
Journal of Software Engineering and Applications, 2017, 10, 824-842
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.1010046 Sep. 28, 2017 824 Journal of Software Engineering and Applications

Software Cost Estimation Approaches: A Survey

Ismail M. Keshta

Department of Computer Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Abstract
The software cost estimation aims to predict the most realistic effort that is
required to finish a software project and so it is critical to the success of a
software project management. A Software Cost Estimation affects nearly all
management activities, including project bidding, resource allocation and
project planning. It is affected by a number of factors, such as implementation
efficiency, as well as how much the various reviews and studies completed
prior to the software development stage cost. Accurate cost estimation will
help us to complete the project on time and within budget. Accurate estima-
tion is important because it has led to extensive research into the methods of
software cost estimation. Some important software cost estimation methods
have been studied in this research work. In addition, we have set out own cri-
teria, which has been used to compare all the different selected methods. We
have also given a score for each evaluation criteria, so that we can compare the
different methods numerically for cost estimation. Our observations have
shown that it is best to use a number of different estimating techniques or cost
models, and then compare the results before determining the reasons for any
of the large variations. None of the methods are necessarily better or worse
than the others. We found, in fact, that their strengths and weaknesses often
complement each other. Therefore, the main conclusion is that there is no one
single technique that is best for every situation, and the results of a number of
different approaches need to be carefully considered to discover what is the
most likely to produce estimates that are realistic.

Keywords
Software Cost Estimation, COCOMO Model, Parametric Models, Putnam
Model

1. Introduction

Estimating the costs of software projects is a critical activity that requires the use

How to cite this paper: Keshta, I.M.
(2017) Software Cost Estimation Ap-
proaches: A Survey. Journal of Software
Engineering and Applications, 10, 824-842.
https://doi.org/10.4236/jsea.2017.1010046

Received: June 26, 2017
Accepted: September 25, 2017
Published: September 28, 2017

Copyright © 2017 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.1010046
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.1010046
http://creativecommons.org/licenses/by/4.0/

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 825 Journal of Software Engineering and Applications

of both proper methods and techniques in order to achieve a good estimation of
the results. This is a challenging task that poses many obstacles. The size of the
software and its accuracy has a great effect on the estimation’s accuracy. Project
management also plays a vital role in the guidance of these estimation processes.
Much research has been carried out that reflects the rising demands of
high-quality software through effective cost estimation [1] [2] [3] [4] [5].

Software engineers have to apply the theories, tools and methods in a software
project in order to solve a problem. However, they must also work within the fi-
nancial constraints that were predefined. A vital issue which is closely related to
a software project’s financial aspects is the accurate estimation of the software
cost involved. This helps to manage any software project as it means it will be
within the set budget [6] [7] [8] [9].

Software cost estimation is a very challenging activity in the project manage-
ment of software because predicting the cost is a difficult process at the early
stage of the software’s development [4] [10]. Moreover, the estimation of the
software’s cost is impacted by many factors, including the implementation’s effi-
ciency, and the number of reviews and studies done prior to the development
stage cost. There is clearly a strong relationship that exists between the estima-
tion of software effort and software cost, as it can be said that the effort is the
primary driving factor for the software’s cost [11] [12] [13] [14].

It is important to state that the estimation of the software’s cost is a conti-
nuous activity that begins at the proposal stage and then carries on throughout
the life of the project. When project cost management is calculated, it includes
the processes that are required to ensure the project is finished within the ap-
proved budget. The main processes include [15] [16]:
• Estimating the costs (including top-down and bottom-up estimates, parame-

tric modelling, etc.);
• Determining the budget (the cost baseline);
• Controlling the costs (Earned Value Management (EVM)).

Many approaches have been designed to address this software cost estimation
process, which have been proposed by both scientists and researchers trying to
create an accurate cost estimation technique that is accurate. The research work
gives an extensive overview. It will address a total of five fundamental software
cost estimation approaches, and a comparison will be made between the ap-
proaches based on evaluation criteria. This will then be thoroughly examined
and used throughout the research work.

It is essential to point out that the novelties of this work include: studying
important software cost estimation methods, setting out basic criteria (i.e., ease
of use, adaptability, accuracy, consistency, interpretable, automatable, tool sup-
ported, empirical validations, sensitivity, and handling imprecision and uncer-
tainty), comparing selected cost estimation methods based on these evaluation
criteria and giving a score for each evaluation criteria in order to compare the
different methods numerically for cost estimation. Moreover, this work provides
the implementation for one of the well known software cost estimation models

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 826 Journal of Software Engineering and Applications

that indicate both the time and the effort required to complete a software project
of a specific size.

The paper will be structured as follows. Section 2 provides a list and summary
of some of the existing approaches to software cost estimation. Section 3 lists the
evaluation characteristics and Section 4 provides both discussions and compari-
son between the different approaches. Finally, Section 5 gives the conclusion and
also future directions.

2. Software Cost Estimation Approaches

We will list and summarize some of the existing approaches to software cost es-
timation throughout this section. For each approach, we will also describe the
mechanisms and features. We can divide Cost Estimation Techniques into two
main broad categories. These are those that utilize the source lines of codes
(SLOC) as their input and others that do not.

2.1. Approach 1: Constructive Cost Model (COCOMO)

It is considered that COCOMO is a very important model that can calculate a
software cost estimate.This uses an algorithmic formula in order to estimate the
software’s cost [17]. Therefore, this model is based on both mathematics and a
number of experimental equations. Barry Bohem proposed it in 1981 for soft-
ware cost estimation. It is considered to be the most complete approach and is
better documented than the other cost estimation model, as is indicated in the
references [18] [19] [20] [21]. In addition, many of researchers in the software
engineering field are now trying to increase the efficiency by keeping the
COCOMO model’s base. Furthermore, due to this model’s simplicity, it is
usually used for algorithmic cost estimation technique. COCOMO is made up of
three models, which are Basic, Intermediate and Detailed.

The first model, which is the Basic one, is used as a function of the program
size in the computing software effort and cost. It is primarily used for small to
medium-sized software projects in order to perform a speedy, rough estimation.
Basic COCOMO is, therefore, considered to be effective in circumstances where
only a rough effort estimate is required. The equation for estimating the software
effort for this basic model is:

()bEffort a * SIZE= (1)

The SIZE is measured in this equation in a thousand delivered source instruc-
tions (KLOC, this is a thousand lines of code). Both of the coefficients, “a” and
“b”, are productivity coefficient, as well as the scale factor coefficient, respec-
tively. It is vital to point out here that the value of the coefficients all depends on
the modes of the project. Three different modes of the project proposed by
Boehm are the Organic mode, the Semi-detached mode and the embedded
mode. The first is organically utilized for small-sized projects of up to 2 - 50
KLOC. The second is a semi-detached mode which is for medium-sized projects
of up to 50 - 300 KLOC. Thirdly, the embedded mode is for complex, large

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 827 Journal of Software Engineering and Applications

projects that are typically over 300 KLOC.
The intermediate model is utilized to compute the effort as a function of the

program’s size and the set of cost drivers. This model differs slightly from the
Basic one as the Basic COCOMO fails to take into account the software’s devel-
opment environment, which the intermediate model does. The Intermediate
COCOMO has 15 cost drivers that add a level of accuracy to the Basic
COCOMO. There are four classes of these cost drivers, which are Computer
attributes, Product attributes, Project attributes and Personnel attributes.

The equation that is used for estimating the software Effort for the interme-
diate model is [17]:

() ()bEffort = a SIZE m X× (2)

In the equation, m(X) presents the effort adjustment factor and this is the
product of a total of 15 Effort Multipliers. The third one (the detailed model) has
two more capabilities. These are phase-sensitive effort multipliers and 3 level
product hierarchies. The 3 levels are the Module, Subsystem and system and
these are used to derive an accurate estimate.

2.2. Approach 2: Feed-Forward Neural Network with Principal
Component Analysis (PCA)

The authors in [22] propose the reduction technique, which is called the
feed-forward neural network with Principal Component Analysis (PCA). The
authors’ main objective is to use this in order to measure the accuracy of the
software cost estimation model. The proposed technique is based on both algo-
rithmic and non-algorithmic methods. So, they used a combination of algorith-
mic method (COCOMO) and non-algorithmic (Artificial Neural networks) to
estimate the software project’s costs.

In this paragraph, the authors will briefly address the Architecture Design of
their System for Software Cost Estimation they have proposed. Its main para-
meters, which will be used as inputs for the proposed methods, are the size, cost
factors and the scale factors. These parameters are all from the Actual Dataset
that has been collected, as per the Project Specification. The second step is to ap-
ply the PCA. This is done by calculating the correlation coefficient matrix, as
well as the Eigen-value of correlation coefficient matrix. The amount of principal
components can be determined after that. These components are fed as input
into the neural network system in order to train the dataset. The output layer
then sends the size, effort multiplier and the scale factor values to COCOMOII.
From these inputs, which are sent from the neural network system COCOMOII,
the software cost can be estimated. This result was based on the COCOMO sam-
ple dataset, which is widely used by researchers. It consists of over 161 historical
projects collected from various countries all over the world. The results show
that the Hybrid technique provides a more accurate cost estimation than those
provided by the same type of algorithm when the PCA and neural network are
not applied.

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 828 Journal of Software Engineering and Applications

2.3. Approach 3: Putnam Model/SLIM

The Putnam/SLIM estimating method was developed in the late 1970s by Larry
Putnam of Quantitative Software Management, as is highlighted in the refer-
ences [23] [24] [25] [26] [27]. SLIM (Software Lifecycle Management) is the
name Putnam gave to the proprietary suite of tools that his company QSM, Inc.
had developed which were based on his model. This is an empirical software ef-
fort estimation model and it is also one of the very first algorithmic cost models.
It describes both the time and the effort that is required to finish the software
project of a specified size. Based on the Norden/Rayleigh function, it is generally
known as the macro estimation model (as it is primarily used for large projects).
The Putnam model’s software equation is given as [23] [24] [25]:

1
1 43
3 3B *Size Effort *Time

Productivity
= (3)

The software equation in practical use is solved for effort when making an es-
timate for a software task [23] [24] [25]:

()

3

4
3

SizeEffort *B
Productivity*Time

 
 
 

 
 =  
  

 (4)

The estimated size of the software when the project is completed and the
productivity of the organisational process is used. The Time-Effort Curve is cal-
culated by plotting the effort as a function of time and the estimated total effort
that it takes to complete the project is represented by the points along the curve
[27].

This method of estimating is quite sensitive to uncertainty in the size and
productivity process. Putnam advocates getting this process productivity
through calibration [23] [24] [25]:

41 3
3

SizeProcess Productivity
Effort *Time

B

 
 
 

 
 
 =        

 (5)

SLIM’s Advantages
• It utilizes linear programming in order to consider the development con-

straints of both the cost and effort required.
• One of the Putnam model’s distinguishing features is that the total effort de-

creases as the time taken to finish the project extends. This is usually represented
by a schedule relaxation parameter in other parametric models.

• SLIM needs fewer parameters in order to generate an estimate over both
COCOMO’81 and COCOMO’II.

SLIM’s Drawbacks
• This model is based on either knowing or being able to accurately estimate

the size of the software (in the lines of code) to be developed. There is fre-

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 829 Journal of Software Engineering and Applications

quently a lot of uncertainty about the size of the software, which can result in
the cost estimation being inaccurate. SLIM’s error percentage is 772.87%
[24], according to Kemerer’s research,

• This model is extremely sensitive to development time, as decreasing this can
greatly increase the number of people and months that are required for de-
velopment.

• It is not suitable for small projects.

2.4. Approach 4: Function Point Analysis

Define abbreviations and acronyms the first time they are used in the text, even
after they have been defined in the abstract. Abbreviations such as IEEE, SI,
MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations
in the title or heads unless they are unavoidable.

Algorithmic models, such as COCOMO, Putnam, etc., need the number of
SLOC (source line of codes) to be estimated so as to get both the man-months
and the duration estimates. Function Point Analysis is another method that can
be used to quantify both a software system’s size and complexity, in terms of
which functions it is able to deliver to the user. Allan Albrecht at IBM developed
the Function Points Measurement method, which was first published in 1976
[28] [29]. Two steps are involved in counting the Function Points [24], which
are:
• Counting the various user functions
• Making adjustments for processing the complexity

Currently, the five user function categories are: external output types, external
input types, external interface file types, logical internal file types and external
inquiry types. It was recognized by Albrecht that the effort that is needed to pro-
vide a given level of functionality could vary, and this depended on environ-
mental factors. For example, it is harder to input transactions to a program if
much emphasis has been placed on either the system throughput or on end-user
convenience. Therefore, Albrecht listed 14 processing complexity characteristics
in response to this. These are to be rated on a scale that goes from 0 (which sig-
nifies no influence) up to 5 (meaning a strong influence). All the processing
complexity points that have assigned are then summed up in the next step. This
number is multiplied by 0.01. It is then added to 0.65 in order to obtain the fol-
lowing weighting:

14

1
0.65 0.01*

i
PCA ci

=

 
= +  

 
∑ (6)

where PCA = processing complexity adjustment and then ci = complexity fac-
tors.

As a result, the various Function Points can vary ± 35 percent from the origi-
nal Function Counts. Once they have been computed, these Function Points can
be used in order to compare the size of the project that is proposed, compared
with previous projects.

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 830 Journal of Software Engineering and Applications

There are a number of advantages of a function point analysis based model,
and these are [30] [31] [32]:
• The function points can be estimated from either the requirements specifica-

tions or the design specifications, which makes it possible to estimate the de-
velopment costs in the development’s early phases.

• These function points are independent of the language, tools or methodolo-
gies that have been used for implementation.

• Non-technical users are able to obtain a better understanding of what the
function points are measuring, as the function points have been based on the
system user’s own external view of the system.

2.5. Approach 5: Wavelet Neural Network (WNN)

The authors employed Wavelet Neural Network (WNN) in [33] to make an es-
timation of the software development effort. Experiments were made on two
variants of WNN, the Morlet wavelet function [34], the Gaussian function, and a
threshold acceptance training algorithm for wavelet neural network (TAWNN)
that had been proposed. The results of these were compared with other compu-
tational intelligent methods, such as the Multilayer Perceptron (MLP) [35], the
Radial Basis Function Network (RBFN) [36], the Multiple Linear Regression
(MLR) [37], the Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS)
[38] and the Support Vector Machine (SVM) [39]. All of these comparisons
were computed in terms of the Mean Magnitude Relative Error “MMRE” ap-
plied on both the Canadian Financial “CF” dataset and the IBM Data Processing
Services “IBMDPS” dataset.

The WNN that was used in this study is made up of a total of three intercon-
nected layers. These are the input layer, the hidden layer and an output layer that
has a single unit, as shown in Figure 1. There are also two variants of WNN,
which are the Morlet function and also the Gaussian function. These were both
applied as an activation function. It is crucial to point out that the authors are
influenced by the Threshold Acceptance (TA) concept where a new solution’s

Figure 1. Wavelet Neural Network WNN.

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 831 Journal of Software Engineering and Applications

acceptance is determined by deterministic criteria, instead of a probabilistic ap-
proach.

The idea is as follows: that the forward part of the back propagation remains
undisturbed, while the back propagating of TA updates is done by making all of
the weights a vector of decision variables. This TA concept was adopted by the
authors in order to train the WNN, which is why it is called the Threshold Ac-
ceptance Wavelet Neural Network, or the TAWNN learning algorithm. This
training algorithm’s objective function is given as:

()2

1

np

K
MSE Vk Va

=

= −∑ (7)

The study’s results demonstrate that the 4-models of WNN that are used in
these experiments successfully produce better results compared to the other
techniques. The mean magnitude of the relative error (MMRE) of both WNN-
Morlet and WNN-Gaussian are successful, compared to both TAWNN-Morlet
and TAWNN-Gaussian for the IBMDS and CF datasets.

3. Evaluation Characteristics

After describing the previous section’s software cost estimation approaches, we
will list our evaluation characteristics that we are going to use to compare them
(see Table 1).

3.1. Ease of Use

This implies how simple it is to use and how easy it is to utilise a certain tech-
nique or approach. One fact that needs to be understood here is that the effort

Table 1. Evaluation criteria.

Characteristic Brief Description

Ease of Use
The approach used should be simple enough to be implemented in a
reasonable time frame.

Adaptability
A method or a model should be adaptive to the changes otherwise the
model will have limited usability.

Accuracy Better accuracy implies better reliability.

Consistency
Consistency in results should be an important feature for any estima-
tion model.

Interpretable The results of the modeling technique have to be interpretable.

Automatable It is desired to have a technique that could be substantially automated.

Tool supported
“Supportability”

It is better if the proposed approach has been supported by an existing
tool.

Empirical Validations The empirical validation of a model adds to its credibility.

Sensitivity In effort/time Estimation, it is desirable to have low sensitivity.

Handling Imprecision
and Uncertainty

A model which considers imprecision is better than a model which
doesn’t.

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 832 Journal of Software Engineering and Applications

needed to estimate the cost of software development should be minimal. The
approach used should preferably be simple enough to be done in a reasonable
amount of time. If a software estimation approach uses a complex formula and
algorithm, then the software cost estimation approach is said to have higher
complexity and so might be undesirable.

3.2. Adaptability

The model’s or method’s ability to adjust to the new environment and fit the
development practices’ incremental style is called the adaptability of the model
[38]. It is important that a method or model can be adaptive to change. If it is not,
its usability will be limited. An approach might be valid for a certain kind of pro-
ject (like a small one) but not be applicable to other kinds, such as large projects.

3.3. Accuracy

The definition of accuracy is how close a result is to the correct value [41]. The
two ways to compare the result to its correct value are the difference and the ra-
tio. In evaluating how accurate the software cost estimation models are, both the
difference and ratio measures were used [42]. Improved accuracy implies more
reliability. Comparing the estimation accuracy of the various approaches is dif-
ficult for various reasons, like different datasets, divergent definitions of similar
terms and differing goals of estimation accuracy [43].

3.4. Consistency

Models that have been developed in different environments require calibration
to work well. To consistently overestimate or under estimate a model is not as
difficult to calibrate as an inconsistent one. As well as accuracy, consistency is an
important feature for estimation models [42]. To measure the consistency level,
there are some researchers who have used the correlation coefficient, SDR, be-
tween the observed and estimated values [44].

3.5. Interpretable

The modelling technique results all have to be interpretable. For example, if a
modelling technique which produces hard-to-interpret results is identified as
being the best one, it would not be a useful recommendation. This is because
project managers would, in practice, be unlikely to apply a model that could not
be understood. This excludes techniques like Artificial Neural Networks [40].

3.6. Automatable

As many techniques need intensive computation for accuracy, a technique that
could be substantially automated [40] is desired.

3.7. Tools Supported or “Supportability”

Software cost estimation tools are able to improve accuracy by carrying out an

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 833 Journal of Software Engineering and Applications

automated calculation for the project. Tool-supported characteristics are able to
point out if the proposed approach has a tool that supports it or not. If it is sup-
ported, then the major characteristic of this tool will be highlighted, such as its
usability or efficiency [40] [42] [43].

3.8. Empirical Validations

A model’s evaluation and validation or a general approach is vital. If the model
can be validated, the criterion for validation and the dataset that it is validated
on are considered. The industry’s datasets are considered to be more reliable
than the student datasets or those from open sources [43]. The model’s empirical
validation also adds to its credibility.

3.9. Sensitivity

An input’s receptiveness or responsiveness to an input stimulus is called sensi-
tivity, and in software development, we call a sensitive model one where there is
a change in an estimated effort with respect to a small change in the input val-
ues. It is desirable to have a low sensitivity in effort/time estimation.

3.10. Handling Both Imprecision and Uncertainty

It is common for all software development practices to take into account both
the imprecisions and uncertainty that is associated with the processes. There is
reasonable imprecision when estimating the software’s size and much uncer-
tainty in predicting the various factors that are associated with developing the
software [43]. A model that considers the factors is better than a model that does
not.

4. Comparing the Approaches
4.1. Ease of Use

Ease of Use is an important criterion for evaluating the various approaches. This
determines the degree of simplicity of a given approach, as it will try and answer
how easy it is to utilise this approach. It is easy to use the COCOMO Model on
small projects. However, it can be difficult to utilise it in large projects due to
how complex these projects are and how many unknown variables there are that
exist in these situation. Thus, this approach’s score in this characteristic is 12 out
of 15. For the hybrid approach (both algorithmic and non-algorithmic methods)
proposed by the authors of [22], it not easy to use such an approach. This is be-
cause it is a hybrid approach which uses both an algorithmic method
(COCOMO) and anon-algorithmic (Artificial Neural networks) in order to es-
timate the software project’s cost. The score will be 8 out of a total of 15; as such
an approach clearly requires a further step after using the COCOMO Model
(which is the Artificial Neural networks algorithm). One of the earliest types of
models developed is the Putnam model. It is amongst the ones most widely used
and so is closely related to models like COCOMO. One of the model’s key ad-

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 834 Journal of Software Engineering and Applications

vantages is the simplicity it is calibrated with. Most software organisations, re-
gardless of maturity level, can easily collect the size, effort and duration (time) of
past projects. It is, therefore, given 12 out of 15. A single unit’s cost (in dollars or
hours) from past projects is calculated by the Function Point. This method en-
ables abstraction from a specific language, methodology or technology to take
place and it is easier to understand and also to interpret for non-technical and
external stakeholders, as well as users. The score for function point analysis is,
therefore, 12 out of 15. Wavelet Neural network (WNN) has 5 out of 15 as it is
very hard to use and contains many parameters that require a specialist person
in order to calculate them. This score is clearly a result of the model’s complex-
ity. Its two main functions are the Morlet wavelet function and the Gaussian
function that are used to perform this calculation. These functions require more
sophisticated people to deal with them.

4.2. Adaptability

Adaptability is another important characteristic. This gives a degree of adapta-
bility if the given approach can be adjusted, according to new changes and envi-
ronments. The COCOMO Model is adaptive to the changes, particularly for little
projects. In addition, we can just re-compute the values in the case of changes as
a result of its mathematical model. It is also important to take the project’s size
into account as this can affect the COCOMO Model’s adaptability. It, therefore,
has a score of 8 out 10. Similarly, for [22], the model is given 8 out of 10 as it
uses the COCOMO Model and takes into consideration the fact that Artificial
Neural networks are fully adaptable. Software engineers look for a metric that
should both be technology independent and support the need for estimating the
project management, which measures the quality and gathering requirements.
The measure that accomplishes all of these tasks is Function Point Analysis, and
so was given 8 out of 10. The requirement specification was not included in the
Putnam model. It is not expected that an estimation which uses SLIM will take
place until the design and coding has occurred. This is why it gets a score of 6
out of 10. The WNN was given 8 out of 10 as it is similar in behaviour and per-
formance to the Artificial Neural Networks, but the adaptation process has some
complexity because of the complexity of the neuron’s internal function.

4.3. Accuracy

As long as we are feeding this model with almost correct values in terms of its
accuracy, the COCOMO Model is very accurate, as this is a mathematical model.
But this model will produce the wrong result if we feed it with the wrong values
for the variables. In the first case in our study, when we feed the COCOMO
Model with almost the correct value for variables, the accuracy characteristic for
the model is 12 out of 15. For [22], when the proposed approach uses the
COCOMO Model, it proves to be accurate to a certain extent because the Artifi-
cial Neural networks are used. This might generate a wrong estimation if it is not

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 835 Journal of Software Engineering and Applications

done very well. We cannot guarantee 100% accuracy for ANN in many cases as
it depends on the way that the construction phase, training phase, input value
and numerous learning parameters are done. This approach, therefore, has a to-
tal of 8 out 15. The weakness of the Putnam is the same as the original
COCOMO, in that SLOC has to be extrapolated in order for the software to be
successfully implemented. This is a difficult thing to do, particularly at the start
of the project. As a big section of the executable code is either reused or gener-
ated through standalone components or by middle ware in almost every modern
system, it may be hard to get an acceptably accurate result using the method.
Therefore, its score is 10 out of 15. Function Point Analysis contains some
mathematical equations, as was previously mentioned in the literature review,
and function points counts could either increase or decrease by 35%, so it might
not be 100% accurate. Hence, the score is 12 out of 15. WNN is not 100% accu-
rate as it depends on the kind of datasets used. Therefore, this model is given the
same score as ANN as it depends on the method of the construction phase,
training phase, input value, and a lot of learning parameters.

4.4. Consistency

An important feature for any estimation model should be the consistency of its
result. We will focus during our evaluation on whether we are able to determine
the consistency level or not. The COCOMO Model, Rina et al. [22] and WNN
approaches have a 10 out of 10 score, as we can determine the consistency level
by utilising the correlation coefficient between the observed and estimated val-
ues. The Putnam Model has two kinds of equations and it follows a typical
Rayleigh curve. The results are expected to be consistent and, therefore, it is
given a score of 10. The results of the function point analysis will be consistent if
it is based on an assumption that every one of the inputs is correct, but if differ-
ent steps are used, the output could differ sometimes. Thus, it is given a score of
8 out of 10.

4.5. Interpretable

We will assign a score for this based on the results of the approach, which can be
easily interpreted. The COCOMO Model gets 10 out of 10 as it produces num-
bers that everyone can both understand and interpret. It is, therefore, a useful
approach. It is recommended that project managers apply such a model as it
means they will be able to understand the outputs. For [22] and WNN, however,
a score of 5/10 is given as these approaches, using ANN and WNN, can produce
understandable outputs. Even the ANN model has some parameters which need
a sophisticated person to explain. These results can be easily interpreted by using
the different tools for the Putnam/SLIM model and, therefore, gets a score of 10.
The Function Point Analysis results are not as easy to interpret because here are
various inputs and outputs to the system and so one user may interpret them
differently from another, thus it is given a score of 6.

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 836 Journal of Software Engineering and Applications

4.6. Automatable and Tool Supportability

When it comes to Automatable and “Supportability”, we did not find any tool
from the survey that is automated fully for the COCOMO Model. Therefore, we
did not discover a tool that could produce the results from A-Z directly and
automatically. We can utilise a tool at a specific stage to calculate a particular
value or parameter.

4.7. Empirical Validations

Validation is another important characteristic of an approach or model.
COCOMO is a validated model as this is a mathematical model, so it is therefore
valid. It can be run on some datasets or an empirical study in order to validate it.
It, therefore, has a score of 10/10 score for this characteristic. The approach for
[22] is 5/10. This is because the approach uses ANN, which can perform better
in some datasets, but poorly on another dataset. Therefore, we cannot validate it
entirely, 100%. Similarly, this case will happen in WNN as they have an NN
construction that is almost the same. The Putnam Model is based on mathe-
matical equations as well. It follows the Rayleigh curve and can be easily vali-
dated, so it gets a score of 10. The Function Points rely on gathering a number of
inputs and the function count may either increase or decrease by 35%, so it,
therefore, gets a score of 8 out of 10.

4.8. Sensitivity

Sensitivity is also an extremely important characteristic. A model is sensitive
when there is a big change in the estimated effort in the input values. The
COCOMO Model is called a sensitive model as it is a mathematical one and if
we alter a power/exponent in the function, the difference that exists between the
old and new value will be a significant one. For example, the 1001 and 1002 result
for the first one is 100 and for the second, the result is 10,000. This shows a very
big difference for a very small change, which was from power 1 to power 2. It too
is, therefore, a sensitive model. Similarly, the Rina et al. [22] approach has a
score of 10/10 because it uses the COCOMO Model. As WNN does not utilise
the COCOMO Model, it has a low sensitivity. Its score is therefore 5/10. The
Putnam/SLIM Model’s software equation includes a fourth power and so it has
strong implications for the resource allocation of big projects. Some relatively
small extensions in the delivery rate can result in a substantial reduction in the
efforts. Therefore, the sensitivity is 10/10. The overall aim of the Function Point’s
sizing process was to determine an adjusted function point (AFP) count which
represents the software system’s functional size. Several steps are required to
achieve this goal and they mainly involve a summary, as well as the terms’ product.
Therefore, the sensitivity for the Function Point gets a score of 8 out of 10.

4.9. Handling Imprecision and Uncertainty

This is a vital characteristic when the different software’s cost estimation is

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 837 Journal of Software Engineering and Applications

compared. We will determine in our evaluation if a given model takes into con-
sideration imprecision during the development of a software project. We can say
that the COCOMO Model is a static model and has several variables that must
be known before an estimation of the overall cost can be calculated. It also takes
the software’s size into consideration. However, the project might not correctly
handle the issues of uncertainty if the model is large and complex because there
will be unknown variables. Our score for both the COCOMO Model and Rina et
al. [22] therefore approaches 2/5. The approach of Rina et al. [22] gets 2/5 as it
uses the COCOMO Model. There was uncertainty in the Putnam/SLIM model’s
earlier versions as this was generated for the minimal time solution. Providing
risk tables removed some of this and so it is given a score of 3/5. The uncertainty
can be reduced if the various inputs to the function points are done with preci-
sion, but as this uncertainty exists, it gets a score of 3 out of 5. The score for
WNN is 2/5 because it is a static model that primarily depends on the dataset
types. It, therefore, cannot handle the issue of uncertainty issue during the dif-
ferent processes of software development. Shown in Table 2 is a summary com-
parison of the five fundamental software cost estimation approaches based on
our defined evaluation criteria.

5. Conclusions

Software cost estimation can be seen as essential activity that needs the utiliza-
tion of both right methods and techniques in order to accomplish a good esti-
mation of the results. This is why we studied several cost estimation approaches
in this work and then evaluated and compared five of them. These five approaches

Table 2. Comparison between selected cost estimation approaches.

Evaluation criteria

The five software cost estimation approaches

CoCoMo
Model

Hybrid
approach

Putnam
model

Function Point
Analysis

Wavelet Neural
network
(WNN)

Ease of Use 12 8 12 12 5

Adaptability 8 8 6 8 8

Accuracy 12 8 10 12 8

Consistency 10 10 10 8 10

Interpretable 10 5 10 6 5

Automatable 5 5 5 5 5

Tool supported Supportability 2 3 5 2 2

Empirical Validations 10 5 10 8 5

Sensitivity 10 10 10 8 5

Handling Imprecision and
Uncertainty

2 2 3 3 2

Total 81 74 79 72 55

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 838 Journal of Software Engineering and Applications

are Constructive Cost Model (CoCoMo), Feed-forward neural network with
Principal Component Analysis (PCA), Putnam model/SLIM, Function Point
Analysis and Wavelet Neural Network (WNN).

It is important to note here that we introduced different evaluation character-
istics (i.e., ease of use, adaptability, accuracy, consistency, interpretable, auto-
matable, tool supported, empirical validations, sensitivity, and handling impre-
cision and uncertainty) in order to compare between these five software cost es-
timation approaches.

Our observations indicated that it is best to use a number of different esti-
mating techniques or cost models for the project manager, and then compare the
results, before determining the reasons for large variations and documenting any
assumptions that were made while making the estimates.

References
[1] Boehm, B., Abts, C. and Chulani, S. (2000) Software Development Cost Estimation

Approaches—A Survey. Annals of Software Engineering, 10, 177-205.
https://doi.org/10.1023/A:1018991717352

[2] Ramesh, M.R. and Reddy, C.S. (2016) Difficulties in Software Cost Estimation: A
Survey. International Journal of Scientific Engineering and Technology, 5, 10-13.

[3] Ramacharan, S. and Rao, K.V.G. (2016) Scheduling Based Cost Estimation Model:
An Effective Empirical Approach for GSD Project. IEEE 13th International Confe-
rence on Wireless and Optical Communications Networks (WOCN), Chicago,
21-23 July 2016, 1-5. https://doi.org/10.1109/WOCN.2016.7759881

[4] Marinho, M., Sampaio, S., Lima, T. and Moura, H. (2014) A Systematic Review of
Uncertainties in Software Project Management. arXiv Preprint arXiv:1412.3690.

[5] Al-Qudah, S., Meridji, K. and Al-Sarayreh, K.T. (2015) A Comprehensive Survey of
Software Development Cost Estimation Studies. Proceedings of the International
Conference on Intelligent Information Processing, Security and Advanced Com-
munication, ACM, 53. https://doi.org/10.1145/2816839.2816913

[6] Galorath, D.D. and Evans, M.W. (2006) Software Sizing, Estimation, and Risk
Management: When Performance Is Measured Performance Improves. CRC Press.
https://doi.org/10.1201/9781420013122

[7] Wu, L. (1997) The Comparison of the Software Cost Estimating Methods. Univer-
sity of Calgary, Calgary, 2-12.

[8] Thamarai, I. and Murugavalli, S. (2017) Competitive Advantage of Using Differen-
tial Evolution Algorithm for Software Effort Estimation. Communication and Pow-
er Engineering, 62.

[9] Kaushik, A., Chauhan, A., Mittal, D. and Gupta, S. (2012) COCOMO Estimates
Using Neural Networks. International Journal of Intelligent Systems and Applica-
tions, 4, 22. https://doi.org/10.5815/ijisa.2012.09.03

[10] Sommerville, I. (2006) Software Engineering. 8th Edition.

[11] Venkataraman, R.R. and Pinto, J.K. (2011) Cost and Value Management in Projects.
John Wiley & Sons.

[12] Benediktsson, O. and Dalcher, D. (2005) Estimating Size in Incremental Software
Development Projects. IEE Proceedings-Software, 152, 253-259.
https://doi.org/10.1049/ip-sen:20050019

https://doi.org/10.4236/jsea.2017.1010046
https://doi.org/10.1023/A:1018991717352
https://doi.org/10.1109/WOCN.2016.7759881
https://doi.org/10.1145/2816839.2816913
https://doi.org/10.1201/9781420013122
https://doi.org/10.5815/ijisa.2012.09.03
https://doi.org/10.1049/ip-sen:20050019

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 839 Journal of Software Engineering and Applications

[13] Boehm, B.W. (2017) Software Cost Estimation Meets Software Diversity. Proceed-
ings of the 39th International Conference on Software Engineering Companion,
495-496. https://doi.org/10.1109/ICSE-C.2017.159

[14] Aljahdali, S. and Sheta, A.F. (2010) Software Effort Estimation by Tuning
COOCMO Model Parameters using Differential Evolution. IEEE/ACS International
Conference on Computer Systems and Applications, 1-6.
https://doi.org/10.1109/AICCSA.2010.5586985

[15] Guide, P.M.B.O.K. (2004) A Guide to the Project Management Body of Knowledge.
Project Management Institute, Vol. 3.

[16] William Dow, P.M.P. and Taylor, B. (2010) Project Management Communications
Bible. Vol. 574, John Wiley & Sons.

[17] Boehm, B. (1981) Software Engineering Economics. Prentice Hall.

[18] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R. and Selby, R. (1995)
Cost Models for Future Software Life Cycle Processes: COCOMO 2.0. Annals of
Software Engineering, 1, 57-94. https://doi.org/10.1007/BF02249046

[19] Musilek, P., Pedrycz, W., Sun, N. and Succi, G. (2002) On the Sensitivity of
COCOMO II Software Cost Estimation Model. Proceedings 8th IEEE Symposium
on Software Metrics, 13-20. https://doi.org/10.1109/METRIC.2002.1011321

[20] Chen, Z., Menzies, T., Port, D. and Boehm, B. (2005) Feature Subset Selection Can
Improve Software Cost Estimation Accuracy. ACM SIGSOFT Software Engineering
Notes, 30, 1-6. https://doi.org/10.1145/1083165.1083171

[21] Rastogi, H., Dhankhar, S. and Kakkar, M. (2014) A Survey on Software Effort Esti-
mation Techniques. 5th International Conference on Confluence the Next Genera-
tion Information Technology Summit, 826-830.
https://doi.org/10.1109/CONFLUENCE.2014.6949367

[22] Waghmode, R.M., Patil, L.V. and Joshi, S.D. (2013) A Collective Study of PCA and
Neural Network based on COCOMO for Software Cost Estimation. International
Journal of Computer Applications, 74.

[23] Putnam, L.H. (1978) A General Empirical Solution to the Macro Software Sizing
and Estimating Problem. IEEE Transactions on Software Engineering, 4, 345-361.
https://doi.org/10.1109/TSE.1978.231521

[24] Kemerer, C.F. (1987) An Empirical Validation of Software Cost Estimation Models.
Communications of the ACM, 30, 416-429. https://doi.org/10.1145/22899.22906

[25] Leung, H. and Fan, Z. (2002) Software Cost Estimation. Handbook of Software En-
gineering, Hong Kong Polytechnic University, 1-14.
https://doi.org/10.1142/9789812389701_0014

[26] Jeffery, D.R. and Basili, V.R. (1988) Validating the Tame Resource Data Model.
Proceedings of the 10th International Conference on Software Engineering,
187-201. https://doi.org/10.1109/ICSE.1988.93700

[27] http://en.wikipedia.org/wiki/Putnam_model

[28] Albrecht, A.J. (1979) Measuring Application Development Productivity. Proceed-
ings of the Joint SHARE/GUIDE/IBM Application Development Symposium,
83-92.

[29] Albrecht, A.J. (1984) AD/M Productivity Measurement and Estimate Validation.
IBM Corporate Information Systems, IBM Corp., Purchase.

[30] http://www.computing.dcu.ie/~renaat/ca421/LWu1.html

[31] http://en.wikipedia.org/wiki/Function_point

https://doi.org/10.4236/jsea.2017.1010046
https://doi.org/10.1109/ICSE-C.2017.159
https://doi.org/10.1109/AICCSA.2010.5586985
https://doi.org/10.1007/BF02249046
https://doi.org/10.1109/METRIC.2002.1011321
https://doi.org/10.1145/1083165.1083171
https://doi.org/10.1109/CONFLUENCE.2014.6949367
https://doi.org/10.1109/TSE.1978.231521
https://doi.org/10.1145/22899.22906
https://doi.org/10.1142/9789812389701_0014
https://doi.org/10.1109/ICSE.1988.93700
http://en.wikipedia.org/wiki/Putnam_model
http://www.computing.dcu.ie/%7Erenaat/ca421/LWu1.html
http://en.wikipedia.org/wiki/Function_point

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 840 Journal of Software Engineering and Applications

[32] Sharma, N., Bajpai, A. and Litoriya, M.R. (2012) A Comparison of Software Cost
Estimation Methods: A Survey. The International Journal of Computer Science and
Applications, 1.

[33] Kumar, K.V., Ravi, V., Carr, M. and Kiran, N.R. (2008) Software Development Cost
Estimation using Wavelet Neural Networks. Journal of Systems and Software, 81,
1853-1867.

[34] Rioul, O. and Vetterli, M. (1991) Wavelets and Signal Processing. IEEE Signal
Processing Magazine, 8, 14-38. https://doi.org/10.1109/79.91217

[35] http://en.wikipedia.org/wiki/Multilayer_perceptron

[36] Moody, J. and Darken, C.J. (1989) Fast Learning in Networks of Locally-Tuned
Processing Units. Neural Computation, 1, 281-294.
https://doi.org/10.1162/neco.1989.1.2.281

[37] http://en.wikipedia.org/wiki/Multiple_linear_regression

[38] Kasabov, N.K. and Song, Q. (2002) DENFIS: Dynamic Evolving Neural-Fuzzy Infe-
rence System and Its Application for Time-Series Prediction. IEEE Transactions on
Fuzzy Systems, 10, 144-154. https://doi.org/10.1109/91.995117

[39] Vapnik, V.N. and Vapnik, V. (1998) Statistical Learning Theory. Vol. 1, Wiley, New
York.

[40] Briand, L.C., El Emam, K., Surmann, D., Wieczorek, I. and Maxwell, K.D. (1999)
An Assessment and Comparison of Common Software Cost Estimation Modeling
Techniques. Proceedings of the 1999 International Conference on Software Engi-
neering, 313-323.

[41] Deeson, E. (1991) Collins Dictionary of Information Technology. HarperCollins.

[42] Lo, B. and Gao, X. (1997) Assessing Software Cost Estimation Models: Criteria for
Accuracy, Consistency and Regression. Australasian Journal of Information Sys-
tems, 5, 30-44. https://doi.org/10.3127/ajis.v5i1.348

[43] Kamal, M.W., Ahmed, M.A. and El-Attar, M. (2011) Use Case-Based Effort Estima-
tion Approaches: A Comparison Criteria. Software Engineering and Computer Sys-
tems, 735-754. https://doi.org/10.1007/978-3-642-22203-0_62

[44] Mukhopadhyay, T., Vicinanza, S.S. and Prietula, M.J. (1992) Examining the Feasi-
bility of a Case-Based Reasoning Model for Software Effort Estimation. MIS Quar-
terly, 16, 155-171. https://doi.org/10.2307/249573

https://doi.org/10.4236/jsea.2017.1010046
https://doi.org/10.1109/79.91217
http://en.wikipedia.org/wiki/Multilayer_perceptron
https://doi.org/10.1162/neco.1989.1.2.281
http://en.wikipedia.org/wiki/Multiple_linear_regression
https://doi.org/10.1109/91.995117
https://doi.org/10.3127/ajis.v5i1.348
https://doi.org/10.1007/978-3-642-22203-0_62
https://doi.org/10.2307/249573

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 841 Journal of Software Engineering and Applications

Appendix: Case Study—Implementation of Putnam Model

As one of the first algorithmic cost models, the Putnam estimating method [24]
[25] [26] [27] is an empirical software cost estimation model that describes both
the time and the effort required to complete a software project of a specific size.
The model was based on the Norden/Rayleigh function and it is generally known
as a macro estimation model, as it is generally used for big projects. The model’s
software equation is given by:

()

3

4
3

SizeEffort *B
Productivity*Time

 
 
 

 
 =  
  

 (8)

By plotting effort as a function of time, the Time-Effort Curve is established.
The various points along this curve represent the estimated total effort that is
made in order to complete the project. A distinguishing feature of the model is
that the total effort decreases as the time that is taken to complete the project
gets extended. Other parametric models usually represent this with a schedule
relaxation parameter.

The model is used as a case study in order to see the effect of a factor on the
Time-Effort curve. The size in the first case was assumed to be 50,000 source
lines of code, while factor B was 0.000005. The curves were plotted by utilising
the productivity values of 15, 13 and 11. As productivity decreases, the time that
is taken to finish the project increases.

In another case, which involved the same source lines of codes, as well as the
same three productivity factors, factor B was increased. This was done in order
to see the effect of it on the curve. The three sets of curves (from left to right) are
for the values of B, as 0.000005, 0.00005, and 0.0005 respectively. As factor B in-
creases, the time taken to finish the project also increases.

As can be seen from the two figures above (Figure 2 and Figure 3), the Put-

Figure 2. Time-Effort curve (Size = 50,000 source lines of codes, B = 0.000005, produc-
tivity = 15, 13, and 11).

https://doi.org/10.4236/jsea.2017.1010046

I. M. Keshta

DOI: 10.4236/jsea.2017.1010046 842 Journal of Software Engineering and Applications

Figure 3. Time-Effort curve (Size = 50,000 source lines of codes, B = 0.000005, 0.00005,
and 0.0005, and productivity = 15, 13, and 11).

nam model is based on the knowledge of—or being able to accurately esti-
mate—the size (in the lines of code) of the software that is to be developed.
There is frequently much uncertainty about the software’s size, which can result
in the cost estimation being inaccurate. In addition, this model is unsuitable for
projects that are very small.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

https://doi.org/10.4236/jsea.2017.1010046
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Software Cost Estimation Approaches: A Survey
	Abstract
	Keywords
	1. Introduction
	2. Software Cost Estimation Approaches
	2.1. Approach 1: Constructive Cost Model (COCOMO)
	2.2. Approach 2: Feed-Forward Neural Network with Principal Component Analysis (PCA)
	2.3. Approach 3: Putnam Model/SLIM
	2.4. Approach 4: Function Point Analysis
	2.5. Approach 5: Wavelet Neural Network (WNN)

	3. Evaluation Characteristics
	3.1. Ease of Use
	3.2. Adaptability
	3.3. Accuracy
	3.4. Consistency
	3.5. Interpretable
	3.6. Automatable
	3.7. Tools Supported or “Supportability”
	3.8. Empirical Validations
	3.9. Sensitivity
	3.10. Handling Both Imprecision and Uncertainty

	4. Comparing the Approaches
	4.1. Ease of Use
	4.2. Adaptability
	4.3. Accuracy
	4.4. Consistency
	4.5. Interpretable
	4.6. Automatable and Tool Supportability
	4.7. Empirical Validations
	4.8. Sensitivity
	4.9. Handling Imprecision and Uncertainty

	5. Conclusions
	References
	Appendix: Case Study—Implementation of Putnam Model

