle Hamiltonian operator is easily seen to be  

11 .
2

op op op
rot i i iH I S S−=                        (A9) 

If all three principal moments of inertia are different, the individual spin 
eigenfunctions are not eigenfunctions of op

rotH . However, suppose the object has 
a rotational symmetry axis, which we may always choose to be the body-fixed 
z-axis, so that 1 2 3I I I= ≠ . Then  

( )1 1 1
1 3 1 3 3

1 .
2

op op op op op
rot i iH I S S I I S S− − − = + −               (A10) 

The individual spin eigenfunctions , ,s ss m m  are eigenfunctions of this 
Hamiltonian; the eigenvalues are  

( ) ( )1 2 1 1 2 2
, 1 3 1

1 1 .
2ss m sE I s s I I m− − − = + + −               (A11) 

This result reveals that some of the degeneracy of the spherical rigid rotator 
Hamiltonian eigenvalues for a given s may be removed for an axially but not 
spherically symmetric object, with the energy shifts dependent on the quantum 
number sm  associated with the body-fixed frame. 

We emphasize again that the spin operators, their commutation relations, 
their eigenfunctions and eigenvalues, and the raising and lowering operator 
relations (50) and (51) are independent of the principal moments of inertia and 
any other model particle parameters. This result is not surprising in view of the 
fact that the rotation of any rigid object is described in terms of three angles that 
simply relate the time-dependent orientation of a rotating orthonormal triad of 
basis vectors relative to a nonrotating orthonormal triad. The result implies that 
any object must have half-odd-integer or integer spin when it is in a rigid 
rotation mode, regardless of how many subparticles it contains and how they are 
distributed, which does seem to be the case for baryons, nucleons, atoms, 
molecules, etc. For example, the three quarks in a nucleon are now thought to 
have both spin angular momentum and orbital angular momentum about the 
nucleon center of momentum, and the gluons may contribute to the total 
angular momentum as well, but all that internal structure must arrange itself so 
that the total spin of a nucleon in its ground state is 1/2. 

6.2. Interaction with a Magnetic Field 

Consider a rigidly rotating charged or uncharged extended particle of arbitrary 
structure. The Cartesian components of the particle’s intrinsic magnetic 
moment in the rotating system are expressible as linear functions of the rotating 
system angular velocity components:  

,i ij jQµ ω=                           (A12) 
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where ij jiQ Q=  are constants, components of a symmetric rank two tensor that 
could be obtained from the definition of Equation (7) with ( )q qf f ′= x , not 
spherically symmteric, for the magnetic moment of a given current density J . 
Then for a particle with its CM position X  at rest, the relevant Lagrangian is  

1 ,
2rot i i i ij i jL I Q Bωω ω= +                     (A13) 

where j jk kB R B=  are defined just after Equation (25); they are effective 
rotating frame Cartesian components of any magnetic field that may be present. 
These components are evaluated at X , and they also depend on the Euler 
angles. The spin angular momentum conjugate to iω  is  

,i rot i i i ij jS L I Q Bω ω= ∂ ∂ = +                  (A14) 

which from the definition rot i i rotH S Lω= −  yields the rotational Hamiltonian  

( )( )11 .
2rot i i ik k i il lH I S Q B S Q B−= − −               (A15) 

The cross-term in the quadratic form above is the apparent interaction 
Hamiltonian  

( )11 .
2int i ik k i i kH I Q B S S B−= − +                 (A16) 

Clearly, this interaction is a more complicated form than in the spherically 
symmetric case, and we cannot go further than Equation (A16) in the case of 
arbitrary particle structure. For illustration, consider the special case in which 

ik ik iQ Qδ= , so that the prinipal axis coordinate system for the charge 
distribution is the same as that for the mass distribution. Also, let the ratio  

,i iQ I g=                           (A17) 

not summed over i, be the same for each principal axis, where 2g gq mc=  as 
in Equation (13) for a particle of charge q, but is to be chosen or eveluated using 
appropriate integrals for an uncharged particle. Then  

( )1 .
2int i i i iH g B S S B= − +                   (A18) 

When iS  is replaced by op
iS , it is not algebraically trivial to show that the 

commutator , 0op
i iS B  =  . The proof reduces to showing that ( ) 0op

ij j jkR S R = , 
which can be done using Equation (A8) and several equations in the text, or by 
starting with the definition of the 3-vector angular velocity, Equation (3). 
Therefore, in this quite special but still not spherically symmetric case, the 
effective interaction Hamiltonian is the same as for a spherically symmetric 
particle, namely, int i i i iH gB S gB S= − = −  . Therefore, for spin s, one still obtains 
2 1s +  coupled wave equations; for 1 2s = , these equations still yield the Pauli 
matrices, but the free particle part of the Hamiltonian operator is given by 
Equation (A10) for the case of an object having cylindrical but not spherical 
symmetry. 

As mentioned in the text after Equation (12), a simple g-factor exists and is 
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exactly equal to 2 for a circular disk rotator having mass uniformly distributed in 
the disk and charge uniformly distributed around the circumference. In order to 
derive this result for a disk of radius a, we first note that, in the principal axis 
cylindrical coordinate system ( ), ,r zφ , the normalized mass and charge 
distribution functions ,m qf f  are given by ( ) ( ) ( )21 πmf a a r zδ= Θ −  and 

( ) ( ) ( )1 2πqf a r a zδ δ= − , where Θ  is the unit step function, equal to unity 
for positive argument and zero for negative argument, and δ  is the Dirac delta. 
Utilizing Equations (6) and (9) with these nonspherical distributions easily 
yields the following results for the rotating (barred) system components of the 
magnetic moment and the kinetic spin angular momentum:  

( ) ( )2 22 ; 2 ;K
z z z zqa c S maµ ω ω= =              (A19) 

( ) ( )2 2
, , , ,4 ; 4 ;K

x y x y x y x yqa c S maµ ω ω= =            (A20) 

Therefore, we have ( )2 2 K
i iq mc Sµ = , the same for every rotating frame 

Cartesian component, so we may write ( )2 2 Kq mc= Sµ , whereby g exists and 
is equal to 2 for this model rotator. 
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