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Abstract 
In relativity and quantum field theory, the vacuum speed of light is assumed 
to be constant; the range of validity of general relativity is determined by the 
Planck length. However, there has been no convincing theory explaining the 
constancy of the light speed. In this paper, we assume a five dimensional 
spacetime with three spatial dimensions and two local time coordinates giving 
us a hint about the constancy of the speed of light. By decomposing the five 
dimensional spacetime vector into four-dimensional vectors for each time 
dimension and by minimizing the resulting action, for a certain class of addi-
tional time dimensions, we observe the existence of a minimal length scale, 
which we identify as the Planck scale. We derive an expression for the speed 
of light as a function of space and time and observe the constancy of the va-
cuum speed of light in the observable universe. 
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1. Introduction 

Since Maxwell’s theory of classical electrodynamics [1], it has been known that 
all electromagnetic waves travel with the speed of light. In 1864 and 1881, 
experiments performed by Michelson and Morley [2] [3] gave a hint that 
electromagnetic waves travel equally fast in all inertial systems. This result was 
confirmed by many more experiments [4] [5] [6] [7] [8] proofing the constancy 
of the speed of light within the validity of the laboratory setups. 

When Albert Einstein derived special relativity [9], he postulated that the 
speed of light be constant, and he used this assumption as a key ingredient for 
special relativity. Consequently, he derived that the speed of light is the upper 

How to cite this paper: Köhn, C. (2017) 
The Planck Length and the Constancy of 
the Speed of Light in Five Dimensional 
Spacetime Parametrized with Two Time 
Coordinates. Journal of High Energy Phys-
ics, Gravitation and Cosmology, 3, 635-650. 
https://doi.org/10.4236/jhepgc.2017.34048  
 
Received: August 27, 2017 
Accepted: October 9, 2017 
Published: October 12, 2017 
 
Copyright © 2017 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jhepgc
https://doi.org/10.4236/jhepgc.2017.34048
http://www.scirp.org
https://doi.org/10.4236/jhepgc.2017.34048
http://creativecommons.org/licenses/by/4.0/


C. Köhn 
 

 

DOI: 10.4236/jhepgc.2017.34048 636 Journal of High Energy Physics, Gravitation and Cosmology 
 

velocity limit, whether it be for particles or for information. As such, the 
limitation of velocities ensures causality; vice versa, information sent with 
velocities above the speed of light could eventually harm causality. 

However, up to now, there have not been sufficiently convincing explanations 
why the speed of light is constant and why it has the value which it has. Loop 
quantum gravity, for example, dictates that the velocity of a photon is not 
defined to be constant, but has a value depending on its frequency [10]. 

Indeed, there have been suggestions that its value might vary with the age of 
the universe and that it might not have been constant in the early stages of the 
universe. Albrecht and Magueijo [11] show that the cosmological evolution 
equations together with a variable speed of light might solve the horizon, flatness 
and cosmological constant problem and together with cosmological perturbations 
the homogeneity and isotropy problem. Deriglazov and Ramírez [12] [13] [14] 
observed a discrepancy between the speed of light and the critical speed in the 
theories of spinning particles on curved and electromagnetic backgrounds. 
Additionally, they noticed that the constancy of the speed of light is closely 
related with the self-consistent definition of the three-acceleration in general 
relativity. 

The necessity of deriving a theory for quantum gravity resides from the 
problem that general relativity loses its validity at small length scales [15] [16] 
and that, for example, quantum electrodynamics stops being a self-consistent 
theory if gravitational effects [17] are added to the theory. The length scale of 
these effects is in the order of approximately 10−35 m and was already introduced 
by Planck in 1899 [18] after the discovery of the Planck’s constant when he 
realized that he could derive a unit system depending on the gravitational 
constant, speed of light, Planck’s constant, Boltzmann’s constant and Coulomb’s 
constant only. 

Recently, Faizal [19] and Pramanik et al. [20] used the Planck length to 
investigate the deformed Heisenberg algebra. Based on this algebra, Faizal 
investigated the deformation of the Wheeler-DeWitt Equation and thus showed 
that the big bang singularity gets obsolete. Additionally, Faizal et al. [21] adopted 
the idea of a minimum length scale or equivalently of a minimum time scale and 
showed that this leads to corrections to all quantum mechanical systems by the 
deformed Heisenberg algebra and thus to a discrete spectrum for time. 

One of the attempts to unify general relativity with the quantum description 
of the microscopic cosmos has led to string theory [22] [23] [24] [25]. One of its 
main features is the existence of 10 or 26 space dimensions which is larger than 
the commonly experienced three space dimensions [26]. These extra dimensions 
are assumed to be compactified and are consequently too small to be observed. 

On the contrary, there have not been many approaches to a second or more 
time dimensions. Tegmark [27] summarized that a universe with a large second 
time dimension cannot contain observers, like us humans, because of the lack of 
causality. Hence, as for the additional space dimensions in string theory, extra 
time dimensions need to be compactified in case of their existence. 
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Multitemporal spacetime dimensions have for example been discussed by Bars 
and Kounnas [28] [29]; they consider two time dimensions and construct 
actions for interacting p-branes within two dimensions. They show that after a 
phase transition, the additional time dimension becomes part of the 
compactified universe. Additionally, they present a new Kaluza-Klein like 
dimensional reduction mechanism and propose an action for a string in two 
time dimensions. Due to new gauge symmetries, they observe that quantum 
constraints are consistent only in spacetime dimensions with signature (25, 2) or 
(26, 2) for a bosonic string or (9, 2) or (10, 2) in the supersymmetric case. 

Chen [30] interprets two extra time dimensions as quantum hidden variables 
and shows that non-local properties of quantum physics or that the de Broglie 
wave length are natural consequences of the existence of two additional time 
dimensions. 

We here now suggest the existence of a compactified second time dimension 
and subsequently derive the existence of a smallest length scale, i.e. the Planck 
length, and explain the constancy of the speed of light in our observable universe. 
Our derivations also suggest that the speed of light varied in the early universe. 
In Section 2, we derive the Lagrangian for a five dimensional space time 
parametrized with two local coordinates of the surface. On the basis of this 
Lagrangian, we calculate the equations of motion in Section 3 and Section 5 and 
derive the existence of the Planck length as well as of the constancy of the speed of 
light in the observable universe in Section 4 and 6. We finally conclude in Section 7. 

2. The Action in Five Dimensional Space with Two Local 
Time Coordinates 

In order to study the effect of five dimensional spacetime parametrized by two 
time coordinates on the speed of light and on the Planck length, we choose a 

( )2,3  spacetime vector 

ct

x r fµ γτ
 
 

  = ⋅   Λ 
 
 x

                      (1) 

which is the canonical ( )1,3  spacetime vector ( )T,ct x  with  

( )T 3
1 2 3, ,x x x= ∈x   extended by an additional timelike coordinate 

( )r f γτ⋅ Λ . τ  is the second time parameter, r∈R  describes the size of the 
second time dimension and γ  is the characteristic velocity, thus the equivalent 
of c. f describes the shape of the second time dimension and Λ∈R  is a  

normalization parameter such that γτ
Λ

 is dimensionless. As stated in [30], the  

additional time dimension has to be small compared to the first time dimension 
constraining r. 

Similarly to four spacetime dimensions, the metric is given through 
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

g µν

 
 
 
 = −
 

− 
 − 

                   (2) 

with signature ( ), , , ,+ + − − − . 
If we define 

: 0 ,t

ct
xµ

η

 
 =  
 
 x

                          (3) 

( )

0

:

1

x r fµ
τ

γτ

η

 
 

  = ⋅   Λ   − x

                       (4) 

with ( )0,1η∈ , we can decompose xµ  into tx x xµ µ µ
τ= + . 

Inspired by the Nambu Goto action [31] [32] which is a two dimensional 
integral over time and the surface of a string, we define the action as 

d dS L t τ= ∫                           (5) 

As for standard electrodynamics, we make the ansatz 

d dtS s sτ= ∫                            (6) 

for S where d ts  and dsτ  describe the infinitesimal line elements along t and τ . 
It is (applying Einstein’s sum convention) 

( ) 22 2 2d d d d dt t ts x g x ctν µ
µν η= = −   x                  (7) 

[ ]2 2 2d d dc t c t η= ⋅ + ⋅ − x                      (8) 

2 2 2 2 2 22 dc t c cct tη = + − + x                     (9) 

2 2 2 2 2d 2 dts c t c cct tη⇒ = + − +x                   (10) 

where we use d dc c t=  and d dt=x x . Note that in the limit constc = . and 
1η → , (10) becomes 2 2d dts c t= − x  which is the line element of a free 

particle in one time dimension with a constant speed of light. 
Similarly we obtain: 

( )
2

22 2d d 1 ds r fτ
γτ

η
   = ⋅ − −   Λ   

x                    (11) 

( ) ( ) ( )
2

22 21 dd d 1 d
d tz

fr z
z γγ τ γ τ η

=
Λ

 
= ⋅ + − − 

Λ  
x                (12) 

( ) ( )
2

22 2 2 2 2 2
2 2 1 dz

r fγ τ γ γγ τ η τ ′ ′ ′= + + − − Λ
x               (13) 
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( ) ( )22 2 2 2 2d 2 1 dz
rs fτ

γτ
γ τ γ γγ τ η τ ′ ′ ′⇒ = + + − − Λ Λ 

x        (14) 

where we use the chain rule ( ) ( )1 dd d d
d tz

ff z
z γ

γτ
γ τ γ τ

=
Λ

  = ⋅ + Λ Λ 
 and define 

( )d:
dz tz

ff z
z γ

=
Λ

= . The prime denotes the time derivative after τ : : d dγ γ τ′ =  

and : d dx x τ′ = . 

Inserting (10) and (14) into (6) leads to 

( ) ( )22 2 2 2 2 2 2 2 2 2d d 2 2 1
e e

a a

t

z
t

rS t c t c cct f
τ

τ

γττ η γ τ γ γγ τ η ′ ′ ′= + − + × + + − − Λ Λ ∫ ∫ x x  (15) 

By comparing (15) with (5), we identify the Lagrangian 

( ) ( )22 2 2 2 2 2 2 2 2 22 2 1z
rL c t c cct fη γ τ γ γγ τ η′ ′ ′= + − + + + − −
Λ

 x x (16) 

As stated in [30], the equation of motion for a Langrangian in two time 
dimensions is similar to the equation of motion of a string [33], hence 

d d 0
d di i i

L L L
t x x xτ
∂ ∂ ∂

+ − =
′∂ ∂ ∂

                  (17) 

where i indexes the i-th space dimension. In the following, we insert (16) into 
(17) and derive the equations of motion. Note that both c and γ  also depend 
on t or τ  as well as on x since they are not assumed to be constant. 
Subsequently, c  depends on x, x  and t and γ  depends on x, x′  and τ . 
Hence, we here also consider the partial derivatives of c and c  with respect to x 
and x , similarly for γ  and γ ′ . For each spatial dimension i, it is 

( ) ( )

( ) ( )

( )

22 2 2 2 2
2 2

2 2 2 2 2

2 2 2 2 2

22 2 2 2 2

22 2

2 1d0
d 2

d 2
d 2 1

1

z
i

i i

z

z i
i i

f c cc t c t x
t x xc t c cct

c t c cct
f

f x
x x

γ τ γ γγ τ η
η

η

η
τ γ τ γ γγ τ η

γ γγ τ γ τ η

 ′ ′ ′+ + − −  ∂ ∂ = + −  ∂ ∂+ − +   
 + − ++
 ′ ′ ′+ + − −


  ′ ′∂ ∂′ ′ × + − −   ′ ′∂ ∂   


−

 

 

  

 

x

x

x
x

( ) ( ) )
2 2 2 2 2

22 2 2 2 2

2

2 1

i

z

c t c cct
x

f

η

γ τ γ γγ τ η

∂
+ − +∂ 

′ ′ ′× + + − −

 x

x

(18) 

For simplicity we assume that x′  is independent of t and x  is independent 
of τ . We define 

( ) ( )2 2 2
1 :t ct c η= + − x                      (19) 

( ) ( ) ( )2 22 2
2 : 1zf γτ
τ γ τ γ η ′ ′= + − − Λ 

x              (20) 
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and rewrite Equation (18) as 

( )
( )

( )
( ) ( )

( )
( )

( ) ( )
( )

( )

2 2 2

1

21 2 2

2

2 1 1 2

1 2

d0
d

d 1
d

1 1
2 2

i
i i

z i
i i

i i

c cc t c t x
t t x x

t
f x

x x

t t
t x x

τ
η

γ γ
γ τ γ τ η

τ τ

τ τ
τ

  ∂ ∂ = + −  ∂ ∂  
   ′ ′∂ ∂′ ′ + + − −    ′ ′∂ ∂   

∂ ∂
− −

∂ ∂

 

 

 







   
 

    (21) 

Dividing (21) by ( ) ( )1 2t τ   yields 

( ) ( )

( ) ( )
( )

( )
( )

( )
( )

2 2

1 1

22 2

2 2

1 2

1 2

1 d 10
d

1 d 1 1
d

1 1 1 1
2 2

i
i i

z i
i i

i i

c cc t c t x
t x xt t

f x
x x

t
t x x

η

γ γ
γ τ γ τ η

ττ τ

τ
τ

  ∂ ∂ = + −  ∂ ∂  
   ′ ′∂ ∂ ′ ′+ + − −   ′ ′ ∂ ∂   

∂ ∂
− −

∂ ∂

 

 

  

 

 
 

 (22) 

( ) ( ) ( )
( )

( ) ( )
( )

( )
( )

12 2

11 1

22 2

2 2

2

2

1 d 1 1 1
d 2

1 d 1 1
d

1 1
2

i
i i i

z i
i i

i

tc cc t c t x
t x x t xt t

f x
x x

x

η

γ γ
γ τ γ τ η

ττ τ

τ
τ

  ∂ ∂ ∂ ⇔ + − −  ∂ ∂ ∂  
   ′ ′∂ ∂ ′ ′= − + − −   ′ ′ ∂ ∂   

∂
+

∂

 

 

 


 

 




 (23) 

3. The Equation of Motion for the Second Time Dimension 

Since (23) holds for all t on the left-hand-side and for all τ  on the right-hand-side, 
both sides have to be equal to a constant i−Ω : 

( ) ( ) ( )
( )

( ) ( )
( )

( )
( )

12 2

11 1

22 2

2 2

2

2

1 d 1 1 1
d 2

1 d 1 1
d

1 1
2

i
i i i

z i
i i

i
i

tc cc t c t x
t x x t xt t

f x
x x

x

η

γ γ
γ τ γ τ η

ττ τ

τ
τ

  ∂ ∂ ∂ + − −  ∂ ∂ ∂  
   ′ ′∂ ∂ ′ ′= − + − −   ′ ′ ∂ ∂   

∂
+ = −Ω

∂

 

 

 


 

 




  (24) 

We now investigate both sides separately. For the time dimension τ  it is 
thus 

( ) ( )
( )

( )
( )

22 2

2 2

2

2

1 d 1 1
d

1 1
2

z i
i i

i
i

f x
x x

x

γ γ
γ τ γ τ η

ττ τ

τ
τ

   ′ ′∂ ∂ ′ ′− + − −   ′ ′ ∂ ∂   
∂

= −Ω −
∂

 




  (25) 
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Multiplying both sides with ( )22 2 1z i
i i

f x
x x
γ γ

γ τ γ τ η
 ′ ′∂ ∂′ ′+ − − ′ ′∂ ∂ 

 yields 

( )

( )

( )
( )

( )

( )
( ) ( )

22 2

2

22 2

2

2 2 2

22 2 2

2

1

d 1 1
d

1

1 1 1
2

z i
i i

z i
i i

i i i z
i i

z i
i i i

f x
x x

f x
x x

x f
x x

f x
x x x

γ γγ τ γ τ η

τ

γ γ
γ τ γ τ η

τ τ

γ γ
η γ τ γ τ

τ γ γ
γ τ γ τ η

τ

 ′ ′∂ ∂′ ′+ − − ′ ′∂ ∂ −

   ′ ′∂ ∂ ′ ′× + − −   ′ ′ ∂ ∂   
 ′ ′∂ ∂′ ′= Ω − −Ω + ′ ′∂ ∂ 
∂  ′ ′∂ ∂′ ′− + − − ′ ′∂ ∂ ∂ 









  
 

    (26) 

( ) ( )

( )

( )
( ) ( )

2
22 2

2

2 2 2

22 2 2

2

1 d 1 1
2 d

1

1 1 1
2

z i
i i

i i i z
i i

z i
i i i

f x
x x

x f
x x

f x
x x x

γ γ
γ τ γ τ η

τ τ

γ γ
η γ τ γ τ

τ γ γ
γ τ γ τ η

τ

   ′ ′∂ ∂ ′ ′⇔ − + − −   ′ ′ ∂ ∂   
 ′ ′∂ ∂′ ′= Ω − −Ω + ′ ′∂ ∂ 
 ∂  ′ ′∂ ∂′ ′− + − −   ′ ′∂ ∂ ∂  






  (27) 

Integrating both sides then gives 

( ) ( )

( ) ( )

2
22 2

2

2
,3 12

1 1 1
2

1 , ,

z i
i i

i i i i i

f x
x x

x I S x x

γ γ
γ τ γ τ η

τ

η τ

  ′ ′∂ ∂′ ′− + − −   ′ ′∂ ∂  

′= Ω − + +

        (28) 

where ,3iI  is an integration constant and where we have defined 

( ) ( )12 1 2, , : di iS x x S Sτ τ′ = +∫                  (29) 

with 

( ) 2 2
1 , , :i i i z

i i

S x x f
x x
γ γ

τ γ τ γ τ
 ′ ′∂ ∂′ ′= −Ω + ′ ′∂ ∂ 

         (30) 

( ) ( )
( ) ( )22 2 2

2
2

1 1, , := 1
2i i z i

i i i

S x x f x
x x x
τ γ γ

τ γ τ γ τ η
τ

 ∂  ′ ′∂ ∂′ ′ ′+ − −   ′ ′∂ ∂ ∂  




 (31) 

Multiplying (28) with ( )22 τ−   then gives 

( )

( )( )( ) ( )( )( )
( ) ( )

2
22 2

2 2 2 22 2
,3 ,3

2 12

1

2 1 2 1 1

2 , ,

z i
i i

i i i z i i i i

i i

f x
x x

x I f x I x

S x x

γ γ
γ τ γ τ η

η γ τ γ η η

τ τ

  ′ ′∂ ∂′ ′+ − −   ′ ′∂ ∂  

′ ′= −Ω − − + − −Ω − − −

′− 

 (32) 

where we assume for simplicity, but without loss of generality, that a test particle 
moves in one of the directions i only. 
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Defining further 

( )

( )

2
2 4

2 12

22 2

, , : 2

2 1

i i z
i i

z i
i i

S x x S f
x x

f x
x x

γ γ
τ γ τ γ τ

γ γ
γ τ γ τ η

 ′ ′∂ ∂′ ′= − − + ′ ′∂ ∂ 
 ′ ′∂ ∂′ ′+ + − ′ ′∂ ∂ 



        (33) 

we can further simplify (32) to 

( ) ( )( )( )

( )( )( )

4 2 22 2
,3

2 2 2
,3

1 2 1

2 1 1

i i i i z

i i i i

x x I f

x I x S

η η γ τ γ

η η

′ ′− = −Ω − − +

′− −Ω − − − +
       (34) 

which is equivalent to 

( )

( )

( )
( )( )

( )
( )( )( )

,3
2

2 2
2

,3

2
,3

1d 1 1

2
1

d
2 1

d d
4 1

i

i
i i

z

i i i

z

i i i z

x
I

x

Sf
x I

Sf
x I f

η

η

τ γ τ γ
η

τ γ τ γ τ
η γ τ γ

− +
 
 − Ω +
 − 

′= + +
− Ω − +

 
 ′= + +  ′− Ω − + +  



  (35) 

where we used the series expansion ( )2x a a x a+ = +   for the last 

equality. 
Finally integrating both sides of (35) gives an implicit solution for ix : 

( ) ( )

( ) ( )

( )( )( )

2
,3 ,3

2 2

2

,3 ,32 2
2 2

,42
,3

1 11 2
2

41 ln 4 4 1 1 8 8 2
8 1 1

1 d
4 1

i i
i i i i

i
i ii

i i
i i i i i i i

i

i i i z

I I
x x

I I
x x

Sf I
x I f

η ηη

η η

γτ τ
η γ τ γ

   Ω + Ω +  − −−  Ω −  Ω ΩΩ     
 

     − Ω Ω + − − + Ω + Ω − Ω   Ω − −    
 

   = + +   Λ Λ  ′− Ω − + +  
∫ 

 (36) 

where ,4iI  is another integration constant. 

4. The Existence of the Planck Length 

Since the solution (36) has to be physical, the argument of the logarithm must be 
positive: 

( ) ( )

2

,3 ,32 2
2 2

4
4 4 1 1 8 8 2 0

1 1
i i

i i i i i i i

I I
x x

η η

 
 Ω Ω + − − + Ω + Ω − Ω >
 − − 

  (37) 
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( )22 24 4 1 1 8 2 0i i i iz zΩ Ω − − + Ω − Ω >               (38) 

( )22 24 4 1 1 8 2i i i iz zΩ Ω − − > − Ω + Ω               (39) 

with the definition 

( )
,3

21
: .

i
i i

i

I
x

z
η

Ω +
−

=
Ω

                     (40) 

We will now prove by contradiction that for the second time dimension it is 

28 2 0.i iz− Ω + Ω <                       (41) 

Let us therefore assume that 28 2 0i iz− Ω + Ω ≥ . Squaring 

( )22 24 4 1 1 8 2 .i i i iz zΩ Ω − − > − Ω + Ω           (42) 

yields 

( ) ( ) ( )
22 22 2 24 4 1 1 8 2 4 4 1i i i i i iz z zΩ Ω − − > − Ω + Ω = Ω Ω −      (43) 

Subtracting ( )224 4 1i i zΩ Ω −  gives 

1 0− >                           (44) 

which is obviously wrong. Thus 28 2i iz− Ω + Ω  must be negative; this leads to 

28 2 0i iz− Ω + Ω <                    (45) 

( )2 4 1 0i i z⇔ Ω − Ω + <                  (46) 

( )( ) ( )( )2 0 4 1 0 2 0 4 1 0i i i iz z⇔ Ω < ∧ − Ω + > ∨ Ω > ∧ − Ω + <    (47) 

( ) ( )0 4 1 0 4 1i i i iz z⇔ Ω < ∧ Ω < ∨ Ω > ∧ Ω >           (48) 

1 1for 0 for 0
4 4i i

i i

z z
   

⇔ > Ω < ∨ > Ω >   
Ω Ω   

         (49) 

1
4 i

z⇔ >
Ω

                      (50) 

( )
,3

2

1 1 0
4 1

i
i i

i

I
x

η

 
 ⇔ > − ∀Ω ≠
 Ω − 

            (51) 

where we used that a product of two factors is smaller than 0 iff one of the 
factors is larger than 0 and the other one is smaller than 0. ,3iI  is determined 
by (28) 

( ) ( )

( ) ( )

2
22 2

2

2
,2 12

1 1 1
2

1 , ,

z i
i i

i i i i i

f x
x x

x I S x x

γ γ
γ τ γ τ η

τ

η τ

  ′ ′∂ ∂′ ′− + − −   ′ ′∂ ∂  

′= Ω − + +

       (52) 
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Given the initial conditions ( )0 ,0:i kx xτ′ ′=  and ( )0 0 ,0, :k kx t xτ = , it is 

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) )

0 0

12 ,0 ,0 0,3
,02 2

2 2
0 0 0 0 0 02

2 0

22
,0

, ,
(1 )1

1 1
2 1

1

k ki
i k

z z
i i

k

S x xI
x

f
x x

x

γ τ τ

τ

ηη

γ γ
γ τ τ τ γ τ τ τ

τη

η

=
Λ

′
− = Ω +

−−

 ′ ′∂ ∂′+ +  ′ ′∂ ∂−  

′− −


 (53) 

( )
,3

,02 :
1

i
i k

I
x

η
− = Ω +

−
                    (54) 

For some functions f  and for some parameters { },γ Λ , i.e. for some 
particular shapes of the second time dimension, we can assume 0iΩ >  and 
hence, inserting (81) into (78), 

( ) ,0
,0

1 1 11
4 4 4 4 4

k
i i k

i i i i

x
x x> +Ω + = + + >

Ω Ω Ω Ω


       (55) 

which implies that 

1
4i

i

x >
Ω

                    (56) 

for 0iΩ > . 
Equation (56) states that there is always a lower threshold for any coordinate; 

thus, the existence of a second time dimension naturally explains the existence of 
the so-called Planck-length, i.e. a smallest length scale. Hence we identify 
( )1 4 iΩ  being in the order of the Planck scale 3510 mP

−≈ , and thus, for the 
observable universe it is ( )1 4 0iΩ → , or equivalently iΩ →∞ . 

5. The Equation of Motion for the First Time Dimension 

We now come back to analyse the equation of motion for the first time 
dimension. The first part of (24) leads to the equation 

( ) ( )

( )
( )

2 2

1 1

1

1

1 d 1
d

1 1 .
2

i
i i

i
i

c cc t c t x
t x xt t

t
t x

η
  ∂ ∂ + −  ∂ ∂  

∂
= −Ω +

∂

 

 

  




          (57) 

For the observable universe, i.e. iΩ →∞  the right hand side of (57) is 
governed by large iΩ , thus1 

( ) ( )
2 2

1 1

1 d 1
d i i

i i

c cc t c t x
t x xt t

η
  ∂ ∂ + − −Ω  ∂ ∂  

 

 


  
        (58) 

 

 

1The dominance of iΩ  can easily be seen by multiplying (57) with 1  and by inserting the an-

satz ( )1 , , : e ikx t x
i iu x x t ω ν+ +≡ = 

  for arbitrary k. 

https://doi.org/10.4236/jhepgc.2017.34048


C. Köhn 
 

 

DOI: 10.4236/jhepgc.2017.34048 645 Journal of High Energy Physics, Gravitation and Cosmology 
 

Multiplying both sides with 2 2
i

i i

c cc t c t x
x x

η
∂ ∂

+ −
∂ ∂
 

 

 

 yields 

( )

2
2 2

2 2

1

1 d
2 d

i
i i

i i
i i

c cc t c t x
x x c cx c t c t

t t x x

η
η

  ∂ ∂ + − ∂ ∂    ∂ ∂  = Ω −Ω +   ∂ ∂  
 
 

 

 

 

 

 

 
  (59) 

and integrating both sides over t we obtain 

( )

2
2 2

1

2 2
,1

1
2

d

i
i i

i i i
i i

c cc t c t x
x x

t
c cx I t c t c t
x x

η

η

 ∂ ∂
+ − ∂ ∂ 

 ∂ ∂
= Ω + −Ω + ∂ ∂ 

∫

 

 

 

 



 

               (60) 

where ,1iI  is an integration constant. Integrating by parts and using  

d d 0
i i

c t c t
x x
∂ ∂

= =
∂ ∂∫ ∫




 

, since c is independent of ix , makes the integral on the  

right-hand-side vanish, hence 

( )

2
2 2

2
,1

1

1
2

i
i i

i i

c cc t c t x
x x

x I
t

η
η

 ∂ ∂
+ − ∂ ∂  = Ω +

 

 

 


            (61) 

For simplicity, but without loss of generality, we now assume a test particle 
moving in one of the three spatial directions k only. Considering again  
integration by parts for all terms containing kc x∂ ∂   and rescaling 

2
k kηΩ →Ω  the solution of (61) is given by 

( )

( )

2
,1 ,1

22 2
,1 ,1

,2

4 2 2
8

2 ln 4 1 1 2 2 2
2

2 2

k k k k k k
k

k k k k k k k k k
k

k k

x I x I

x I x I

ct I

Ω + + Ω +
Ω

 + Ω Ω + + − + Ω + Ω + Ω 
 Ω

= Ω +

  (62) 

with another integration constant ,2kI . 

6. The Constancy of the Speed of Light 

In this section, we show that the existence of the Planck length 1~p
kΩ

  and  

the subsequent limit kΩ →∞  implies the constancy of the speed of light for the 
observable universe. 

Inserting ( )0 0 ,0,k kx t xτ =  into (62) gives 

( )

( )

2
,2 0 ,0 ,1 ,0 ,1

22 2
,0 ,1 ,0 ,1

42 2 2 2
8

2 ln 4 1 1 2 2 2
2

k k k k k k k k
k

k k k k k k k k k
k

I ct x I x I

x I x I

= Ω + Ω + + Ω +
Ω

 + Ω Ω + + − + Ω + Ω + Ω 
 Ω

(63) 
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Inserting (63) further into (62) and solving for c yields 

( )

( )

( )
( )

2
,1 ,1

0

2
,0 ,1 ,0 ,1

22 2
,1 ,1

22 2
,0 ,1 ,0 ,1

1 1 2 2
2

2 2

4 1 1 2 2 21 ln
2 2 4 1 1 2 2 2

k k k k k k
k

k k k k k k

k k k k k k k k k

k k k k k k k k k k

c x I x I
t t

x I x I

x I x I

x I x I


= Ω + + Ω +− Ω 

− Ω + + Ω + 


 Ω Ω + + − + Ω + Ω + Ω  +  Ω  Ω Ω + + − + Ω + Ω + Ω  

(64) 

Subsequently it is 

( )
( )

( )

( )
( )

2
,1 ,12

0

2
,0 ,1 ,0 ,1

22 2
,0 ,1 ,0 ,1

22 2
,0 ,1 ,0 ,1

1 1 2 2
2

2 2

4 1 1 2 2 21 ln
2 2 4 1 1 2 2 2

k k k k k k
k

k k k k k k

k k k k k k k k k

k k k k k k k k k k

c x I x I
t t

x I x I

x I x I

x I x I


= − Ω + + Ω + Ω − 

− Ω + + Ω + 


 Ω Ω + + − + Ω + Ω + Ω  +  Ω  Ω Ω + + − + Ω + Ω + Ω  



    

 

( )
( )

( )

( )
( )

,1

2
0

,1 ,1

22 2
,1 ,1

3
,1 2

22
,1

2 21 1
2 2 2 2

1 1
2 2 4 1 1 2 2 2

4 1
2

4 1 1

k k k k k k k

k
k k k k k k

k k k k k k k k k k

k k k k k
k k

k k k k

x x x I
t t x I x I

x I x I

x x I
x

x I

 Ω + Ω Ω ++ − Ω Ω + + Ω +

+
Ω Ω Ω + + − + Ω + Ω + Ω

 Ω Ω + +  × + Ω  
 Ω Ω + + −  

 





        (65)

 

and further, taking the limit kΩ →∞ : 

( ),0

0 0

1 1 : .
2

k k
k

x x
c x c t

t t t t ∞

− 
→ − = 

− − 
                      (66) 

We now show by induction that for kΩ →∞  it is ( ) ( )0 0 1nc t n∞ = ∀ ≥  where 
( )nc∞  denotes the n-th derivative of c∞ : 
1) Base case ( 1n =  and 2n = ): 
With the rule of L’Hôpital, it follows that 

( ) ( ) ( )
0

0 0
1lim .
4 kt t

c t c t x t∞ ∞→
= =                       (67) 

For kΩ →∞  (61) becomes 

( )2kx c t c∞ ∞= + 

                       (68) 

with derivative 

( ) 2 4 .kx t c t c∞ ∞= +  

                      (69) 
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Inserting (67) into (69) then gives 

( )0 0.c t∞ =

                           (70) 

Note that the derivative of (66) leads to 

( ) ( )
0

1
2

x t
c t

t t∞ =
−



                          (71) 

which is equivalent to ( ) ( )02x t c t t∞= ⋅ − 

 and thus 

( )0 0x t =                             (72) 

because of (70), and thus from (67) also 

( )0 0.c t∞ =                            (73) 

2) Inductive step: 
We first show by induction that 

( )

( )
( )

( )

1

0 0

0

1 1 , for odd
2

1 , for even
2

n
n

n

n

xx n
t t t t

c
x n

t t

−

∞

  
−   − −  = 


 −

             (74) 

We have already calculated c∞  (66) and c∞  (71) which are consistent with 
(74). Now let us assume that (74) is correct. Then it is to easy to see that for odd 
n 

( )
( )

( ) ( )
( )

1 1
1

0 0 0

d d 1 1 1
d d 2 2

n n n
n nc x xx c

t t t t t t t t

− +
+∞

∞

  
= − = =   − − −   

           (75) 

and furthermore 
( ) ( )

( )
( )

( )
1 1 1

2 2

0 0 0

d d 1 1 1
d d 2 2

n n n
n nc x xx c

t t t t t t t t

+ + +
+ +∞

∞

   
= = − =    − − −    

        (76) 

hence we have proven that (74) is indeed the correct term for the n-th derivative 
of (64) in the limit kΩ →∞ . 

For even n, (74) is equivalent to ( ) ( ) ( ) ( )02n nx t c t t∞= ⋅ −  which leads to 

( ) ( )0 0.nx t =                         (77) 

Using (77) and the rule of L’Hôpital in (74), it follows immediately 
( ) ( ) ( ) ( )

0
0 lim 0n n

t t
c t c t∞ ∞→

= =                     (78) 

for odd n. 
Finally from (69) it follows per induction that 

( ) ( ) ( ) ( ) ( ) ( )( )12 .n n nx t c t t nc t n−
∞ ∞= ⋅ + ∀              (79) 

As ( ) ( )0 0nx t =  for even n (77) and ( ) ( )0 0nc t∞ =  for odd n (78) we see that 
( ) ( )0 0nc t∞ =                       (80) 
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for all even n. 
Thus we conclude that ( ) ( )0 0nc t∞ =  for all 1n ≥ . 
The Taylor expansion of ( )c t∞

 around 0t  is 

( )
( ) ( ) ( )0

0
1

,
!

n

n

c t
c t t t

n

∞
∞

∞
=

= −∑                  (81) 

and since ( ) ( )0 0nc t =  for all n, it follows 

( ) 0 constc t t c∞ ∞≡ ∀ ⇒ =                  (82) 

Thus we conclude that for the observable universe the speed of light is indeed 
constant. 

7. Conclusions 

We have assumed a second time-like dimension with its own characteristic 
speed and length and the decomposability of any spacetime vector into a vector 
each for the first and the second time dimension. As a consequence of these 
assumptions, we have derived two fundamental results: 

1) the existence of a smallest length scale which we have identified with the 
Planck length and 

2) the constancy of the vacuum speed of light for the observable universe. 
For very small length scales of the present universe, or for the very early 

universe, we have derived an expression for the speed of light. We see that for 
both cases, the speed of light is not constant, but depends on space and time. 

This is consistent with current results from loop quantum gravity or string 
theory [34] [35] on the non-constancy of light speed. 

Finally we here give a hint about the correctness of the assumptions of 
theories explaining large scale structures of the universe due to a variable speed 
of light in the early universe [11]. 

Acknowledgements 

The research was partly funded by the Marie Curie Actions of the European 
Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant 
agreement no 609405 (COFUNDPostdocDTU). 

References 
[1] Maxwell, J.C. (1864) A Dynamical Theory of the Electromagnetic Field. Transac-

tions of the Royal Society, 155, 459-512. 

[2] Michelson, A.A. (1881) The Relative Motion of the Earth and the Luminiferous 
Ether. American Journal of Science, 22, 120-129. 
https://doi.org/10.2475/ajs.s3-22.128.120 

[3] Michelson, A.A. and Morely, E.W. (1887) On the Relative Motion of the Earth and 
the Luminiferous Ether. American Journal of Science, 34, 333-345. 
https://doi.org/10.2475/ajs.s3-34.203.333 

[4] Essen, L. (1955) A New Æther-Drift Experiment. Nature, 175, 793-794. 
https://doi.org/10.1038/175793a0 

https://doi.org/10.4236/jhepgc.2017.34048
https://doi.org/10.2475/ajs.s3-22.128.120
https://doi.org/10.2475/ajs.s3-34.203.333
https://doi.org/10.1038/175793a0


C. Köhn 
 

 

DOI: 10.4236/jhepgc.2017.34048 649 Journal of High Energy Physics, Gravitation and Cosmology 
 

[5] Trimmer, W.S., et al. (1973) Experimental Search for Anisotropy in the Speed of 
Light. Physical Review D, 8, 3321-3326. https://doi.org/10.1103/PhysRevD.8.3321 

[6] Wolf, P., et al. (2003) Tests of Lorentz Invariance using a Microwave Resonator. 
Physical Review Letters, 90, 060402. https://doi.org/10.1103/PhysRevLett.90.060402 

[7] Hermann, S., et al. (2009) Rotating Optical Cavity Experiment Testing Lorentz In-
variance at the 10−17 Level. Physical Review D, 80, 105011. 
https://doi.org/10.1103/PhysRevD.80.105011 

[8] Nagel, M., et al. (2015) Direct Terrestrial Test of Lorentz Symmetry in Electrody-
namics to 10−18. Nature Communications, 6, 8174.  
https://doi.org/10.1038/ncomms9174 

[9] Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. [On the Electrodynamics 
of Moved Bodies.] Annals of Physics, 322, 891-921.  
https://doi.org/10.1002/andp.19053221004  

[10] Amelino-Camelia, G., et al. (1998) Potential Sensitivity of Gamma-Ray Burster Ob-
servations to Wave Dispersion in Vacuo. Nature, 393, 763-765. 
https://doi.org/10.1038/ncomms9174 

[11] Albrecht, A. and Magueijo, J. (1999) A Time Varying Speed of Light as a Solution to 
Cosmological Puzzles. Physical Review D, 59, Article ID: 043516.  
https://doi.org/10.1103/PhysRevD.59.043516 

[12] Deriglazov, A.A. and Ramírez, W.G. (2015) World-Line Geometry Probed by Fast 
Spinning Particle. Modern Physics Letters A, 30, Article ID: 1550101.  
https://doi.org/10.1142/S0217732315501011 

[13] Deriglazov, A.A. and Ramírez, W.G. (2016) Ultra-Relativistic Spinning Particle and 
a Rotating Body in External Fields. Advances in High Energy Physics, 3, Article ID: 
1376016. 

[14] Deriglazov, A.A. and Ramírez, W.G. (2017) Mathisson Papapetrou Tilczyjew Dixon 
(MPTD) Equations in Ultra-Relativistic Regime and Gravimagnetic Moment. In-
ternational Journal of Modern Physics D, 26, Article ID: 1750047.  
https://doi.org/10.1142/S021827181750047X 

[15] Wheeler, J.A. (1955) Geons. Physical Review, 97, 511-536.  
https://doi.org/10.1103/PhysRev.97.511 

[16] Klein, O. (1956) Generalization of Einstein’s Theory of Gravitation Considered 
from the Point of View of Quantum Field Theory. Mercier and Kervaire, 58-68, 155, 
459-512. 

[17] Landau, L.D., et al. (1954) The Removal of Infinities in Quantum Electrodynamics. 
Doklady Akademii Nauk SSSR, 95, 497. 

[18] Planck, M. (1899) Über irreversible Strahlungsvorgänge. [About Irreversible Radia-
tion.] Sitzungsberichte der Preussischen Akademie der Wissenschaften, 5, 440-481. 

[19] Faizal, M. (2014) Deformation of the Wheeler? DeWitt Equation. International 
Journal of Modern Physics A, 29, Article ID: 1450106.  
https://doi.org/10.1142/S0217751X14501061 

[20] Pramanik, et al. (2015) Path Integral Quantization Corresponding to the Deformed 
Heisenberg Algebra. Annals of Physics, 362, 24-35. 

[21] Faizal, M., et al. (2016) Time Crystals from Minimum Time Uncertainty. The Eu-
ropean Physical Journal C, 76, 30. https://doi.org/10.1140/epjc/s10052-016-3884-4 

[22] Bardakçi, K., et al. (1969) Unitary Closed Loops in Reggeized Feynman Theory. 
Physical Review, 185, 1910-1917. https://doi.org/10.1103/PhysRev.185.1910 

https://doi.org/10.4236/jhepgc.2017.34048
https://doi.org/10.1103/PhysRevD.8.3321
https://doi.org/10.1103/PhysRevLett.90.060402
https://doi.org/10.1103/PhysRevD.80.105011
https://doi.org/10.1038/ncomms9174
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1038/ncomms9174
https://doi.org/10.1103/PhysRevD.59.043516
https://doi.org/10.1142/S0217732315501011
https://doi.org/10.1142/S021827181750047X
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1142/S0217751X14501061
https://doi.org/10.1142/S0217751X14501061
https://doi.org/10.1142/S0217751X14501061
https://doi.org/10.1140/epjc/s10052-016-3884-4
https://doi.org/10.1103/PhysRev.185.1910


C. Köhn 
 

 

DOI: 10.4236/jhepgc.2017.34048 650 Journal of High Energy Physics, Gravitation and Cosmology 
 

[23] Nambu, Y. (1970) Quark Model and the Factorization of the Veneziano Amplitude. 
Symmetries and Quark Models, Gordon and Breach, 269-278. 

[24] Green, M. (1987) Superstring Theory. Cambridge University Press. 

[25] Lüst, D. and Theisen, S. (1989) Lectures on String Theory. Springer Verlag Berlin, 
Heidelberg. 

[26] Witten, E. (1995) String Theory in Various Dimensions. Nuclear Physics B, 443, 
85-126. 

[27] Tegmark, M. (1997) On the Dimensionality of Spacetime. Classical and Quantum 
Gravity, 17, L69-L75. https://doi.org/10.1088/0264-9381/14/4/002 

[28] Bars, I. and Kounnas, C. (1997) Theories with Two Times. Physics Letters, 402, 
25-32. 

[29] Bars, I. and Kounnas, C. (1997) String and Particles with Two Times. Physical Re-
view D, 56, 3664. https://doi.org/10.1103/PhysRevD.56.3664 

[30] Chen, X. (2008) Three Dimensional Time Theory: To Unify the Principles of Basic 
Quantum Physics and Relativity. 

[31] Nambu, Y. (1970) Lectures at the Copenhagen Symposium. 

[32] Goto, T. (1971) Relativistic Quantum Mechanics of One-Dimensional Mechanical 
Continuum and Subsidiary Condition of Dual Resonance Model. Progress of Theo-
retical Physics, 46, 1560. https://doi.org/10.1143/PTP.46.1560 

[33] Collins, P.D.B., Martin, A.D. and Squires, E.J. (1989) Particle Physics and Cosmol-
ogy. Wiley, New York. https://doi.org/10.1002/3527602828 

[34] Kiritsis, E. (1999) Supergravity, D-Brane Probes and Thermal Super Yang-Mills: A 
Comparison. Journal of High Energy Physics, 9910, 010. 

[35] Alexander, S. (2000) On the Varying Speed of Light in a Brane-Induced FRW Un-
iverse. Journal of High Energy Physics, 0011, 017. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.4236/jhepgc.2017.34048
https://doi.org/10.1088/0264-9381/14/4/002
https://doi.org/10.1103/PhysRevD.56.3664
https://doi.org/10.1143/PTP.46.1560
https://doi.org/10.1002/3527602828

	The Planck Length and the Constancy of the Speed of Light in Five Dimensional Spacetime Parametrized with Two Time Coordinates
	Abstract
	Keywords
	1. Introduction
	2. The Action in Five Dimensional Space with Two Local Time Coordinates
	3. The Equation of Motion for the Second Time Dimension
	4. The Existence of the Planck Length
	5. The Equation of Motion for the First Time Dimension
	6. The Constancy of the Speed of Light
	7. Conclusions
	Acknowledgements
	References

