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Abstract 
In this paper, we discuss the equation of state for nonlinear spinor gases in the 
context of cosmology. The mean energy momentum tensor is similar to that 
of the prefect fluid, but an additional function of state W is introduced to de-
scribe the nonlinear potential. The equation of state ( ) 1w a −  in the early 
universe is calculated, which provides a natural explanation for the negative 
pressure of dark matter and dark energy. W may be also the main origin of 
the cosmological constant Λ. So the nonlinear spinor gases may be a candidate 
for dark matter and dark energy.  
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1. Introduction 

Since the discovery that the expansion of the universe is accelerating [1]-[7], the 
standard model of cosmology has shifted from a matter dominated and 
decelerating expansion picture to search for the dark matter and dark energy 
with repulsive gravity or modification of the general relativity. The present 
methods to analyze the observational data include direct measures of cosmic 
scales through Type Ia supernova luminosity distances, the angular distance 
scales of baryon acoustic oscillation and cosmic microwave background density 
perturbations, as well as indirect probes such as the effect of cosmic expansion 
on the growth of matter density fluctuations. The basic building blocks of the 
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universe are believed to consist of 4% baryons, 20% dark matter, and 76% dark 
energy. The cosmic accelerating expansion results in profound mysteries in all of 
science, with deep connections to both astrophysics and particle physics. 

The simplest choice for such dark energy with negative pressure is the 
cosmological constant Λ, which consists with Einstein’s equations. This term 
acts like a fluid with equation of state (EOS) p ρΛ Λ= − . Although the ΛCDM 
model is basically consistent with all observational data, the evaluated Λ seems 
not coincident with the local Newtonian approximation of the galactic gravity, 
and a lot of theoretical efforts have been paid to explain its origin and apparent 
value [8] [9] [10] [11]. 

The widely studied dynamical models to describe dark energy are mainly the 
scalar fields, such as quintessence, K-essence, tachyon, phantom and dilaton, 
which are uniformly distributed in the universe [11]-[20]. These models have 
different theoretical origins and consequences, and some cases can give 
explanation for the observational data and the origin of Λ [12] [19] [21]. 

Noting the facts that all fermions are described by spinors and the uniform 
scalar field can hardly explain the galactic structure [22], so the dark spinors 
may be partially responsible for dark matter. In this paper, we give a detailed 
discussion for the EOS of nonlinear spinor gas in the context of cosmology. Here 
the spinors are quantized and identified by nonlinear potentials, and their state 
functions are derived from normal Dirac equations. This work is a further 
research of the preceding papers [23] [24] [25]. Some similar works were once 
done in [26]-[31], where the authors also considered the nonlinear spinor field 
as candidate of dark energy, and only one spinor field was taken into account. 

The nonlinear spinors provide us some interesting consequences and new 
insights: The negative pressure exists and we have the equation of state (EOS) 
( ) ~ 1w z −  in the early universe. The state functions are only the functions of 

scale factor but independent of its derivatives. The calculations show that the 
nonlinear spinors can give more natural explanation to the cosmic accelerating 
expansion and other observational data. 

2. Equation of State of Nonlinear Spinor Gas 

Define 4 4×  Hermitian matrices as follows  

 0 0  0
, , 

0 0 0
I I

I I
µ σ

α γ
σ

       = =      −       

�
�               (2.1) 

We consider the following Lagrangian for the same kind spinors in flat 
spacetime [23] [24]  

( ) ( )( ) ,m n n n n n n n
n

i Vµ
µφ α µγ φ γ γ φ γφ+ += ∂ − + =∑ � �          (2.2) 

where nφ  stands for the n-th dark spinor, 0µ >  is constant with mass 
dimension, which takes one value for the same kind particles. ( )n nV γ�  is the 
nonlinear potential term. 
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The simplest case of dark spinor has the self potential 21
2n nV ωγ= �

, in which 

0ω >  is a constant. The dynamical equation for n-th spinor is given by  

( )ˆ ˆ ˆ,t n n ni H H c p cφ φ α µ ωγ γ ∂ = = ⋅ + − 
� ��             (2.3) 

In [24] [25] we computed the static mass nm  and nw  of a nonlinear spinor 
as the functions of spectrum parameter a (which cannot be confused with the 
following scale factor a),  

( )
( )

22 2 22
2 2 0

2 20 2 2 2
0

d1 1, 4π d
21 1 d

n n n

u va am w r r
a a u v

ρ ρµ
µ ω γ

ρ ρ

∞
∞

∞

−−
= ≡ ⋅ =

+ + +

∫
∫

∫
�    (2.4) 

For the ground state, by Figure 1 in [25] we have  

( ) 2 21 2, ~ , ~n n n na E m w c c m wµ< < = +           (2.5) 

For dark spinor gas (2.2), in microscopic view, the classical approximation of 
energy momentum tensor is given by [32]  

( ) ( )3 21n n n n n n
n

T m u u w g x X vµν µ ν µν δ= + − −∑
��           (2.6) 

where nuµ  is the 4-vector velocity of nφ , nv�  the usual 3-d speed, ( )nX t
�

 the 
central coordinate. The relativistic factor 21 v−  is derived from the integral of 
Nöther charges [33]. The general form should be 001 k l

klg g v v−  in natural 
coordinate system [34]. In the case of linear spinor, we have the ideal gas model 
with ( )0,nw n= ∀ , and then we have the usual energy-momentum tensor for 
perfect fluid. In case of 0nw > , the complete energy-momentum tensor should 
be  

( ) ( )T P U U W P gµν µ ν µνρ= + + −                (2.7) 

where the additional term W is a new function of state reflects the nonlinear 
potential of particles  

( )3 2 21 11 d 1
n

n n n n nV
n X V

W w x X v V w v
V V

δ
∈

= − − = −∑ ∑∫
��       (2.8) 

which acts like negative pressure. In the above equations we should distinguish 
the total energy density 0

 0T Wρ= +  with the mass density ρ . They are 
different concepts for nonlinear spinor. 

In a galaxy the usual pressure ~ 0P , by (2.5) we have ~ Wρ  and the total 
EOS in cosmology ( ) tot tot ~ 1w z P ρ≡ −  in (2.7) [6] [7]. So the nonlinear spinor 
gas can give a natural explanation for the weird properties of dark matter and 
dark energy in category of normal field theory. Since W take the place of Λ in 
Einstein’s field equation, it may be the main origin of the cosmological constant 
Λ. However the function of state W is not a constant in cosmology, because the 
relativistic factor 21 nv−  is related to temperature T [35], and nw  is related to 
the scale factor. In what follows we give detailed analysis for these conclusions. 
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3. Relations and Equations in Cosmology 

In cosmology the scale factor ( )a t  varies to very large range. In this case, the 
potential energy nw  cannot be treated as constant. It should be the function of 
a. Now we derive ( )W a  from the nonlinear Dirac equation coupling with 
Einstein equation. 

In this paper, we adopt the conformal coordinate system for the universe, then 
the corresponding Friedmann-Robertson-Walker metric is given by  

( ) ( ) ( )2 2 2 2diag 1, 1, , sing a t r rµν θ = − − −              (3.1) 

where 

sin if 1,
if 0,

sinh if 1.

r K
r K

r K

=
= =
 = −

                    (3.2) 

The dynamic Equation (2.3) for each spinor becomes  

( ) ( ) 3 1, , , cot ,0
2 2n n n
ai V
a

µ
µ µ µα φ µ γφ θ

′ ′ ′∂ + ϒ = − ϒ =  
 

� 


      (3.3) 

where µα�  is the coefficient matrix in curved space-time. It is easy to check the 
normalization condition holds for each spinor  

( )2 3 2d 1,  , d sin d d dn a n rφ θ θ ϕ
Ω

Ω = ∀ Ω =∫            (3.4) 

where dΩ  is the comoving volume element independent of t. Denote 

( )p̂ iν ν ν= ∂ + ϒ , the energy momentum tensor is given by [32]  

( ) ( )1 ˆ ˆ
2 n n n n n

n
T p p V V gµν µ ν ν µ µνφ α α φ γ+ ′= ℜ + + − 

 
∑ �� �       (3.5) 

where ℜ  means taking real part. The classical approximation of (3.5) is just (2.6). 

In what follows we take 21
2n nV ωγ= �

 as example to derive the equation of  

state ( )w a  in usual sense. By normalizing condition (3.4) we learn that 

( )2
n nx Xφ δ→ −

�� , then in some sense we have ( )2 2~n nx Xγ δ −
���  which depends 

on the scale of the space when space deforms seriously. To clarify this problem, 
making scaling transformation  

( )

3
2

0

0

, n n
arr

a a t
φ ψ

 
= =   

 
                   (3.6) 

where 0a  stands for the present scale factor. 
Then we get  

6
20

2n n
aV
a

ω γ =  
 

�                        (3.7) 

in which n n nγ ψ γψ+≡� . The normalization condition (3.4) becomes  
22 3 3

01 d dna aφ ψ= Ω = Ω∫ ∫                   (3.8) 

so nψ  is normalized in the new coordinate system. By (2.8), (3.7) and (3.8) we 
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can calculate the mean value of W as  
3

3 20
3 3

1 1d 1
n n

n n n
X V X

aW V a w v
V aa a

ρχ
Ω

∈ ∈Ω

 = Ω = − = Ω  
∑ ∑∫         (3.9) 

where 
1

n nX mρ
∈Ω

=
Ω∑  is the static comoving mass density of the spinors, 

( )aχ χ=  is a function defined by  

( )

3
0 31

2
a w kT
a m m kT

σ
χ

σ
  = −    +   

               (3.10) 

m  and w  are mean mass and potential of all particles calculated in local 
Minkowski space-time, 

20
3

σ< <  is a parameter determined by energy  

distribution function. For Maxwell distribution [35], we have 
2
5

σ = . 

In [35], we derived the following relations in case 0nw = ,  

( )2 2mkT a b a
a
σ

= + −                    (3.11) 

( )
2

2 2
3 4 2 2

31 ,
2 2

ba b a P
aa a a b

ρ σ ρσ
ρ  = + + − = 

  +
       (3.12) 

where b is a constant determined by the initial temperature. Substituting (3.11) 
into (3.10), we get  

3
0

2 2

3 31
2 2

a w a
a m a b

σ
χ σ

  = − +      + 
              (3.13) 

We have asymptotically ( )3
0 0a aχ χ→  if 0a a� , where 0 0χ >  is a 

constant. 
By (2.7) we have ( ) diag , , ,T W W P W P W Pµ

ν ρ= + − − − . Substituting (3.11), 
(3.12) and (3.13) into  T µ

ν  we get the EOS of nonlinear spinor gas in cosmology  

( ) ( )
2 2 2

2 2 2 2

2

2 3 2 3

P W b a a bw a
W a b a a b a a

σ χ
ρ χ σ σ

− − +
= =

+ + + + + −
     (3.14) 

When 0a a�  or χ →∞  we get 1w→− . This gives a natural explanation 
for the negative pressure in the early universe. (3.14) is an increasing function of 
a. This feature is consistent with the WMAP five-year data [36]. 

4. Discussion and Conclusion 

According to the above calculation, we get some important consequences and 
insights.  

1) By (2.7), for the nonlinear spinor gas, the nonlinear potential acts as both 
the negative pressure and positive energy in the energy momentum tensor T µν . 
When the universe becomes very compact, the term W forms the main part of 
T µν , and then we have EOS ( ) ~ 1w a − . The nonlinear potential may also give 
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an explanation for the origin of cosmological constant Λ. 
2) Although the dynamical equation of the spinors is more complex than that 

of the scalar fields, the state functions of the spinors are even relatively simpler 
due to the normalizing condition (3.8). These functions are only the functions of 
scale factor, but independent of its derivatives. 

3) Different from the ideal gas and fluid model, mass-energy density of the 
spinors is not a monotone decreasing function of a. Spinors have strong 
responses to the heavily curved space-time. Some more deeper research should 
be done. 

4) A spinor nφ  only has a local micro structure, so one spinor field can only 
describe one particle. Some works use one spinor field to describe global dark 
energy. This treatment may be inadequate, and more attention should be paid. 
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