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Abstract 
This paper is concerned with asymptotic behavior of the solution of a new 
class of rational Difference Equations. We consider the local and global stabil-
ity of the solution. Moreover we investigate the new periodic character (peri-
odic two) of solutions of these equations. Finally, we give some interesting 
counter examples in order to verify our strong results. 
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1. Introduction 

The objective of this work is to investigate the asymptotic behavior of the solu-
tions of the following difference equation  
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where 0 1 1 2 3, , , , ,a b b c c c  and [ )4 0,c ∈ ∞  and the initial conditions 3 1, ,ω ω− −  
and 0ω  are arbitrary positive real numbers. 

In recent years, there are a great interest in studying the rational difference 
equations. These equations describe real life situations in queuing theory, sto-
chastic time series, combinatorial analysis, electrical network, number theory, 
genetics in biology, psychology, probability theory, statistical problems, eco-
nomics, etc. The study of rational difference equations of high order (greater 
than one) is a big challenge. However, there have not been any effective general 
methods to deal with the global behavior of rational difference equations of or-
der greater than one. Therefore, the study of such equations is so interesting. 
There has been a lot of work concerning the global asymptotic of solutions of ra-
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tional difference equations [1]-[21]. 
In fact, there has been a lot of interest in studying the behavior of the nonli-

near difference equation of the form 

1
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+ = +

                         
(2) 

For multiple delay and order, see [3] [18] [19] [20] and their references for 
more results of this equation. In Theorems 4.7.1-4.7.5 in [12], Kulenovic inves-
tigated the asymptotic behavior of the solutions of the equation 
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Metwally et al. in [14] established a global convergence result and then apply 
it to show that under appropriate hypotheses every positive solution of the dif-
ference equation 
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where [ )0,iA ∈ ∞  for 0,1, ,i m=  . In [8], Elsayed studied the periodicity, the 
boundedness, and the global stability of the positive solution of the difference 
equation 
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where the parameters ,α β  and γ  are positive real numbers and the initial 
conditions 1 0,x x−  are positive real numbers. Recently, Moaaz et al. [15] inves-
tigated some qualitative behavior of the following nonlinear difference equations 
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where the initial conditions 1 0, , ,r rx x x− − +   such that { }max , ,r l k s=  are ar-
bitrary real numbers and ,α β  and γ  are positive constants. 

In this paper, in section 2, we state the sufficient condition for the asymptotic 
stability of Equation (1). Next, in section 3, we study the existence of periodic 
solutions of Equation (1). Finally, we study the boundedness nature of the solu-
tions of Equation (1). Some numerical examples will be given to explicate our 
results. 

During this study, we will need to many of the basic concepts. Before anything, 
the concept of equilibrium point is essential in the study of the dynamics of any 
physical system. A point ω  in the domain of the function Φ  is called an 
equilibrium point of the equation 

( )1 1, , , , 0,1, 2,n n n n k nω ω ω ω+ − −= Φ =                (4) 

if ω  is a fixed point of Φ  [ ( ), , ,ω ω ω ωΦ = ]. For a stability of equilibrium 
point, equilibrium point ω  of Equation (4) is said to be locally stable if for all 

0ε >  there exists 0δ >  such that, if ( )0,νω− ∈ ∞  for 0,1, , kν =   with 
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0
k

ii ω ω δ−=
− <∑ . As well, ω  is said to be locally asymptotically stable if it is 

locally stable and there exists 0γ >  such that, if ( )0,νω− ∈ ∞  for 
0,1, , kν =   with 0

k
ii ω ω γ−=
− <∑ , then limn nω ω→∞ = . Also, ω  is said to 

be a global attractor if for every ( )0,νω− ∈ ∞  for 0,1, , kν =  , we have 
limn nω ω→∞ = . On the other hand, ω  is said to be unstable if it is not locally 
stable. 

Finally, Equation (4) is called permanent and bounded if there exists num-
bers m and M with 0 m M< < < ∞  such that for any initial conditions 

( )0,νω− ∈ ∞  for 0,1, , kν =   there exists a positive integer N which depends 
on these initial conditions such that nm Mω< <  for all n N≥ . 

The linearized equation of Equation (1) about the equilibrium point ω̂  is  

1 0 .k
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Theorem 1.1 [12] Assume that ip ∈  for 0,1, ,i k=  . Then  

0 1 1kp p p+ + + <                      (6) 

is a sufficient condition for the asymptotic stability of Equation(1).  

2. The Stability of Solutions 

The positive equilibrium point of Equation (1) is given by 
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Now, we define a function ( ) ( )( )40, , 0,f C∈ ∞ ∞  such that  
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Theorem 2.1. Assume that ω̂  be a ve+  equilibrium point of Equation (1). 
If  
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0 1 1 3 0 2 1 4 .b c b c a b c b cµ λ λµ µ λ+ < + +  

where ( )2
1 2c cλ = +  and ( )2

3 4c cµ = + , then ω̂  is local stable.  
Proof. From (7) to (10), we get  
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Thus, the linearized equation of (1), is  

1 0 1 1 2 2 3 3.n n n n ny p y p y p y p y+ − − −= + + +  

From Theorem 1.1, we have that Equation (1) is locally stable if  
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and hence,  
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Then, we find  
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This completes the proof of Theorem 2.1. 
Example 2.1. Figure 1 shows that Equation (1) has local stable solutions if 

0.01a = , 0 200b = , 1 20b = , 1 0.002c = , 2 0.01c = , 3 0.002c =  and 

4 0.001c = .  
Theorem 2.2. If 1 2c c α= =  and 3 4c c β= = , then the equilibrium point ω̂   
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Figure 1. The stable solution corresponding to difference Equation (1). 

 
Equation (1) is global attractor.  

Proof. We consider the following function 
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Note that f  non-decreasing for ,v r  and non-increasing for ,u w . Let 
( ),ψ Ψ  a solution of the system 

( ), , ,fψ ψ ψ= Ψ Ψ  

( ), , ,f ψ ψΨ = Ψ Ψ  

From (11), we have 

( )( )( ) ( ) ( )1 2 3 4 0 3 4 1 1 2a c c c c b c c b c cψ ψ ψ ψΨ − + Ψ + Ψ = Ψ + Ψ + Ψ + Ψ  

and  
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Thus, we get  

( )( ) ( ) ( )0 1 ,a b bαβ ψ β ψ α ψΨ − Ψ + = Ψ Ψ + +Ψ Ψ +         (12) 

( )( ) ( ) ( )0 1 .a b bαβ ψ ψ β ψ α ψΨ − Ψ + = Ψ + +Ψ Ψ +          (13) 

By subtracting (12) and (13), we have 

( )( )0 1 0b bβ α ψ+ Ψ − =  

Since 0 1 0b bβ α+ ≠ , we get  
.ψΨ =  

This completes the proof of this Theorem. 

3. Periodic Solution of Period Two 

In this section, we investigate the existence of periodic solutions of Equation (1). 
Theorem 3.1. Assume that 1 3c c α= =  and 2 4c c β= = . Equation (1) has 

positive prime period-two solutions if  

( )( ) ( )2 2
0 1 2 .b b a aα β α β αβ+ − > + +

              
(14) 
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Proof. Suppose that there exists a prime period-two solution 
, , , , , , ,σ ρ σ ρ σ ρ 

 

of Equation (1). We will prove that condition (14) holds. We see from Equation (1) 
that if 1 3c c α= =  and 2 4c c β= = , then 2n nω ω ρ−= = , 1 1 3n n nω ω ω σ+ − −= = =  
and so,  
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By combining (15) and (16), we have  

( ) ( ) ( ) ( ) ( )2 2
0 12 a a b bασρ β σ ρ α σ ρ β σ ρ σ ρ σ ρ+ + = + + + + + + +  

and so,  

( ) ( )0 1a a a b bβσρ α β α α β− = − + + +  

Since, ( )22 2 2σ ρ σ ρ σρ+ = + − , we obtain  

( )
( )

0 1a a a b bα α β
σρ

β α β
− + + +

=
−                   

(18) 

Now,it is clear from (17) and (18) that σ  and ρ  are both two positive dis-
tinct roots of the quadratic equation 
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Hence, we obtain  

( ) ( )
( )

2
0 1 0 1

2

4
0,

a a b b a a a b bα β α α β
β α ββ

− + + + − + + +
− >

−
 

which is equivalent to  

( )( ) ( )2 2
0 1 2 .b b a aα β α β αβ+ − > + +  

This completes the proof of Theorem 3.1. 
Example 3.1. Consider Equation (1) with 1 4 0.001c c β= = = ,  

3 4 0.002c c α= = = , 0.01a = , 0 200b =  and 1 20000b = . By Theorem 3.1, 
Equation (1) has prime period two solution (see Figure 2). 

Example 3.2. Consider Equation (1) with 1 4 0.0003c c β= = = , 3 4c c= =   
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Figure 2. Prime period two solution of Equation (1). 
 

 

Figure 3. Prime period two corresponding to differences Equation (1). 
 

0.005α = , 0.8a = , 0 500b =  and 1 2000b = . By Theorem 3.1, Equation (1) 
has prime period two solution (see Figure 3). 

4. Boundedness of the Solutions 

In this section, we study the characteristic task of boundedness of the positive 
solutions of Equation (1). 

Theorem 4.1. Every solution of (1) is bounded and persists.  
Proof. From Equation (1), we have  
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then,  

0 1

2 4

0 n
b ba M
c c

ω< ≤ + + =  

Hence, the proof is completed. 
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Conclusion 1. This work is concerned with studying a dynamics and behavior 
of solutions of a new class of difference Equation (1). Our results extend and ge-
neralize to previous studies, for example, Equation (2) (if 1 1 0b c= = ) and Equa-
tion (3) (if 1 0a b= = ). Furthermore, we obtain the following results: 

- The ve+  equilibrium point ω̂  of equation (1) is local stable if 

0 1 1 3 0 2 1 4b c b c a b c b cµ λ λµ µ λ+ < + + , where ( )2
1 2c cλ = +  and ( )2

3 4c cµ = + . 
Also, if 1 2c c=  and 3 4c c= , then ω̂  is global attractor. 

- Equation (1) has a prime period-two solutions if 1 3c c α= = , 2 4c c β= =  
and ( )( ) ( )2 2

0 1 2b b a aα β α β αβ+ − > + + . 
- Every solution of (1) is bounded and persists.  
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