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Abstract 
The software cost estimation aims to predict the most realistic effort that is 
required to finish a software project and so it is critical to the success of a 
software project management. A Software Cost Estimation affects nearly all 
management activities, including project bidding, resource allocation and 
project planning. It is affected by a number of factors, such as implementation 
efficiency, as well as how much the various reviews and studies completed 
prior to the software development stage cost. Accurate cost estimation will 
help us to complete the project on time and within budget. Accurate estima-
tion is important because it has led to extensive research into the methods of 
software cost estimation. Some important software cost estimation methods 
have been studied in this research work. In addition, we have set out own cri-
teria, which has been used to compare all the different selected methods. We 
have also given a score for each evaluation criteria, so that we can compare the 
different methods numerically for cost estimation. Our observations have 
shown that it is best to use a number of different estimating techniques or cost 
models, and then compare the results before determining the reasons for any 
of the large variations. None of the methods are necessarily better or worse 
than the others. We found, in fact, that their strengths and weaknesses often 
complement each other. Therefore, the main conclusion is that there is no one 
single technique that is best for every situation, and the results of a number of 
different approaches need to be carefully considered to discover what is the 
most likely to produce estimates that are realistic.  
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1. Introduction 

Estimating the costs of software projects is a critical activity that requires the use 
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of both proper methods and techniques in order to achieve a good estimation of 
the results. This is a challenging task that poses many obstacles. The size of the 
software and its accuracy has a great effect on the estimation’s accuracy. Project 
management also plays a vital role in the guidance of these estimation processes. 
Much research has been carried out that reflects the rising demands of 
high-quality software through effective cost estimation [1] [2] [3] [4] [5]. 

Software engineers have to apply the theories, tools and methods in a software 
project in order to solve a problem. However, they must also work within the fi-
nancial constraints that were predefined. A vital issue which is closely related to 
a software project’s financial aspects is the accurate estimation of the software 
cost involved. This helps to manage any software project as it means it will be 
within the set budget [6] [7] [8] [9]. 

Software cost estimation is a very challenging activity in the project manage-
ment of software because predicting the cost is a difficult process at the early 
stage of the software’s development [4] [10]. Moreover, the estimation of the 
software’s cost is impacted by many factors, including the implementation’s effi-
ciency, and the number of reviews and studies done prior to the development 
stage cost. There is clearly a strong relationship that exists between the estima-
tion of software effort and software cost, as it can be said that the effort is the 
primary driving factor for the software’s cost [11] [12] [13] [14]. 

It is important to state that the estimation of the software’s cost is a conti-
nuous activity that begins at the proposal stage and then carries on throughout 
the life of the project. When project cost management is calculated, it includes 
the processes that are required to ensure the project is finished within the ap-
proved budget. The main processes include [15] [16]: 
• Estimating the costs (including top-down and bottom-up estimates, parame-

tric modelling, etc.); 
• Determining the budget (the cost baseline); 
• Controlling the costs (Earned Value Management (EVM)). 

Many approaches have been designed to address this software cost estimation 
process, which have been proposed by both scientists and researchers trying to 
create an accurate cost estimation technique that is accurate. The research work 
gives an extensive overview. It will address a total of five fundamental software 
cost estimation approaches, and a comparison will be made between the ap-
proaches based on evaluation criteria. This will then be thoroughly examined 
and used throughout the research work.  

It is essential to point out that the novelties of this work include: studying 
important software cost estimation methods, setting out basic criteria (i.e., ease 
of use, adaptability, accuracy, consistency, interpretable, automatable, tool sup-
ported, empirical validations, sensitivity, and handling imprecision and uncer-
tainty), comparing selected cost estimation methods based on these evaluation 
criteria and giving a score for each evaluation criteria in order to compare the 
different methods numerically for cost estimation. Moreover, this work provides 
the implementation for one of the well known software cost estimation models 
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that indicate both the time and the effort required to complete a software project 
of a specific size. 

The paper will be structured as follows. Section 2 provides a list and summary 
of some of the existing approaches to software cost estimation. Section 3 lists the 
evaluation characteristics and Section 4 provides both discussions and compari-
son between the different approaches. Finally, Section 5 gives the conclusion and 
also future directions. 

2. Software Cost Estimation Approaches 

We will list and summarize some of the existing approaches to software cost es-
timation throughout this section. For each approach, we will also describe the 
mechanisms and features. We can divide Cost Estimation Techniques into two 
main broad categories. These are those that utilize the source lines of codes 
(SLOC) as their input and others that do not. 

2.1. Approach 1: Constructive Cost Model (COCOMO) 

It is considered that COCOMO is a very important model that can calculate a 
software cost estimate.This uses an algorithmic formula in order to estimate the 
software’s cost [17]. Therefore, this model is based on both mathematics and a 
number of experimental equations. Barry Bohem proposed it in 1981 for soft-
ware cost estimation. It is considered to be the most complete approach and is 
better documented than the other cost estimation model, as is indicated in the 
references [18] [19] [20] [21]. In addition, many of researchers in the software 
engineering field are now trying to increase the efficiency by keeping the 
COCOMO model’s base. Furthermore, due to this model’s simplicity, it is 
usually used for algorithmic cost estimation technique. COCOMO is made up of 
three models, which are Basic, Intermediate and Detailed.  

The first model, which is the Basic one, is used as a function of the program 
size in the computing software effort and cost. It is primarily used for small to 
medium-sized software projects in order to perform a speedy, rough estimation. 
Basic COCOMO is, therefore, considered to be effective in circumstances where 
only a rough effort estimate is required. The equation for estimating the software 
effort for this basic model is: 

( )bEffort a * SIZE=                        (1) 

The SIZE is measured in this equation in a thousand delivered source instruc-
tions (KLOC, this is a thousand lines of code). Both of the coefficients, “a” and 
“b”, are productivity coefficient, as well as the scale factor coefficient, respec-
tively. It is vital to point out here that the value of the coefficients all depends on 
the modes of the project. Three different modes of the project proposed by 
Boehm are the Organic mode, the Semi-detached mode and the embedded 
mode. The first is organically utilized for small-sized projects of up to 2 - 50 
KLOC. The second is a semi-detached mode which is for medium-sized projects 
of up to 50 - 300 KLOC. Thirdly, the embedded mode is for complex, large 
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projects that are typically over 300 KLOC. 
The intermediate model is utilized to compute the effort as a function of the 

program’s size and the set of cost drivers. This model differs slightly from the 
Basic one as the Basic COCOMO fails to take into account the software’s devel-
opment environment, which the intermediate model does. The Intermediate 
COCOMO has 15 cost drivers that add a level of accuracy to the Basic 
COCOMO. There are four classes of these cost drivers, which are Computer 
attributes, Product attributes, Project attributes and Personnel attributes. 

The equation that is used for estimating the software Effort for the interme-
diate model is [17]:  

( ) ( )bEffort = a SIZE m X×                     (2) 

In the equation, m(X) presents the effort adjustment factor and this is the 
product of a total of 15 Effort Multipliers. The third one (the detailed model) has 
two more capabilities. These are phase-sensitive effort multipliers and 3 level 
product hierarchies. The 3 levels are the Module, Subsystem and system and 
these are used to derive an accurate estimate.  

2.2. Approach 2: Feed-Forward Neural Network with Principal 
Component Analysis (PCA) 

The authors in [22] propose the reduction technique, which is called the 
feed-forward neural network with Principal Component Analysis (PCA). The 
authors’ main objective is to use this in order to measure the accuracy of the 
software cost estimation model. The proposed technique is based on both algo-
rithmic and non-algorithmic methods. So, they used a combination of algorith-
mic method (COCOMO) and non-algorithmic (Artificial Neural networks) to 
estimate the software project’s costs.  

In this paragraph, the authors will briefly address the Architecture Design of 
their System for Software Cost Estimation they have proposed. Its main para-
meters, which will be used as inputs for the proposed methods, are the size, cost 
factors and the scale factors. These parameters are all from the Actual Dataset 
that has been collected, as per the Project Specification. The second step is to ap-
ply the PCA. This is done by calculating the correlation coefficient matrix, as 
well as the Eigen-value of correlation coefficient matrix. The amount of principal 
components can be determined after that. These components are fed as input 
into the neural network system in order to train the dataset. The output layer 
then sends the size, effort multiplier and the scale factor values to COCOMOII. 
From these inputs, which are sent from the neural network system COCOMOII, 
the software cost can be estimated. This result was based on the COCOMO sam-
ple dataset, which is widely used by researchers. It consists of over 161 historical 
projects collected from various countries all over the world. The results show 
that the Hybrid technique provides a more accurate cost estimation than those 
provided by the same type of algorithm when the PCA and neural network are 
not applied. 
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2.3. Approach 3: Putnam Model/SLIM 

The Putnam/SLIM estimating method was developed in the late 1970s by Larry 
Putnam of Quantitative Software Management, as is highlighted in the refer-
ences [23] [24] [25] [26] [27]. SLIM (Software Lifecycle Management) is the 
name Putnam gave to the proprietary suite of tools that his company QSM, Inc. 
had developed which were based on his model. This is an empirical software ef-
fort estimation model and it is also one of the very first algorithmic cost models. 
It describes both the time and the effort that is required to finish the software 
project of a specified size. Based on the Norden/Rayleigh function, it is generally 
known as the macro estimation model (as it is primarily used for large projects). 
The Putnam model’s software equation is given as [23] [24] [25]: 

1
1 43
3 3B *Size Effort *Time

Productivity
=                   (3) 

The software equation in practical use is solved for effort when making an es-
timate for a software task [23] [24] [25]: 

( )

3

4
3

SizeEffort *B
Productivity*Time

 
 
 

 
 =  
  

               (4) 

The estimated size of the software when the project is completed and the 
productivity of the organisational process is used. The Time-Effort Curve is cal-
culated by plotting the effort as a function of time and the estimated total effort 
that it takes to complete the project is represented by the points along the curve 
[27]. 

This method of estimating is quite sensitive to uncertainty in the size and 
productivity process. Putnam advocates getting this process productivity 
through calibration [23] [24] [25]: 

41 3
3

SizeProcess Productivity
Effort *Time

B

 
 
 

 
 
 =        

            (5) 

SLIM’s Advantages  
• It utilizes linear programming in order to consider the development con-

straints of both the cost and effort required. 
• One of the Putnam model’s distinguishing features is that the total effort de-

creases as the time taken to finish the project extends. This is usually represented 
by a schedule relaxation parameter in other parametric models.  

• SLIM needs fewer parameters in order to generate an estimate over both 
COCOMO’81 and COCOMO’II.  

SLIM’s Drawbacks  
• This model is based on either knowing or being able to accurately estimate 

the size of the software (in the lines of code) to be developed. There is fre-
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quently a lot of uncertainty about the size of the software, which can result in 
the cost estimation being inaccurate. SLIM’s error percentage is 772.87% 
[24], according to Kemerer’s research, 

• This model is extremely sensitive to development time, as decreasing this can 
greatly increase the number of people and months that are required for de-
velopment. 

• It is not suitable for small projects. 

2.4. Approach 4: Function Point Analysis 

Define abbreviations and acronyms the first time they are used in the text, even 
after they have been defined in the abstract. Abbreviations such as IEEE, SI, 
MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations 
in the title or heads unless they are unavoidable. 

Algorithmic models, such as COCOMO, Putnam, etc., need the number of 
SLOC (source line of codes) to be estimated so as to get both the man-months 
and the duration estimates. Function Point Analysis is another method that can 
be used to quantify both a software system’s size and complexity, in terms of 
which functions it is able to deliver to the user. Allan Albrecht at IBM developed 
the Function Points Measurement method, which was first published in 1976 
[28] [29]. Two steps are involved in counting the Function Points [24], which 
are:  
• Counting the various user functions 
• Making adjustments for processing the complexity 

Currently, the five user function categories are: external output types, external 
input types, external interface file types, logical internal file types and external 
inquiry types. It was recognized by Albrecht that the effort that is needed to pro-
vide a given level of functionality could vary, and this depended on environ-
mental factors. For example, it is harder to input transactions to a program if 
much emphasis has been placed on either the system throughput or on end-user 
convenience. Therefore, Albrecht listed 14 processing complexity characteristics 
in response to this. These are to be rated on a scale that goes from 0 (which sig-
nifies no influence) up to 5 (meaning a strong influence). All the processing 
complexity points that have assigned are then summed up in the next step. This 
number is multiplied by 0.01. It is then added to 0.65 in order to obtain the fol-
lowing weighting: 

14

1
0.65 0.01*

i
PCA ci

=

 
= +  

 
∑                     (6) 

where PCA = processing complexity adjustment and then ci = complexity fac-
tors. 

As a result, the various Function Points can vary ± 35 percent from the origi-
nal Function Counts. Once they have been computed, these Function Points can 
be used in order to compare the size of the project that is proposed, compared 
with previous projects. 
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There are a number of advantages of a function point analysis based model, 
and these are [30] [31] [32]: 
• The function points can be estimated from either the requirements specifica-

tions or the design specifications, which makes it possible to estimate the de-
velopment costs in the development’s early phases. 

• These function points are independent of the language, tools or methodolo-
gies that have been used for implementation. 

• Non-technical users are able to obtain a better understanding of what the 
function points are measuring, as the function points have been based on the 
system user’s own external view of the system. 

2.5. Approach 5: Wavelet Neural Network (WNN) 

The authors employed Wavelet Neural Network (WNN) in [33] to make an es-
timation of the software development effort. Experiments were made on two 
variants of WNN, the Morlet wavelet function [34], the Gaussian function, and a 
threshold acceptance training algorithm for wavelet neural network (TAWNN) 
that had been proposed. The results of these were compared with other compu-
tational intelligent methods, such as the Multilayer Perceptron (MLP) [35], the 
Radial Basis Function Network (RBFN) [36], the Multiple Linear Regression 
(MLR) [37], the Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) 
[38] and the Support Vector Machine (SVM) [39]. All of these comparisons 
were computed in terms of the Mean Magnitude Relative Error “MMRE” ap-
plied on both the Canadian Financial “CF” dataset and the IBM Data Processing 
Services “IBMDPS” dataset. 

The WNN that was used in this study is made up of a total of three intercon-
nected layers. These are the input layer, the hidden layer and an output layer that 
has a single unit, as shown in Figure 1. There are also two variants of WNN, 
which are the Morlet function and also the Gaussian function. These were both 
applied as an activation function. It is crucial to point out that the authors are 
influenced by the Threshold Acceptance (TA) concept where a new solution’s  

 

 
Figure 1. Wavelet Neural Network WNN. 
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acceptance is determined by deterministic criteria, instead of a probabilistic ap-
proach. 

The idea is as follows: that the forward part of the back propagation remains 
undisturbed, while the back propagating of TA updates is done by making all of 
the weights a vector of decision variables. This TA concept was adopted by the 
authors in order to train the WNN, which is why it is called the Threshold Ac-
ceptance Wavelet Neural Network, or the TAWNN learning algorithm. This 
training algorithm’s objective function is given as: 

( )2

1
 

np

K
MSE Vk Va

=

= −∑                      (7) 

The study’s results demonstrate that the 4-models of WNN that are used in 
these experiments successfully produce better results compared to the other 
techniques. The mean magnitude of the relative error (MMRE) of both WNN- 
Morlet and WNN-Gaussian are successful, compared to both TAWNN-Morlet 
and TAWNN-Gaussian for the IBMDS and CF datasets. 

3. Evaluation Characteristics 

After describing the previous section’s software cost estimation approaches, we 
will list our evaluation characteristics that we are going to use to compare them 
(see Table 1). 

3.1. Ease of Use 

This implies how simple it is to use and how easy it is to utilise a certain tech-
nique or approach. One fact that needs to be understood here is that the effort  

 
Table 1. Evaluation criteria. 

Characteristic Brief Description 

Ease of Use 
The approach used should be simple enough to be implemented in a 
reasonable time frame. 

Adaptability 
A method or a model should be adaptive to the changes otherwise the 
model will have limited usability. 

Accuracy Better accuracy implies better reliability. 

Consistency 
Consistency in results should be an important feature for any estima-
tion model. 

Interpretable The results of the modeling technique have to be interpretable. 

Automatable It is desired to have a technique that could be substantially automated. 

Tool supported  
“Supportability” 

It is better if the proposed approach has been supported by an existing 
tool. 

Empirical Validations The empirical validation of a model adds to its credibility. 

Sensitivity In effort/time Estimation, it is desirable to have low sensitivity. 

Handling Imprecision  
and Uncertainty 

A model which considers imprecision is better than a model which 
doesn’t. 
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needed to estimate the cost of software development should be minimal. The 
approach used should preferably be simple enough to be done in a reasonable 
amount of time. If a software estimation approach uses a complex formula and 
algorithm, then the software cost estimation approach is said to have higher 
complexity and so might be undesirable. 

3.2. Adaptability 

The model’s or method’s ability to adjust to the new environment and fit the 
development practices’ incremental style is called the adaptability of the model 
[38]. It is important that a method or model can be adaptive to change. If it is not, 
its usability will be limited. An approach might be valid for a certain kind of pro-
ject (like a small one) but not be applicable to other kinds, such as large projects. 

3.3. Accuracy 

The definition of accuracy is how close a result is to the correct value [41]. The 
two ways to compare the result to its correct value are the difference and the ra-
tio. In evaluating how accurate the software cost estimation models are, both the 
difference and ratio measures were used [42]. Improved accuracy implies more 
reliability. Comparing the estimation accuracy of the various approaches is dif-
ficult for various reasons, like different datasets, divergent definitions of similar 
terms and differing goals of estimation accuracy [43]. 

3.4. Consistency 

Models that have been developed in different environments require calibration 
to work well. To consistently overestimate or under estimate a model is not as 
difficult to calibrate as an inconsistent one. As well as accuracy, consistency is an 
important feature for estimation models [42]. To measure the consistency level, 
there are some researchers who have used the correlation coefficient, SDR, be-
tween the observed and estimated values [44]. 

3.5. Interpretable 

The modelling technique results all have to be interpretable. For example, if a 
modelling technique which produces hard-to-interpret results is identified as 
being the best one, it would not be a useful recommendation. This is because 
project managers would, in practice, be unlikely to apply a model that could not 
be understood. This excludes techniques like Artificial Neural Networks [40]. 

3.6. Automatable 

As many techniques need intensive computation for accuracy, a technique that 
could be substantially automated [40] is desired. 

3.7. Tools Supported or “Supportability” 

Software cost estimation tools are able to improve accuracy by carrying out an 
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automated calculation for the project. Tool-supported characteristics are able to 
point out if the proposed approach has a tool that supports it or not. If it is sup-
ported, then the major characteristic of this tool will be highlighted, such as its 
usability or efficiency [40] [42] [43]. 

3.8. Empirical Validations 

A model’s evaluation and validation or a general approach is vital. If the model 
can be validated, the criterion for validation and the dataset that it is validated 
on are considered. The industry’s datasets are considered to be more reliable 
than the student datasets or those from open sources [43]. The model’s empirical 
validation also adds to its credibility. 

3.9. Sensitivity 

An input’s receptiveness or responsiveness to an input stimulus is called sensi-
tivity, and in software development, we call a sensitive model one where there is 
a change in an estimated effort with respect to a small change in the input val-
ues. It is desirable to have a low sensitivity in effort/time estimation. 

3.10. Handling Both Imprecision and Uncertainty 

It is common for all software development practices to take into account both 
the imprecisions and uncertainty that is associated with the processes. There is 
reasonable imprecision when estimating the software’s size and much uncer-
tainty in predicting the various factors that are associated with developing the 
software [43]. A model that considers the factors is better than a model that does 
not. 

4. Comparing the Approaches 
4.1. Ease of Use 

Ease of Use is an important criterion for evaluating the various approaches. This 
determines the degree of simplicity of a given approach, as it will try and answer 
how easy it is to utilise this approach. It is easy to use the COCOMO Model on 
small projects. However, it can be difficult to utilise it in large projects due to 
how complex these projects are and how many unknown variables there are that 
exist in these situation. Thus, this approach’s score in this characteristic is 12 out 
of 15. For the hybrid approach (both algorithmic and non-algorithmic methods) 
proposed by the authors of [22], it not easy to use such an approach. This is be-
cause it is a hybrid approach which uses both an algorithmic method 
(COCOMO) and anon-algorithmic (Artificial Neural networks) in order to es-
timate the software project’s cost. The score will be 8 out of a total of 15; as such 
an approach clearly requires a further step after using the COCOMO Model 
(which is the Artificial Neural networks algorithm). One of the earliest types of 
models developed is the Putnam model. It is amongst the ones most widely used 
and so is closely related to models like COCOMO. One of the model’s key ad-
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vantages is the simplicity it is calibrated with. Most software organisations, re-
gardless of maturity level, can easily collect the size, effort and duration (time) of 
past projects. It is, therefore, given 12 out of 15. A single unit’s cost (in dollars or 
hours) from past projects is calculated by the Function Point. This method en-
ables abstraction from a specific language, methodology or technology to take 
place and it is easier to understand and also to interpret for non-technical and 
external stakeholders, as well as users. The score for function point analysis is, 
therefore, 12 out of 15. Wavelet Neural network (WNN) has 5 out of 15 as it is 
very hard to use and contains many parameters that require a specialist person 
in order to calculate them. This score is clearly a result of the model’s complex-
ity. Its two main functions are the Morlet wavelet function and the Gaussian 
function that are used to perform this calculation. These functions require more 
sophisticated people to deal with them. 

4.2. Adaptability 

Adaptability is another important characteristic. This gives a degree of adapta-
bility if the given approach can be adjusted, according to new changes and envi-
ronments. The COCOMO Model is adaptive to the changes, particularly for little 
projects. In addition, we can just re-compute the values in the case of changes as 
a result of its mathematical model. It is also important to take the project’s size 
into account as this can affect the COCOMO Model’s adaptability. It, therefore, 
has a score of 8 out 10. Similarly, for [22], the model is given 8 out of 10 as it 
uses the COCOMO Model and takes into consideration the fact that Artificial 
Neural networks are fully adaptable. Software engineers look for a metric that 
should both be technology independent and support the need for estimating the 
project management, which measures the quality and gathering requirements. 
The measure that accomplishes all of these tasks is Function Point Analysis, and 
so was given 8 out of 10. The requirement specification was not included in the 
Putnam model. It is not expected that an estimation which uses SLIM will take 
place until the design and coding has occurred. This is why it gets a score of 6 
out of 10. The WNN was given 8 out of 10 as it is similar in behaviour and per-
formance to the Artificial Neural Networks, but the adaptation process has some 
complexity because of the complexity of the neuron’s internal function. 

4.3. Accuracy 

As long as we are feeding this model with almost correct values in terms of its 
accuracy, the COCOMO Model is very accurate, as this is a mathematical model. 
But this model will produce the wrong result if we feed it with the wrong values 
for the variables. In the first case in our study, when we feed the COCOMO 
Model with almost the correct value for variables, the accuracy characteristic for 
the model is 12 out of 15. For [22], when the proposed approach uses the 
COCOMO Model, it proves to be accurate to a certain extent because the Artifi-
cial Neural networks are used. This might generate a wrong estimation if it is not 
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done very well. We cannot guarantee 100% accuracy for ANN in many cases as 
it depends on the way that the construction phase, training phase, input value 
and numerous learning parameters are done. This approach, therefore, has a to-
tal of 8 out 15. The weakness of the Putnam is the same as the original 
COCOMO, in that SLOC has to be extrapolated in order for the software to be 
successfully implemented. This is a difficult thing to do, particularly at the start 
of the project. As a big section of the executable code is either reused or gener-
ated through standalone components or by middle ware in almost every modern 
system, it may be hard to get an acceptably accurate result using the method. 
Therefore, its score is 10 out of 15. Function Point Analysis contains some 
mathematical equations, as was previously mentioned in the literature review, 
and function points counts could either increase or decrease by 35%, so it might 
not be 100% accurate. Hence, the score is 12 out of 15. WNN is not 100% accu-
rate as it depends on the kind of datasets used. Therefore, this model is given the 
same score as ANN as it depends on the method of the construction phase, 
training phase, input value, and a lot of learning parameters. 

4.4. Consistency 

An important feature for any estimation model should be the consistency of its 
result. We will focus during our evaluation on whether we are able to determine 
the consistency level or not. The COCOMO Model, Rina et al. [22] and WNN 
approaches have a 10 out of 10 score, as we can determine the consistency level 
by utilising the correlation coefficient between the observed and estimated val-
ues. The Putnam Model has two kinds of equations and it follows a typical 
Rayleigh curve. The results are expected to be consistent and, therefore, it is 
given a score of 10. The results of the function point analysis will be consistent if 
it is based on an assumption that every one of the inputs is correct, but if differ-
ent steps are used, the output could differ sometimes. Thus, it is given a score of 
8 out of 10. 

4.5. Interpretable 

We will assign a score for this based on the results of the approach, which can be 
easily interpreted. The COCOMO Model gets 10 out of 10 as it produces num-
bers that everyone can both understand and interpret. It is, therefore, a useful 
approach. It is recommended that project managers apply such a model as it 
means they will be able to understand the outputs. For [22] and WNN, however, 
a score of 5/10 is given as these approaches, using ANN and WNN, can produce 
understandable outputs. Even the ANN model has some parameters which need 
a sophisticated person to explain. These results can be easily interpreted by using 
the different tools for the Putnam/SLIM model and, therefore, gets a score of 10. 
The Function Point Analysis results are not as easy to interpret because here are 
various inputs and outputs to the system and so one user may interpret them 
differently from another, thus it is given a score of 6. 
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4.6. Automatable and Tool Supportability 

When it comes to Automatable and “Supportability”, we did not find any tool 
from the survey that is automated fully for the COCOMO Model. Therefore, we 
did not discover a tool that could produce the results from A-Z directly and 
automatically. We can utilise a tool at a specific stage to calculate a particular 
value or parameter.  

4.7. Empirical Validations 

Validation is another important characteristic of an approach or model. 
COCOMO is a validated model as this is a mathematical model, so it is therefore 
valid. It can be run on some datasets or an empirical study in order to validate it. 
It, therefore, has a score of 10/10 score for this characteristic. The approach for 
[22] is 5/10. This is because the approach uses ANN, which can perform better 
in some datasets, but poorly on another dataset. Therefore, we cannot validate it 
entirely, 100%. Similarly, this case will happen in WNN as they have an NN 
construction that is almost the same. The Putnam Model is based on mathe-
matical equations as well. It follows the Rayleigh curve and can be easily vali-
dated, so it gets a score of 10. The Function Points rely on gathering a number of 
inputs and the function count may either increase or decrease by 35%, so it, 
therefore, gets a score of 8 out of 10. 

4.8. Sensitivity 

Sensitivity is also an extremely important characteristic. A model is sensitive 
when there is a big change in the estimated effort in the input values. The 
COCOMO Model is called a sensitive model as it is a mathematical one and if 
we alter a power/exponent in the function, the difference that exists between the 
old and new value will be a significant one. For example, the 1001 and 1002 result 
for the first one is 100 and for the second, the result is 10,000. This shows a very 
big difference for a very small change, which was from power 1 to power 2. It too 
is, therefore, a sensitive model. Similarly, the Rina et al. [22] approach has a 
score of 10/10 because it uses the COCOMO Model. As WNN does not utilise 
the COCOMO Model, it has a low sensitivity. Its score is therefore 5/10. The 
Putnam/SLIM Model’s software equation includes a fourth power and so it has 
strong implications for the resource allocation of big projects. Some relatively 
small extensions in the delivery rate can result in a substantial reduction in the 
efforts. Therefore, the sensitivity is 10/10. The overall aim of the Function Point’s 
sizing process was to determine an adjusted function point (AFP) count which 
represents the software system’s functional size. Several steps are required to 
achieve this goal and they mainly involve a summary, as well as the terms’ product. 
Therefore, the sensitivity for the Function Point gets a score of 8 out of 10.  

4.9. Handling Imprecision and Uncertainty 

This is a vital characteristic when the different software’s cost estimation is 
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compared. We will determine in our evaluation if a given model takes into con-
sideration imprecision during the development of a software project. We can say 
that the COCOMO Model is a static model and has several variables that must 
be known before an estimation of the overall cost can be calculated. It also takes 
the software’s size into consideration. However, the project might not correctly 
handle the issues of uncertainty if the model is large and complex because there 
will be unknown variables. Our score for both the COCOMO Model and Rina et 
al. [22] therefore approaches 2/5. The approach of Rina et al. [22] gets 2/5 as it 
uses the COCOMO Model. There was uncertainty in the Putnam/SLIM model’s 
earlier versions as this was generated for the minimal time solution. Providing 
risk tables removed some of this and so it is given a score of 3/5. The uncertainty 
can be reduced if the various inputs to the function points are done with preci-
sion, but as this uncertainty exists, it gets a score of 3 out of 5. The score for 
WNN is 2/5 because it is a static model that primarily depends on the dataset 
types. It, therefore, cannot handle the issue of uncertainty issue during the dif-
ferent processes of software development. Shown in Table 2 is a summary com-
parison of the five fundamental software cost estimation approaches based on 
our defined evaluation criteria.  

5. Conclusions 

Software cost estimation can be seen as essential activity that needs the utiliza-
tion of both right methods and techniques in order to accomplish a good esti-
mation of the results. This is why we studied several cost estimation approaches 
in this work and then evaluated and compared five of them. These five approaches  

 
Table 2. Comparison between selected cost estimation approaches. 

Evaluation criteria 

The five software cost estimation approaches 

CoCoMo 
Model 

Hybrid  
approach 

Putnam  
model 

Function Point 
Analysis 

Wavelet Neural 
network 
(WNN) 

Ease of Use 12 8 12 12 5 

Adaptability 8 8 6 8 8 

Accuracy 12 8 10 12 8 

Consistency 10 10 10 8 10 

Interpretable 10 5 10 6 5 

Automatable 5 5 5 5 5 

Tool supported Supportability 2 3 5 2 2 

Empirical Validations 10 5 10 8 5 

Sensitivity 10 10 10 8 5 

Handling Imprecision and 
Uncertainty 

2 2 3 3 2 

Total 81 74 79 72 55 
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are Constructive Cost Model (CoCoMo), Feed-forward neural network with 
Principal Component Analysis (PCA), Putnam model/SLIM, Function Point 
Analysis and Wavelet Neural Network (WNN).  

It is important to note here that we introduced different evaluation character-
istics (i.e., ease of use, adaptability, accuracy, consistency, interpretable, auto-
matable, tool supported, empirical validations, sensitivity, and handling impre-
cision and uncertainty) in order to compare between these five software cost es-
timation approaches. 

Our observations indicated that it is best to use a number of different esti-
mating techniques or cost models for the project manager, and then compare the 
results, before determining the reasons for large variations and documenting any 
assumptions that were made while making the estimates. 
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Appendix: Case Study—Implementation of Putnam Model 

As one of the first algorithmic cost models, the Putnam estimating method [24] 
[25] [26] [27] is an empirical software cost estimation model that describes both 
the time and the effort required to complete a software project of a specific size. 
The model was based on the Norden/Rayleigh function and it is generally known 
as a macro estimation model, as it is generally used for big projects. The model’s 
software equation is given by: 

( )

3

4
3

SizeEffort *B
Productivity*Time

 
 
 

 
 =  
  

              (8) 

By plotting effort as a function of time, the Time-Effort Curve is established. 
The various points along this curve represent the estimated total effort that is 
made in order to complete the project. A distinguishing feature of the model is 
that the total effort decreases as the time that is taken to complete the project 
gets extended. Other parametric models usually represent this with a schedule 
relaxation parameter. 

The model is used as a case study in order to see the effect of a factor on the 
Time-Effort curve. The size in the first case was assumed to be 50,000 source 
lines of code, while factor B was 0.000005. The curves were plotted by utilising 
the productivity values of 15, 13 and 11. As productivity decreases, the time that 
is taken to finish the project increases. 

In another case, which involved the same source lines of codes, as well as the 
same three productivity factors, factor B was increased. This was done in order 
to see the effect of it on the curve. The three sets of curves (from left to right) are 
for the values of B, as 0.000005, 0.00005, and 0.0005 respectively. As factor B in-
creases, the time taken to finish the project also increases. 

As can be seen from the two figures above (Figure 2 and Figure 3), the Put- 
 

 
Figure 2. Time-Effort curve (Size = 50,000 source lines of codes, B = 0.000005, produc-
tivity = 15, 13, and 11). 
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Figure 3. Time-Effort curve (Size = 50,000 source lines of codes, B = 0.000005, 0.00005, 
and 0.0005, and productivity = 15, 13, and 11). 

 
nam model is based on the knowledge of—or being able to accurately esti-
mate—the size (in the lines of code) of the software that is to be developed. 
There is frequently much uncertainty about the software’s size, which can result 
in the cost estimation being inaccurate. In addition, this model is unsuitable for 
projects that are very small. 
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