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Abstract 
The temperature of aluminum alloy work-pieces in the aging furnace directly 
affects the quality of aluminum alloy products. Since the temperature of alu-
minum alloy work-pieces cannot be measured directly, a temperature predic-
tion model based on improved case-based reasoning (CBR) method is estab-
lished to realize the online measurement of the work-pieces temperature. 
More specifically, the model is constructed by an advanced case-based rea-
soning method in which a state transition algorithm (STA) is firstly used to 
optimize the weights of feature attributes. In other words, STA is utilized to 
find the suitable attribute weights of the CBR model that can improve the ac-
curacy of the case retrieval process. Finally, the CBR model based on STA 
(STCBR) was applied to predict the temperature of aluminum alloy 
work-pieces in the aging furnace. The results of the experiments indicated 
that the developed model can realize high-accuracy prediction of work-pieces 
temperature and it has good application prospects in the industrial field. 
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1. Introduction 

The Aging Furnace (AF) is an important equipment for the thermal treatment of 
aluminum alloy work-pieces to enhance their comprehensive performance of 
anticorrosion property and mechanical properties, such as hardness and ulti-
mate tensile strength [1]. These properties are directly influenced by the temper-
ature of aluminum alloy work-pieces during the temperature holding period, 
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which is called aging temperature. According to the production technology [2], 
the required control precision of work-pieces temperature is often strictly con-
fined to a very narrow range about ±1˚C. To obtain the qualified symmetrical 
high-strength work-pieces, accurate measurement of work-piece temperature in 
real time is of great importance. Direct measuring method is currently used to 
obtain the temperature of work-pieces by installing the thermocouples manually 
on the work-pieces before loading into the furnace each time. Due to the oscilla-
tions of the work-pieces and strong convection of the air inside the furnace, the 
thermocouples may detach from the work-pieces and even be damaged, leading 
to inaccurate measurement which causes unsuitable thermal treatment and even 
wasted work-pieces. Therefore, the establishment of a reasonable temperature 
prediction model of aluminum alloy work-pieces is of practical significance to 
realize precise control of the work-pieces temperature during the aging process. 
In order to predict the temperature of work-piece in furnace, Shen et al. [3] 
proposed a 3D multi-zone multi-phase thermal model based on a novel 
double-extrapolation finite element method, and achieved good results in a cer-
tain situation indeed. However, the complexity and randomness of the tempera-
ture field in the aging furnace are not yet clear which severely restricts the accu-
racy of the mechanism models. To deal with the problems, large amounts of data 
being measured and stored in the process industry were used to build predictive 
models based on artificial intelligence techniques, and these models are called 
Soft Sensors (SSs) [4]. Using SSs method, Yu and He [5] build a temperature 
measurement model for aging furnaces based on mixed kernel partial least 
squares algorithms (KPLS), and realized online estimation for the temperature 
of work-piece in furnace. However, the KPLS algorithm has a disadvantage of 
over-fitting which may decrease the accuracy of prediction. As a branch of ar-
tificial intelligence technique, Case-based reasoning (CBR) receives increasingly 
attentions and has a rapid development. It has a good interpretability, and 
over-fitting can be avoided by incremental learning. It is applicable to the fields 
with no accurate mathematical models, but with rich experiences and historical 
cases, such as Al-alloy factories and steelmaking industry. CBR can explore 
knowledge from the experienced cases to carry out solutions of new problems, 
usually applied to the field of weak theory in which the mathematical model 
cannot or be difficult to be established [6]. When a new operation condition is 
given, the CBR system can retrieve similar cases in the database of data being 
measured and stored in the industry to provide a possible predicted temperature 
of work-piece. The weight distribution determines the accuracy of case retrieval 
and affects the performance of CBR model. Genetic algorithm (GA) [7] is fre-
quently utilized in weights optimization for CBR model. However, the GA has a 
property of premature phenomena [8] and low reliability [9], which may render 
weights less optimal and even unreasonable. In recent years, Zhou et al. [10] 
proposed a novel optimization algorithm, the state transition algorithm (STA), 
which has a better performance of global and local searches compared with GA. 
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Thus, this paper introduces a novel weight allocation method that is based on 
STA to improve the traditional CBR system, and the improved CBR system is 
called STCBR. To test and verify the effectiveness of the developed method, 
STCBR is applied in temperature prediction of aluminum alloy work-pieces in 
AF. The experimental results show that STCBR can realize high-accuracy pre-
diction of work-pieces temperature and has strong robustness. 

2. STCBR Algorithm 

STCBR model involves five processes: case representation, case retrieval, case 
reuse, case revise and case retain. Figure 1 shows an overview of the process. 

2.1. Case Representation 

Typically, a case model consists of two parts: feature attributes and solution 
attributes. Feature attributes are the mathematical description of problems, and 
solution attributes are solutions to problems. Therefore, the general case model 
of a source case can be represented by iCase  as Equation (1): 

{ }1 2 1 2, , , , , , , , ,i i i ij in i i ij imCase f f f f s s s s=    , ,                (1) 

where n is the number of feature attributes, m is the number of feature attributes, 

ijf  and ijs  represent the value of feature attributes and solution attributes of 
the ith source case. 

2.2. Case Retrieval 

The purpose of case retrieval is to retrieve one or more cases with the maximum 
similarity to the new target case from the case base, by calculating the similarity 
between them. At present, the k nearest neighbor algorithm (KNN) is often used 
for case retrieval in the CBR system [11]. Based on KNN, there are three steps to 
obtain the cases with the maximum similarity to the target case from the case 
base. 

At the first step, it is needed to calculate the local similarity ijsim  between 
 

 
Figure 1. Flow diagram of the improved CBR. 
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the target case and the source case in the case base, as is shown in Equation (2): 

( )
1

max ,
ij j

ij
ij j

f f
sim

f f

′−
= −

′
                         (2) 

where ijf  is the value of the jth feature of the ith source case, and jf ′ is the 
value of the jth feature attribute of the target case. It is noteworthy that the local 
similarity describes the similarity degree of the same feature attribute between 
the target case and the source case. The number of feature attributes is n, there 
are thus n local similarities needed to be calculated by Equation (2). 

After all of the local similarities between the ith source case and the target case 
are available, the global similarity is introduced at the second step by Equation 
(3): 

1

n

i j ij
j

sim w sim
=

= ⋅∑                              (3) 

where jw  is the weight of the jth feature, and n is the number of feature 
attributes. 

At the third step, sort the cases by similarity based on KNN, and then the cas-
es with maximum global similarity are chosen for case revise and reuse. The 
maximum global similarity is defined as Equation (4): 

( )max max ,    1, 2, ,ksim sim k num= =                      (4) 

where num is the number of cases in the case base. 

2.3. Weights Allocation Based on STA 

In similarity calculation, the weights of feature attributes have a great impact on 
retrieved results and the accuracy of problem solving. Thus, it is important to 
optimize the weights of feature attributes to improve the quality of the CBR sys-
tem. The optimization problem of weight allocation can be expressed as Equa-
tion (5): 

( )

( )
1 2

1

max , , ,

. . 1 0
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n
n
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s t g
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 = − =

 ≤ ≤ =

∑





ω                        (5) 

where [ ]1 2, , , n
n Rω ω ω= ∈ω  is the weight vector; ( )f ⋅  is a fitness function 

to estimate the prediction accuracy of CBR for the training case set base on the 
weight vector ω . The fitness function is defined as Equation (6): 

( )
1

= hit
q

l
l

f
=
∑ω                                (6) 

where q is the size of the training case set, and hit j  represents that if the lth 
training case is matched successfully; if it is, hit l  is 1, otherwise hit l  is 0. 
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According to STA, a solution to an optimization problem is regarded as a state 
and the process of updating current solution is regarded as a state transition [12]. 
Speaking specifically, the weight vector ω  is considered as a state x. By refer-
ring to state space representation, on the basis of current state ( )kx , the 
framework of state transition algorithm can be outlined as Equation (7):  

( ) ( ) ( )
( ) ( )( )

1

1 1
k kx k A x k B u k

y k f x k

 + = +


+ = +
                     (7) 

where ( ) nk R∈x  stands for a state corresponding to a current solution to the 
optimization problem; n n

kA R ×∈  and n m
kB R ×∈  are state transition matrices 

with appropriate dimensions, which are usually regarded as transformation op-
erators for the optimization algorithm; ( )ku  is a function of ( )kx  and his-
torical states; and ( )( )1f k +x  is the fitness function. 

There are four special state transformation operators which are designed to 
solve the continuous optimization problems: 

(1) Rotation transformation: 

1
2

1
k k r k

k

x x R x
n x

α+ = +                         (8) 

where α  is a positive constant called the rotation factor; n n
rR R ×∈  is a ran-

dom matrix with its entries belonging to the range of [ ]1,1− ;and 
2⋅  is the 

2-norm of a vector. 
(2) Translation transformation: 

1
1

1 2

k k
k k t

k k

x x
x x R

x x
β −

+
−

−
= +

−
                       (9) 

where β  is a positive constant called the translation factor; n n
tR R ×∈  is a 

random variable with its components in the range of [0,1]. The translation 
transformation will be performed only when a better solution is found.  

(3) Expansion transformation: 

1k k e kx x R xγ+ = +                           (10) 

where γ  is a positive constant called the expansion factor; n n
eR R ×∈  is a 

random diagonal matrix with its entries obeying Gaussian distribution. 
(4) Axesion transformation: 

1k k a kx x R xδ+ = +                           (11) 

where δ  is a positive constant called the axesion factor; n n
aR R ×∈  is a ran-

dom diagonal matrix with its elements obeying Gaussian distribution and only 
one random index having a nonzero value. 

The optimization flowchart of the feature weights using STA is shown in Fig-
ure 2. The detailed explanation for each phase of weights allocation based on 
STA is presented as follows [13]: 

Phase 1 (parameters initialization). Set the values of SE (the search enforce- 
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Figure 2. Flowchart of allocation of feature weights 
using STA. 

 
ment, which means the times of the transformation), α , β , γ , δ  (opera-
tion factor), cf  (a constant coefficient used for lessening the α ), and K (times 
of iteration). Set 0k =  and generate initial solution ( )kx  randomly. 

Phase 2 (state transition operation). Perform state transition operations for 
( )kx . The specific operations for ( )kx  are given as follows: 

( )( )best Expansion , , ,k SE β γ← x  

( )( )best Rotation , , ,k SE α β← x  

( )( )best Axesion , , ,k SE β δ← x  

Next, the operator will be described in detail, taking the expansion operator as 
an example: 

(a) Make SE  copies of ( )kx  and carry out an expansion operation for 
each copy state by Equation (10); the result is  

( ) ( ) ( ){ }0 0 0
1 2newstates0 , , , SEk k k= x x x . 

(b) Perform CBR process for the training data set, and then calculate the fit-
ness value of each state of newstates  by Equation (5) and make a ranking of 
the states according to the fitness value in descending order; and assign the state 
which is sorted as 1 to best . 

(c) ( ) ( ) ( )1 ,  k k k best− ← ←x x x ; make SE  copies of ( )kx  and carry 
out a translation operation for each copy state by Equation (9); the result is 

( ) ( ) ( ){ }1 1 1
1 2newstates1 , , , SEk k k= x x x . 
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(d) Perform CBR process for the training data set, and then calculate the fit-
ness value of each state of newstates1  by Equation (5) and make a ranking of 
the states according to the fitness value in descending order; and assign the state 
which is sorted as 1 to best . 

Phase 3 (iteration or termination). If k K< , then 1k k= + , cfα α= , and 
go to step 2. Otherwise, assign best  as the optimal weight vector *ω . 

2.4. Case Revise and Reuse 

Target and source cases are generally impossible to be exactly the same, thus it is 
significant to study how to make an appropriate adjustment for retrieved cases 
to achieve accurate results [14]. Based on the similar cases obtained in case re-
trieval process, the solution to the target case ts  is evaluated in Equation (12): 

1

1

m

i i
i

t m

i
i

sim s
s

sim

=

=

⋅
=
∑

∑
                          (12) 

where m is the number of cases with the maximum similarity.  

3. Experiments and Results 

To verify the validity of the improved CBR proposed in this paper, some expe-
riments are conducted based on actual production data which were collected 
from an aging furnace in Southwest Aluminum Co. Ltd., China. The detailed lo-
cation of the work-piece thermocouples and the working room thermocouples is 
shown in Figure 3. The temperature of the working room is measured by two 
thermocouples, A1 and A2, which are firmly installed in Area 1 and Area 2 of the 
working room wall. To obtain temperature information of the work-piece, two  
 

 
Figure 3. The structure of 12 t aging furnace. 
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thermocouples, Z1 and Z2, are installed in the Zone 1 and Zone 2 of the 
work-piece. Based on the production data drawn from real factory, six feature 
attributes are chosen from data records directly, which are working room tem-
perature of Area 1 f1, working room temperature of Area 2 f2, the duration of 
heating period f3, the duration of holding period f4, the set temperature f5 and 
alloy state f6, respectively. Work-piece temperature of Zone 1 s1 and Work-piece 
temperature of Zone 2 s2 are chosen as solution attributes. 

For the experiment, there are 2230 groups of data in total, and 103 groups are 
selected as testing data, and the remaining 2127 groups as case base and training 
data for feature weights allocation. The testing data comes from 2 batches of dif-
ferent products as shown in Table 1. 

In order to validate the performance of the developed CBR model, three dif-
ferent CBR models were established based on the same case base. The CBR 
model based on STA proposed in this paper is referred to as STCBR. Further-
more, the traditional method with equal weight as EWCBR, and the genetic al-
gorithm as GACBR: 

(1) The setting parameters of STCBR [13]: the number of weight objects in the 
initial population is 6, the value of search enforcement SE  is 30, the times of 
iteration K is 10, rotation factor α  is 1, translation factor β  is 1, expansion 
factor γ  is 1, axesion factor δ  is 1, and the constant coefficient cf  is 2. 

(2) In GACBR [7], the number of weight objects in the initial population is 6, 
the crossover probability is 0.4, and the mutation probability is 0.05. Each weight 
object is coded using three binary numbers, and the number of iteration is 10. 

(3) EWCBR allocates average weights for each attributes. 
Table 2 shows the results of feature weights allocation based on EWCBR, 

GACBR and STCBR, respectively. As can be seen from Table 2, all the feature 
weights are set equal in EWCBR model, which ignores the various influences of 
 
Table 1. The parameters of different aluminum alloy produced in 12 t aging furnace. 

Batch 

Parameters 

Alloy state 
Aging temperature  
of 1st aging period 

(˚C) 

Holding time of  
1st aging period 

(minute) 

Aging temperature 
of 2ed aging period 

(˚C) 

Holding time of 
2ed aging period 

(minute) 

#1 7075-T6 140 ± 1 300 - - 

#2 7050-T6 121 ± 1 210 177 ± 1 210 

 
Table 2. The feature weights of STCBR, GACBR and EWCBR. 

CBR model 
Weight of each feature 

f1 f2 f3 f4 f5 f6 

STCBR 0.2500 0.1786 0.2143 0.0357 0.0714 0.2500 

GACBR 0.0833 0.2917 0.2083 0.1250 0.1667 0.1250 

EWCBR 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 
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different feature attribute on reasoning results. For GACBR and STCBR, the 
weights allocation methods are more reasonable and credible because they are 
performed based on the information of data rather than experiences of experts. 
For GACBR model, the weight of working room temperature of Area 2 and du-
ration of rising period are assigned as 0.2917 and 0.2083, which are much larger 
than those of the other features. It is presented that working room temperature 
of Area 2 and the duration of rising period play more important roles in pre-
dicting the temperature of work-pieces for GACBR model. However, for STCBR 
model, the alloy state and working room temperature of Area 1 are of most cor-
relation with the temperature of work-pieces. 

Figure 4 depicts the temperature profiles of different aluminum work-pieces; 
Figure 4(a) shows the measured temperature and predicted temperature of 
7075-T6 aluminum alloy, and Figure 4(b) shows those of 7050-T6 aluminum al-
loy. Compared to the temperature profiles calculated by EWCBR, the tempera-
ture profiles calculated by both GACBR and STCBR have better agreement with 
the measured temperature curve. In order to present the prediction errors of 
GACBR and STCBR in a more intuitive way, Figure 5 indicates the deviation de-
gree between the predicted temperatures and the measured temperatures. The  
 

 
Figure 4. Prediction results of aluminum work-pieces temperature: (a) 7075-T6; (b) 7050-T6. 
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Figure 5. Comparisons of the computational accuracy of GACBR and STCBR: (a) 7075-T6; (b) 7050-T6. 

 
closer the predicted values are to the 45 measured values, the higher the method’s 
precision is. From Figure 5, it can be observed that, when the temperature is 
lower than 100, several points of the temperature calculated by GACBR have a 
large deviation with the measurement. In general, the prediction performance of 
STCBR is better than that of GACBR. 

The absolute errors of different prediction models are shown in Figure 6. For 
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Figure 6. Prediction errors of aluminum work-pieces temperature: (a) 7075-T6; (b)7050-T6. 
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Table 4 shows the advantages and disadvantages of these CBR models used in 
this paper. Obviously, the good results indicate that the prediction model based 
on STCBR not only has higher accuracy of prediction, but also has strong ro-
bustness when tested on different aluminum alloys. 

4. Conclusions 

Due to the significant role of online prediction of the work-pieces temperature 
for aging furnace, an improved CBR method was introduced in establishing the 
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Table 4. Advantages and disadvantages of different CBR models. 

CBR model Advantages Disadvantages Application 

EWCBR 
Simple weights allocation 

method and low 
modeling complexity. 

Low prediction accuracy, 
lower reliability and 

robustness 

The system which has rich  
expert experience and  
mechanism knowledge 

GACBR High prediction accuacy 
Longer time spend of 

weights allocation, lower 
reliability and robustness. 

The system which has certain 
expert experience with little 

mechanism knowledge 

STCBR 
High prediction accuacy 

and strong robustness 
Longer time spend of 

weights allocation 

The system which has certain 
expert experience with little 

mechanism knowledge 

 
global search with local search to avoid the local minima is proposed to optimize 
feature weights. Then the established model was verified by the practical pro-
duction data in AF, and the experiment results show the advantages of the 
STCBR model, which effectively promotes the prediction accuracy of traditional 
CBR in general and has practical value to apply to the aging furnace in industry. 

Future research may be focused on enriching the existing STA models and 
improving the case revise strategy to realize better prediction performance. 
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