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Abstract 
Studies of mass transfer in a porous medium are of interest to researchers as a 
result of its various uses in different fields of engineering practices. This work 
examined the steady flow of a reactive variable viscous fluid in a porous cy-
lindrical pipe. Dimensionless variables were used to dimensionalize the go-
verning equations. A regular perturbation technique was employed to obtain 
an approximate solution of the resulting dimensionless non-linear equations. 
Numerical simulation was done to get the threshold values for the flow para-
meters under consideration. The effects of viscous heating and permeability 
parameters on the steady flow were studied and reported. 
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1. Introduction 

Fluid is a substance that yields readily to any force that alters its shape. Thus, it 
conforms to the configuration of a containing vessel. In physics, a fluid is a sub-
stance that continually deforms (flows) under an applied shear stress [1]. A reac-
tive fluid, therefore, is any fluid that alters the internal geometry of a reservoir’s 
porosity. In fluid dynamics, different reactive flows have been modeled generally 
by extending the Navier-Stokes equations to include the appropriate chemical 
reactions and forces. Viscosity is the property of a fluid that tends to prevent it 
from flowing when subjected to an applied force. High-viscosity fluids resist 
flow while low-viscosity fluids flow easily. 

Pipe, in technology, is a tube (usually cylindrical) used to transport liquids, 
liquid-solid mixtures, or fragmented solids from one point to another. In petro-
chemical industries and petroleum refineries, studies related to thermal ignition 
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and heat transfer in a reactive variable viscosity fluid are extremely useful in or-
der to ensure safety of lives and properties [2] [3]. Thermal ignition occurs when 
a reaction produces heat too rapidly for a stable balance between heat produc-
tion and heat loss to be preserved [4] [5] [6]. 

The study of flow of viscous fluid with temperature dependent properties is of 
great importance in lubrication and tribology (study of interacting moving sur-
faces, i.e. the science and technology of interacting surfaces in relative motion, 
including the study of friction, lubrication and wear), food processing, instru-
mentation and viscometry. However, viscous heating is always a possible and 
frequently significant source of errors in viscometric measurement at high shear 
rates in instrumentation and viscometry [7].  

Many fluids used in industrial and engineering processes like geological mate-
rials, liquid foams, polymeric fluids, hydrocarbon oils and grease do exhibit flow 
characteristics that cannot be adequately described by the classical linearly visc-
ous fluid model [8]. Ever since the pioneering work of Darcy on flow through 
porous beds which resulted in the identification of permeability as the property 
of porous media, there has been tremendous interest in the study of flow 
through porous media which occur widely in nature and industry [9]. 

Several researchers have worked on reactive variable viscosity flow with dif-
ferent non-porous channels [7] [8] [10] [11] [12] [13] [14] and porous channels 
[15] [16] [17] [18] [19] arriving at various results.  

The objective of this paper is to study the steady flow of a reactive variable 
viscous fluid in a porous cylindrical pipe with an isothermal wall under Arrhe-
nius kinetics and to report the effect of porosity and heating parameters on ve-
locity and temperature of the flow. 

2. Mathematical Formulation of the Problem 

The work on steady flow of a reactive variable viscosity fluid in a cylindrical pipe 
with an isothermal wall under Arrhenius kinetics [12] was extended to include 
porosity force (permeability) in the momentum equation. The respective dimen-
sional form of the energy and momentum equations with the boundary condi-
tions are given as  
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where 0µ , Q , 0C , A , E , R , T , G  are the fluid reference viscosity, heat 
of reaction, initial concentration of the reactant species, rate of constant, activation 
energy, universal gas constant, absolute temperature and constant axial  
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pressure gradient respectively, the last term 
1

u
k
µ

 in the left hand side of Equation 

(2) is the porosity force, 1k  is the Darcy permeability [15] [20] and k  is the 
thermal conductivity. The viscosity of the fluid is of the Arrhenius form given 
as  

0e
E

RTµ µ=                              (4) 

where 0 , , ,E R Tµ  are as defined. Figure 1 showed the geometry of the steady 
flow in a cylindrical pipe. The fluid is assumed to be viscous, incompressible and 
reactive, flowing steadily in the z-direction with r a= , and 0u =  at the wall. 
The temperature of the cylindrical wall is also assumed to be constant i.e. 0T T=  
(isothermal) throughout the flow. 

Introducing the following dimensionless quantities into Equations (1)-(4), 
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the dimensionless form of the governing equations are obtained as:  
2
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with dimensionless boundary condition 
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where 
2

1

a
k

δ =  is the dimensionless porosity (permeability) parameter. 

For all fuels of interest, the parameter ∈  is assumed small [2] [12] [21] [22]. 
Using activation energy asymptotics and for 1∈ , Equations (5) and (6) are 
simplified to give  

 

 
Figure 1. Geometry of the steady flow. 
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where Equations (8) and (9) represent the temperature and velocity equations 
respectively. 

Method of Solution 

The coupled nonlinear ordinary differential Equations (8) and (9), with the di-
mensionless boundary conditions (7), made it difficult to obtain exact solution. 
Since the cylindrical coordinate has singularity at 0r = , singular perturbation 
technique was employed in order to obtain an approximate solution of the flow 
field and thermal distribution. It is convenient to take a power series expansion 
in the Frank-Kamenetskii parameter λ , and for easy computation, the solution 
to Equations (8) and (9) is assumed to be in the form 
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Substituting Equations (10) and (11) into (8) and (9) using the dimensionless 
boundary conditions (7), we have 
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3. Results and Discussion 

Figure 2 showed the graph of ( )rθ  against r  for different values of heating  
 

 

Figure 2. Plots of ( )rθ  against r for different values of heating parameter 

( β ) when 0.0δ =  and 0.5λ = . 
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parameter β, when permeability parameter 0.0δ =  and the Frank-Kamenetskii 
parameter 0.5λ = . Figure 3 showed the graph of ( )rθ  against r  for different 
values of heating parameter β  when 0.5δ =  and 0.5λ = . It can be observed 
from Figure 2 that as the viscous heating parameter β  increases, the tem-
perature also increases when the permeability parameter 0.0δ =  and the 
Frank-Kamenetskii parameter 0.5λ = . This is in agreement with [13]. 

The maximum temperature appeared at the centre of the cylindrical pipe and 
it decreases towards the boundary of the pipe. This result is in line with [14] 
[22].  

Figure 3 showed the temperature profile in the presence of permeability pa-
rameter 0.5δ = . The fluid temperature increases with increasing values of 
viscous heating parameter β . A critical comparison of Figure 2 and Figure 3 
showed that in the presence of porosity parameter, the temperature of the fluid 
is a bit enhanced than when there is no porosity parameter. This implies that 
heat is added to the system as a result of the pores or voids in the flow. 

Figure 4 depicted the graph of velocity ( )u r  against r  for different values 
of β  when 0.0δ =  and 0.5λ = . In Figure 4, velocity increases with increas-
ing values of the viscous heating parameter β  when 0.5λ =  and permeability 
parameter 0.0δ = . This is in line with [17]’s work when there is no permeabili-
ty parameter and 0.5λ = . 

Figure 5 is a graph of ( )u r  against r  for different values of β  when 
0.5δ =  and 0.5λ = . Figure 6 showed the graph of ( )u r  against r  for dif-

ferent values of permeability parameter δ  when 0.0β =  and 0.5λ =  while  
 

 

Figure 3. Plots of ( )rθ  against r for different values of heating parameter 

( β ) when 0.5δ =  and 0.5λ = . 
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Figure 4. Plots of ( )u r  against r for different values of heating parameter 

( β ) when 0.0δ =  and 0.5λ = . 
 

 

Figure 5. Plots of ( )u r  against r for different values of heating parameter 

( β ) when 0.5δ =  and 0.5λ = . 
 
Figure 7 showed the graph of ( )u r  against r  for different values of δ  
when 10.0β =  and 0.5λ = . The graph in Figure 5 showed the velocity of the  
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Figure 6. Plots of ( )u r  against r for different values of permeability 

parameter (δ ) when 0.0β =  and 0.5λ = . 
 

 

Figure 7. Plots of ( )u r  against r for different values of permeability 

parameter (δ ) when 10.0β =  and 0.5λ = . 
 
flow in the presence of permeability parameter. It is observed that velocity in-
creases with increasing viscous heating parameter. It can be said that a com-
bustible fluid at low viscosity flows faster than the one at high viscosity. A simi-
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lar thing is observed in the velocity profile for various values of the porosity pa-
rameter. Velocity increases with increasing values of permeability parameter. 
Permeability is the measure of the material’s ability to permit liquid or gas 
through its pores or voids. Filters made of soil and earth dams are very much 
based upon the permeability of a saturated soil under load. Permeability is a part 
of the proportionality constant in Darcy’s law. Darcy’s law relates the flow rate 
and fluid properties to the pressure gradient applied to the porous medium. This 
supports that as permeability increases velocity should also increase [12].  

4. Conclusion 

From the findings of this work, it can be concluded that the viscous heating pa-
rameter has effect on the temperature and velocity profiles of the flow. The 
presence of pores on the geometry of the problem also has effect on the temper-
ature and velocity of the fluid. Increase in permeability parameter increases the 
velocity of the fluid which is in agreement with the results of [12] [23]. The 
temperature is also enhanced than when there is no porosity. From the work, it 
could be said that the temperature of the fluid can be controlled by varying the 
viscous heating parameter and the thermal conductivity in order to minimize 
their effects and maximize the flow system efficiency. 

5. Applications 

Drilling an oil well can be very expensive. Therefore an exploration of a site for 
oil well must be economically feasible before embarking on it. Some of the fac-
tors to be considered for effective oil exploration are the porosity and permeabil-
ity of the reservoir rock. In deciding the suitability of drilling an oil well, it is 
necessary that the porosity be a minimum of 8 per cent. The distance between 
the pores in the sandstone should not be too far apart as the oil and gas would 
not be able to flow well thereby resulting in poor outputs. In this paper, it has 
been shown that when sandstone have low permeability as indicated in Figure 6 
and Figure 7, the flow velocity is affected and hence a large amount of pressure 
is required to push the oil and gas from the well. Therefore a successful oil well 
relies much on the right porosity and permeability of the sandstone. So, to en-
sure a good well, high permeability is required. 
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