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Abstract 
In this paper, we give a note on the eigenvalue localization sets for tensors. 
We show that these sets are tighter than those provided by Li et al. (2014) [1]. 
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1. Introduction 

Eigenvalue problems of higher order tensors have become an important topic of 
study in a new applied mathematics branch, numerical multilinear algebra, and 
they have a wide range of practical applications [2]-[9]. 

First, we recall some definitions on tensors. Let   be the real field. An m-th 
order n dimensional square tensor A  consists of nm entries in  , which is 
defined as follows:  
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To an n-vector x, real or complex, we define the n-vector:  
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If [ ]11 mmx xλ −− =A , x and λ  are all real, then λ  is called an H-eigenvalue 
of A  and x an H-eigenvector of A  associated with λ  [10] [11]. 

Qi [10] generalized Geršgorin eigenvalue inclusion theorem from matrices to 
real supersymmetric tensors, which can be easily extended to generic tensors; see 
[1]. 

Theorem 1. Let ( )1 2 mi i ia=


A  be a complex tensor of order m  dimension 
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n . Then  
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where ( )τ A  is the set of all the eigenvalues of A  and  
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Recently, Li et al. [1] obtained the following result, which is also used to 
identify the positive definiteness of an even-order real supersymmetric tensor.  

Theorem 2. Let ( )1 2 mi i ia=


A  be a complex tensor of order m  dimension 
n . Then  
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where ( )σ A  is the set of all the eigenvalues of A  and  
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In this paper, we give some new eigenvalue localization sets for tensors, which 
are tighter than those provided by Li et al. [1]. 

2. New Eigenvalue Inclusion Sets 

Theorem 3. Let ( )1 2 mi i ia=


A  be a complex tensor of order m  dimension n . 
Then  
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Proof. Let ( )T
1, , nx x x=   be an eigenvector of A  corresponding to 

( )λ A , that is,  
[ ]11 .mmx xλ −− =A                         (1) 
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Let  
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Obviously, 0px > . For any q p≠ , from equality (1), we have  
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That is,  
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A , and ( )λ ∈∆ A . If 
0qx > , from equality (1), we have  
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Multiplying inequalities (3) with (4), we have  

( )( ) ( ) ,q
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(5) 

which implies that ( ),p qλ∈∆ A . From the arbitrariness of q, we have 
( )λ ∈∆ A .  

Remark 1. Obviously, we can get ( ) ( )⊆ ∆K A A . That is to say, our new 
eigenvalue inclusion sets are always tighter than the inclusion sets in Theorem 2.  

Remark 2. If the tensor A  is nonnegative, from (5), we can get  
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Then, we can get,  
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From the arbitrariness of q, we have  
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That is to say, from Theorem 3, we can get another proof of the result in 
Theorem 13 in [12].  
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