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Abstract 
In the present paper, an analytical model of a flexible beam fixed at an end 
with embedded shear sensors and actuators is developed. The smart cantilever 
beam model is evolved using a piezoelectric sandwich beam element, which 
accommodates sensor and actuator embedded at distinct locations and a reg-
ular sandwiched beam element, having rigid foam at the core. A FE model of a 
piezoelectric sandwich beam is evolved using laminated beam theory in 
MATLAB®. Each layer behaves as a Timoshenko beam and the cross-section 
of the beam remains plane and rotates about the neutral axis of the beam, but 
it does not remain normal to the deformed longitudinal axis. Keeping the 
sensor and actuator location fixed in a MIMO system, state space models of 
the smart cantilever beam is obtained. The proper selection of control strategy 
is very crucial in order to obtain the better control. In this paper a DSM con-
troller designed to control the first three modes of vibration of the smart can-
tilever beam and their performances are represented on the basis of control 
signal input, sensor output and sliding functions. It is found that DSM con-
troller provides superior control than other conventional controllers and also 
MROF DSM controller is much better than SISO DSM controller. 
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1. Introduction 

Smart structures [1] are systems having particular functions viz. sensing, 
processing, actuation and making them suitable for structural health condition-
ing, vibration suppression of structures. Piezoelectric materials are found most 
suitable to be used as active components in smart structures [2]. The apposite-
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ness of piezoelectric materials as sensors and actuators has gained the focus in 
health monitoring of structures like beams, plates, and shells [3]-[15]. Krommer 
[16], Rao and Sunar [17] have shown the implementation of piezoelectric mate-
rials as both for sensing and actuation. Active control through bonded piezo 
components was studied by Moita et al. [18]. An optimal linear quadratic gene-
rator control strategy to control the structures is advised by Ulrich et al. Young 
et al. [20] presented a finite element simulation of flexible structures with output 
feedback controllers. Aldraihem et al. [21] developed the model of the laminated 
beam based on EBT and TBT. Abramovich [22] has obtained an analytical for-
mulation and closed form results of the laminated beam based on TBT with 
piezoelectric sensors and actuators. Chandrashekhara and Vardarajan [23] ac-
quainted a finite element model of the laminated beam to evolve deflection in 
beams with various end conditions. Sun and Zhang [24] have suggested the basis 
of shear mode to produce transverse deflection in embedded structures. Aldrai-
hem and Khdeir [25] expounded the analytical model and exact solution of Ti-
moshenko beam with shear and extensional piezoelectric actuators. Zhang and 
Sun [26] have presented an analytical model of surface mounted beam with 
shear piezo actuators at the core. The top and bottom layers obey EBT and core 
obeys TBT. Donthireddy and Chandrashekhara [27] have proposed a model 
with embedded piezoelectric components. Rathi and Khan [28] have modeled a 
smart cantilever beam with surface mounted and embedded shear sensors and 
actuators on the basis of TBT and justify that embedded components of flexible 
structures provide better control than surface mounted arrangement and also 
emphasized on optimal location of sensors and actuators in embedded beam. 

Chammas and Leondes [29] [30] have presented the pole assignment by 
piecewise constant output feedback for LTI systems while Werner and Furuta 
[31] [32] focussed on fast output sampling for LTI system. Janardhan et al. [33] 
designed a controller based on MROF using the samples of control input and 
sensor output at different sampling rates. Bandyopadhyay et al. [34] adduced a 
DTSM control that has the use of switching function in control results in QSMC. 

A numerous types of control policies for the SISO and MIMO state space 
presentation of the active structures using the Multiple Rate Output Feedback 
(MROF) dependent Discrete Sliding Mode Control (DSMC) approach is de-
picted in this monograph. The key objective instigating this control technique is 
to constrain and damp out the flexural or transverse vibrations of active beam 
when they are subjected to external annoyance. The control technique used on 
the basis of Bartoszewicz law and does not need to use switching in control func-
tion and hence eradicate chattering. This method does not need the reconnais-
sance of the system states for feedback being using solely the output samples for 
designing the controller. The schematic espousal is more viable and may be easy 
to accomplish in true life applications. 

2. Discrete Time Sliding Mode Control (DTSMC) 

Bartoszewicz [35] adduce a quasi-sliding mode control (QSMC) technique with-
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out using a switching function in control and has the property of finite time 
convergence to the QSM band. A discrete output feedback sliding mode control 
algorithm in [33] based Bartoszewicz’s control law [35] and MROF [36] is used 
for the vibration suppression of flexible structures. 

In the present situation, the disturbance is the external force input ( )r t  in 
form of impulsive force applied to the free end of the beam and hence producing 
the vibration. DSM controllers with multirate output feedback plan evolved and 
applied to the system with the plant to attenuate the vibrations earliest. The 
methodology is described as follows: 

Consider a CT SISO system sampled with an interval α  seconds and given 
as 

( ) ( ) ( ) ( ) ( )1x n x n x n u n f nα α α+ = Θ + ∆Θ + ϒ +  

( ) ( )y n Cx n=                            (1) 

where, α∆Θ  is the uncertainty in the state, ( )f n  is an external disturbance 
vector and ( ),α αΘ ϒ  being controllable and ( ),CαΘ  being observable. Let us 
choose the disturbance vector as 

( ) ( ) ( )n x n f nαζ = ∆Θ +                         (2) 

Let the desired sliding manifold be governed by the parameter vector Tp  
such that T 0p αϒ ≠  and resulting quasi-sliding motion is stable and assume 
that disturbance be bounded such that 

( ) ( )Tn p nζ ζ=                              (3) 

Which satisfies the inequality 

( )1 1nζ ζ ζ− +≤ ≤                            (4) 

where, 1ζ −  and 1ζ +  are lower and upper bounds on the disturbance. We take, 

( ) ( )0 1 1 1 10.5 and 0.5ζζ ζ ζ δ ζ ζ+ − + −= + = −              (5) 

The switching surface is given by 

( ) ( )TS n p x n=                            (6) 

The QS mode is the motion such that ( )S n η≤ , where the positive constant 
η  is termed as quasi-sliding mode bandwidth. A significant reduction of con-
trol effort and better quality of quasi-sliding mode control is found. A reaching 
law advised by Bartoszewicz [35] is as follows 

( ) ( ) ( )01 1S n n S nζζ ζ+ = − + +                     (7) 

where, ( )nζ  is given from Equation (4) and ( )S nζ  is a known function that 
satisfies the following two states, when 

1) If ( )0 2S ζδ> , then ( ) ( )0 0S Sζ = , ( ) ( )0 0S n Sζ ζ ≥ , for all 0n ≥  (8A) 
2) If ( )0 2S ζδ< , then ( )0 0Sζ = , for all 0n ≥  (8B) 
The value of the positive integer *n  is chosen by Engineer so as to have a 

compromise in between rapid convergence an amplitude of control input ( )u t . 
By controlling the decay rate ( )*n , the convergence of ( ) 0S n =  acclimated 
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with the reaching law and the two conditions of the function ( )S nζ  implies 
that the reaching law condition is satisfied and for all *n n≥ , the QS mode in 
the ζδ  vicinity of the sliding plane ( ) ( )T 0S n p x n= =  presented. One possi-
ble function for ( )S nζ , when ( )0 2S ζδ> , can be described as 

( ) ( )
*

*
* 0 , 0,1, 2, ,n nS n S n n

nζ
−

= =                       (9) 

( )* 0
2
S

n
ζδ

<                                (10) 

The control law satisfying the reaching law (Equation (7)) and get sliding 
mode for the system as given in Equation (4) can be computed to be 

( ) ( ) ( ) ( ){ }1T T
0 1u n p p x n S nα α ζζ

−
= ϒ Θ + − +               (11) 

When control input given in Equation (11) substituted into the system, it 
would sure for any * ,n n>  the switching function would satisfy the expression 

( ) ( ) ( )1 0S n n ζζ ζ δ= − − ≤                     (12) 

Thus, system states adjudicate within a QSM band having less than half 
bandwidth as given in [37]. From [33] MROF based algorithm using an ad-
vanced reaching law can be attained. Let the advanced reaching law be [35] given 
as 

( ) ( ) ( ) ( ) ( )01 0 1 1S n n o n o S nζζ ζ+ = − + − − + +            (13) 

A new variable ( )o n  is incorporated here. The control input generated can 
be given by using algorithm in [33], 

( ) ( ) ( ) ( ){ }1T T T
0 01 1y n uu n p p L y p L u n o S nα α α ζζ

−
= − ϒ Θ + Θ − + + − +   (14) 

Here,  
1 1 1

0 0 0 0, ,y uL C L C D L I C Cα α ζ ζ
− − −= Θ = ϒ − = −              (15) 

( )

11

0

11 1
2

0 0
0 0

2
1

12 10

0 0

0

0

, ,

N
k

k

N
k k

k k
N

kN

N Nk
k k

k k

CC
C

C
C

C D CC C

CC

C

ζ

−−

=

−−

= =

−
−

−− −=

= =

 
 

    Θ       ϒ    Θ    Θϒ + ϒ    = = =Θ Θ Θ           
    
  Θ ϒΘ    

     Θ Θ   
   

∑

∑ ∑

∑
∑ ∑







     (16) 

with ( )0 1 10.5o o o+ −= +  and ( )1 10.5o o oδ + −= −  are the mean and variation of 
the function of uncertainty. 1o+  and 1o−  are the upper and lower bounds of 
( )o n . The variable ( )o n  represents the disturbance effect on sampled output 

( ) T
no n p Lα ζζ= Θ                          (17) 

The bounds on ( )o n  are given as ( )1 1o o n o− +≤ ≤ , the value of N  is cho-
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sen to be greater the observability index j  of the system defined as for system 
given by triplet ( ), ,A B C  is the minimum integer value of j  such that 

1j j

C C
CA CA

Rank Rank

CA CA−

   
   
   =
   
   
   

 

                      (18) 

Thus the control input can be estimated by using the past output samples and 
immediate past input. But at 0n = , there are no past outputs for use in control, 
here ( )0u  is obtained by neglecting ( )1o n −  and 0o  (no disturbance before 

0n =  to affect the system), so we have, 

( ) ( ) ( ){ }1T T
0 00 1u p p x Sα α ζζ

−
= − ϒ Θ + −                 (19) 

When control input obtained from eq. (14) is used in system obeys reaching 
law 

( ) ( ) ( ) ( )0 01 1 1S n n o n o S nζζ ζ+ = − + − − + +              (20) 

( ) ( ) ( ) ( )0 01 2S n n o n o S nζζ ζ= − − + − − +               (21) 

When ( )*, 2n n> , ( ) 0S nζ =  and hence, 

( ) ( ) ( )0 01 2S n n o n oζ ζ= − − + − −                   (22) 

So we have, 

( ) ( ) ( )0 01 2S n n o n oζ ζ= − − + − −                   (23) 

( ) ( ) ( )0 01 2S n n o n oζ ζ≤ − − + − −                   (24) 

This can be written as 

( ) oS n ζδ ζ≤ +                            (25) 

It can be emphasized that this algorithm does not need the assessment of sys-
tem states for the creation of control input. This control technique is used to de-
sign a multi-rate output feedback based DSM control to attenuate the transverse 
disturbance in a flexible structure which is modeled on the basis of Timoshenko 
beam theory for 3 vibratory modes. 

3. Finite Element Modeling of an Embedded Beam 

An embedded beam consists of three layers having a piezoelectric patch with the 
obdurate foam in between two thick steel beams shown in Figure 1. The lead 
zirconate titanate (PZT) layer acts as both actuator and sensor in thickness shear 
actuation mode. The foam and PZT together behave like a core element to ob-
tain embedded beam model [28]. 

The presumption is that the mid layer is perfectly bonded to the rest of the 
structure and thickness of binder is neglected (hence preventing shear-lag, slip 
or layer delamination during vibration) resulting a strong blend between parent 
structure and piezoelectric patches. The binder used between the layers have 
been assumed no added mass or stiffness to sensor or actuator. 
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Figure 1. A three layered embedded beam (stacking sequence: steel/PZT or foam/steel) with MIMO. 

 
For the parts having no PZT patch, the auxiliary space is being filled full with 

a material like obdurate foam. Again, there is a strong blend between foam and 
parent structure. Thus, embedded beam consists of slabs and a light weight core 
are effectively good in producing bending and shear action. 

In analysis of embedded beam, the poling orientation of piezo patch in the 
axial direction. The displacement domain is based on first-order shear deforma-
tion theory (FSDT). The element is considered to have invariable elasticity 
modulus, moment of inertia, mass density, and length. The wiring capacitance is 
neglected between the sensor and signal conditioning device. The gain is as-
sumed to be 100 for signal conditioning device. 

Consider a beam having an element with two nodes. The longitudinal axis of 
the embedded beam element stays along x-axis and beam vibrates along x-z 
plane. The beam element has three degrees of freedom these are, axial displace-
ment of the node u, transverse displacement of the node w, and bending rotation 
θ . An auxiliary degree of freedom in the form of sensor voltage occurs. As sen-
sor voltage is invariable through the element, the number of electrical degree of 
freedom is one. At each node, a bending moment and a transverse shear force 
act. The slope of the beam ( )xγ  possesses two parts first one is the bending 

slope d
d
w
x

 and the second one is shear deformation angle ( )xφ . 

3.1. Equations of Motion 

The displacement of the beam is written as; 

( ) ( ) ( ) ( ) ( )0 0, , and ,u x z u x z x t w x z w xθ= + =              (26) 

Strains are; 

0

0 0

, 0, 0

0, 0,

xx yy zz

xy xy xz

u z
x x

w wu
x x x

θ
ε ε ε

γ γ γ θ

∂ ∂
= + = =
∂ ∂

∂ ∂∂
= = = + = +

∂ ∂ ∂

               (27) 

The constitutive equations of the beam element are 

  

 

 

 

 

 

 

 

z, w 

Top Steel Beam Foam 
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Bottom Steel Beam 

𝑙𝑙 

 
𝐿𝐿 
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0

11 11 11

11 11 11

55 55
0

0
0

0 0

xx

xx

xz

u
xN A B E

M B B F
x

F A Gw
x

θ

θ

∂ 
 ∂      

∂      = −       ∂            ∂
+ ∂ 

             (28) 

where, xxN  is in-plane force resultant in longitudinal direction, xxM  is 
in-plane moment resultant in transverse direction and xzF  is shear force resul-
tant in transverse direction and they are given as 

2 2 2

2 2 2

d , d , d
h h h

h h h
xx xx xx xx xz xzN b z M b z z F b zσ σ τ

− − −

= = =∫ ∫ ∫           (29) 

Here, b  is beam width, z  is depth of material direction from beam refer-
ence plane, h  is the height of beam and piezoelectric patch. 11 11 11, ,A B D  and 

55A  are extensional, bending-extensional, bending and transverse shear stiff-
nesses and expounded by using lamination theory 

( ) ( )11 11 1
1

,
N

n nnn
A b Q z z −

=

= −∑                         (30) 

( ) ( )2 2
11 11 1

1
,

2

N

n nnn

bB Q z z −
=

= −∑                         (31) 

( ) ( )3 3
11 11 1

1
,

3

N

n nnn

bD Q z z −
=

= −∑                         (32) 

( ) ( )55 55 1
1

N

n nnn
A b Q z zκ −

=

= −∑                         (33) 

where, nz  is the distance of thn  lamina from longitudinal axis, N  is the total 
number of laminas, κ  is shear correction factor and 11 55,Q Q  are transformed 
reduced stiffnesses and given as 

( )4 4 2 2
11 11 22 12 66cos sin 2 2 sin cosQ Q Q Q Qψ ψ ψ ψ= + + +          (34) 

2 2
55 13 23cos sinQ G Gψ ψ= +                       (35) 

The angle ψ  is the angle between the fiber direction and x-axis of beam. 
Various material constants are obtained individually for steel, PZT and foam by 
relations listed in appendix. 11 11,E F  and 55G  are respectively actuator insti-
gated piezoelectric axial force, bending moment owing to constrained actuator 
and shear force and given as 

( ) ( )11 11 31
1

, ,
actN act n n

nn
E b Q V x t d

=

= ∑                        (36) 

( ) ( ) ( )11 11 31
1

, ,
2

actN act n n act act
n nnn

bF Q V x t d z z+ −
=

= −∑                   (37) 

( ) ( )55 55 15
1

, ,
actN act n n

nn
G b Q V x t dκ

=

= ∑                      (38) 

11 11 0E F= = , when PZT layer is oriented along longitudinal direction, 
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( ),nV x t  is applied voltage to thn  actuator having thickness ( )act act
n nz z+ −−  and  

31 15,n nd d  are piezoelectric constants. ( )11

act

n
Q  and ( )55

act

n
Q  are the coefficients  

for actuator as evaluated using Equation (34), Equation (35), actN  are the num-
ber of actuators. 

Using Hamilton’s principle (Dynamic version of principle of virtual work), 

( )
0 0

d d 0
T l

U K W x tδ δ δ− + =∫ ∫                         (39) 

where ,U Kδ δ  and Wδ  correspond to virtual strain energy, virtual kinetic 
energy and virtual work done by external forces respectively and are given as 

,xx xx xz
u wU N M F

x x x
δ δθ δ

δ θ
∂ ∂ ∂     = + + +     ∂ ∂ ∂     

              (40) 

( ) ( )1 2 1 2 3 ,K I u I u I w w I u Iδ θ δ θ δθ= + + ∂ + +  

                    (41) 

0W q wδ δ=                          (42) 

where, 0q  is transverse load (equals to external force applied at the free end of 
beam). 

( )1,2,3iI i =  are mass inertias of beam cross-section and are defined as 

( ) ( )
2

2

2
1 2 3, , 1, , d

h

h

I I I b z z zρ
−

= ∫                      (43) 

Substituting the values of ,U Kδ δ  and Wδ  from Equations (40)-(42) in to 
Equation (39), we get equation of motion for general, unsymmetric piezoelectric 
laminated beam as per FSDT with shear deformation and rotary inertia as, 

( )11 11 11 1 2 ,uA B E I u I
x x x t

θ
θ

∂ ∂ ∂ ∂ + + = + ∂ ∂ ∂ ∂ 


               (44) 

( )55 55 1 0 ,w wA G P I w q
x x x t

θ
∂  ∂ ∂  ∂ + + − = +  ∂ ∂ ∂ ∂  

             (45) 

( )11 11 11 55 55 2 3 ,u wB D F A G I u I
x x x x t

θ
θ θ

∂ ∂ ∂ ∂ ∂   + + − + − = +   ∂ ∂ ∂ ∂ ∂   


     (46) 

For case of static loading with invariable beam properties. We have simplified 
form of equation of motion as 

11 11 0,uA B
x x x

θ∂ ∂ ∂ + = ∂ ∂ ∂ 
                      (47) 

55 0,wA
x x

θ∂  ∂  + =  ∂ ∂  
                       (48) 

11 11 11 55 55 0u wB D F A G
x x x x

θ
θ

∂ ∂ ∂ ∂   + + − + − =   ∂ ∂ ∂ ∂   
             (49) 

For the solution of unknowns, the degree of polynomial used for axial dis-
placement, u  and bending rotation, θ  must be one order lower than that 
used for transverse displacement, w  to satisfy the compatibility. Here we used 
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quadratic function for ,u θ  and cubic function for w . Let the solution be as-
sumed as 

2 3
1 2 3 4 ;w p p x p x p x= + + +                       (50) 

2
1 2 3 ,q q x q xθ = + +                          (51) 

2
1 2 3 ,u r r x r x= + +                           (52) 

The boundary conditions are 

1 1 1at 0 : , ,x w w u uθ θ= = = =                    (53A) 

2 2 2at : , ,x l w w u uθ θ= = = =                    (53B) 

Using the boundary conditions in Equations (50)-(52), the unknown coeffi-
cients ,i jp q  and jr  are determined. Substituting the evaluated unknowns into 
Equations (50)-(52) and arranging them into matrix form, we obtain expressions 
for ,w u  and θ  in terms of shape functions and nodal displacements. 

[ ] [ ] [ ] [ ] [ ] [ ]

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

, ,w u

u u u
w w w

w N u N N
u u u
w w w

θ

θ θ θ
θ

θ θ θ

     
     
     
     

= = =     
     
     
     
          

             (54) 

where, [ ] [ ],w uN N  and [ ]Nθ  are modal shape functions due to ,w u  and θ  
which are given as 

[ ] [ ]1 2 3 4 5 6wN N N N N N N=                 (55) 

[ ] [ ]7 8 9 10uN N N N N=                     (56) 

[ ] [ ]11 12 13 14N N N N Nθ =                    (57) 

Writing these three shape functions in matrix form, the relations between in-
ertial forces vector   and nodal displacement vector d  as 

[ ]

1

1
1 2 3 4 5 6

1
7 8 9 10

2
11 12 13 14

2

2

0 0
0 0

u
w

N N N N N N
N N N N

u
N N N N

w

θ

θ

 
 
      =   
     
 
  

              (58) 

The shape function elements in Equations (55)-(57) are presented in appendix. 
The mass matrix of beam element is given as 

[ ] [ ][ ]T

0

d
l

beamM I x  =  ∫                         (59) 

where, [ ]I  is the inertia vector and given as 

[ ]
1 2

1

2 3

0
0 0

0

I I
I I

I I

 
 =  
  

                          (60) 
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The mass matrix for beam element is finally given as 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

beam

m m m m m m
m m m m m m
m m m m m m

M
m m m m m m
m m m m m m
m m m m m m

 
 
 
 

  =   
 
 
 
  

             (61) 

beamM    is a symmetric local mass matrix of size 6 6×  for a beam element, 
its coefficients are given in the appendix. 

The stiffness matrix of beam element is given as 

[ ] [ ][ ]
0

d
l

TbeamK D A x  =  ∫                        (62) 

where A  is the area of beam cross-section and 

[ ] [ ] [ ]
11 11

11 11

55

0
d

and 0
d

0 0

A B
D B B

x
A

 
 = =  
  



                  (63) 

Finally, the stiffness matrix of the beam element is given as 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

beam

k k k k k k
k k k k k k
k k k k k k

K
k k k k k k
k k k k k k
k k k k k k

 
 
 
 

  =   
 
 
 
  

                (64) 

beamK    is a symmetric local stiffness matrix of size 6 6×  for a beam ele-
ment, its coefficients are given in appendix. 

The mass matrix and stiffness matrix of the regular beam are obtained by 
placing foam core in between two laminas of steel. Similarly, a piezoelectric 
patch is used in place of foam between two laminas to obtain piezoelectric beam 
element. 

3.2. Equation of Sensing Component 

Sensor works on direct piezoelectric effect, which is used to evaluate the output 
charge developed due to straining of the structure. The electric displacement 
produced by the sensor is directly proportional to strain rate. The charge ( )q t  
appeared on piezoelectric sensor surface is given by Gauss law as 

( ) d
PZ

z PZA
q t D A= ∫                         (65) 

where, zD  is electric displacement in thickness direction and PZA  is the area 
of shear PZT patch. If poling is done along the thickness direction having elec-
trodes on top and bottom surfaces, the electric displacement is given as 

55 15 15z xz xzD Q d eγ γ= =                        (66) 
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Using Equation (66) into Equation (65), we get 

( ) 0
15 d

PZ
PZA

wq t e A
x

θ
∂ = + ∂ ∫                      (67) 

Solving Equation (67), we get 

( ) [ ]

1

1

1
15 2

2

2

2

6 0 2 0 2
12b PZ PZ

PZ

u
w

q t e b l l
ul
w

θλ
λ

θ

 
 
 
  = − − −  

− +  
 
 
  

         (68) 

Here, 

1

1

1

2

2

2

u
w

u
w

θ

θ

 
 
 
   = 
 
 
 
  

d  is the nodal displacement vector, bb  is the width of the 

beam, 11 11

55 11

1D B
A D

λ µ
 

= − 
 

 and 11

11

B
A

µ = . 

The current induced by the sensor is 

( ) ( )d
d
q t

i t
t

=                             (69) 

( ) [ ]15 2

6 0 2 0 2
12b PZ PZ

PZ

i t e b l l
l

λ
λ

= − − −
− +

d           (70) 

With the use of signal conditioning device this current is converted into open 
circuit sensor voltage ( )senV t  and applied to actuator with controller gain 

( ) ( )sen
scV t G i t=                           (71) 

( ) [ ]15 2

6 0 2 0 2
12

sen
sc b PZ PZ

PZ

V t G e b l l
l

λ
λ

= − − −
− +

d         (72) 

( ) TsenV t = b d                             (73) 

where, d  is the strain rate and Tb  is a constant vector of ( )1 6×  size for a 
double node beam element which depends on sensor type, its properties and its 
location in embedded structure and described as 

[ ]T
15 2

6 0 2 0 2
12b sc PZ PZ

PZ

e b G l l
l

λ
λ

= − − −
− +

b           (74) 

The actuator input voltage is 

( ) ( )act senV t K V t= ×                          (75) 

( ) [ ]15 2

6 0 2 0 2
12

act
sc b PZ PZ

PZ

V t K G e b l l
l

λ
λ

= × − − −
− +

d       (76) 
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3.3. Equation of Actuating Component 

Actuator works on converse piezoelectric effect which is used to evaluate the 
straining effect caused due to actuator. The strain produced in PZT patch is di-
rectly proportional to electric potential applied to lamina and is given as 

PZ act
xz Eγ ∝                             (77) 

where, PZ
xzγ  is shear strain in in PZT lamina and actE  is the electric potential 

applied to actuator, which is, 
act

act

PZ

VE
t

=                              (78) 

where, PZt  is the thickness of PZT lamina. From Equation (77) 

15
PZ act
xz d Eγ =                             (79) 

Shear stress in PZT lamina is given as 
PZ PZ
xz xzGτ γ=                              (80) 

where, G  is the modulus of rigidity. Substituting the values of PZ
xzγ  into 

Equation (79), we get 

15
PZ act
xz Gd Eτ =                            (81) 

Using Equation (78) in Equation (81), we obtain 

15

act
PZ
xz

PZ

VGd
t

τ =                           (82) 

Due to this stress, bending moments are incorporated into the beam at the 
nodes. The moment actM  acting on beam element is obtained by integration of 
shear stress through structural thickness in Equation (82). Finally 

15
act actM Gd V h=                          (83) 

Or we may write 
T

15
actM Gd K h= b d                         (84) 

Here, 
2

act beamt th +
=  is the distance between neutral axis of beam and neutral 

axis of PZT patch. 
The control force ctrlf  produced by actuator and applied to beam is ob-

tained from Equation (84) as 

( )15
0

d
PZl

ctrl actf Gd h N xV tθ= ∫                     (85) 

Or simplified as 

( )ctrl actf V t= g                          (86) 

where, g  is a constant vector of size ( )6 1×  for a double node beam element 
and depends on actuator location and type. The total force vector in existence of 
any external force vector is 
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total ext ctrlf f f= +                         (87) 

where, extf  representing the external disturbance vector. 

3.4. Dynamic Equation of Smart Structure for A MIMO Model 

The dynamic equation for the smart structure is obtained by using both the 
regular beam element and the piezoelectric beam element. The mass and stiff-
ness matrices of the regular beam and piezoelectric beam element are known as 
local mass and stiffness matrices and give only the mass and stiffness matrices of 
only one finite element. The mass and stiffness matrices of entire beam i.e. di-
vided into 10 finite elements are obtained by assembling the local matrices by 
applying finite element technique and resulting matrices are called global mass 
matrix GM    and global stiffness matrix GK   . The mass and stiffness ma-
trices GM    ( )20 20×  and GK    ( )20 20×  of dynamic equation of smart 
structure have both sensor and actuator masses and stiffnesses. 

The equation of motion of the smart structure and sensor output is 
1 2  G G ext ctrl ctrl ext ctrl i totalM K f f f f f f+ = + + = + =d d          (88) 

& ( ) ( ) ( ) T , 1, 2sen i
i iy t V t i= = =b d                   (89) 

The mass and stiffness matrices of the beam in the equation of system (64) can 
be changed by varying the location of PZT patch on beam and by varying the 
number of regular and piezoelectric beam elements. The generalized coordinates 
are introduced into Equation (64) with a transformation =d Ta , in order to 
reduce it further so the resulting equation showing the dynamics of desired vi-
bratory modes. Here T  is a modal matrix containing the eigenvectors showing 
the desired number of modes of vibration. This procedure is applied to derive 
the uncoupled equations governing forced vibration in terms of principal coor-
dinates by inducing linear transformation between generalized coordinates d  
and principal coordinates a  and hence decoupling into equations related to 
each mode. Using the transformation =d Ta . Equation (88), Equation (89) be-
come 

 G G ext ctrl i totalM K f f f+ = + =Ta Ta                  (90) 

& ( ) ( ) T Tsen i
i i iy t V t= = =b d b Ta

                    (91) 

Premultiplying Equation (90) by TT , we get 
T T T T  TG G ext ctrl i totalM K f f f+ = + =T Ta T Ta T T T            (92) 

Which may be written as 
 ext ctrl iM K F F+ = +a a                       (93) 

where, T GM M=T T  and T GK K=T T  are called the generalized mass and 
stiffness matrices. 

The generalized external force vector 

( )T Text extF f r t= =T T f                      (94) 

where, ( )r t  is external force input to beam. 
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The generalized control force vector 

( ) ( ) T  T Tctrl i ctrl i act
i i iF f V t u t= = =T T g T g                (95) 

where, ( )r t  is control force input to beam. 
The structural modal damping matrix C  by using Rayleigh proportional 

damping as 

C M Kα β= +                           (96) 

where, ,α β  are frictional damping constants and structural damping constant 
in C . 

The dynamic equation and sensor output of smart structure is finally  
 ext ctrl iM C K F F+ + = +a a a                       (97) 

& ( ) ( ) T Tsen i
i i iy t V t= = =b d b Ta

                     (98) 

3.5. State Space Formulation for A MIMO Model 

Here in the present case of actively controlled cantilever beam only first three 
vibratory modes are controlled since more energy is stored in lower order modes 
as similar to lower order Fourier components are larger in magnitude and the 
higher frequency components are smaller as the harmonics increase in number 
[38]. The state space model for first three vibratory modes can be obtained as, let 
=a x  where, 

1 1

2 2

3 3

a x
a x
a x

   
   = = =   
   
   

a x                          (99) 

Now 

1 1 4 4

2 2 5 5

3 3 6 6

and
a x x x
a x x x
a x x x

       
       = = = = = =       
       
       

a x a x
  

     

  

             (100) 

Using Equation (94), Equation (95), Equation (99) and Equation (100) in to 
Equation (97), the dynamic equation of the smart structure with 3 vibratory 
modes 

4 4 1
 

5 5 2

6 6 3

ext ctrl i

x x x
M x C x K x F F

x x x

     
     + + = +     
     
     







              (101) 

Which can be further simplified as 

4 4 1
1 1 1 1  

5 5 2

6 6 3

ext ctrl i

x x x
x M K x M C x M F M F
x x x

− − − −

     
     = − − + +     
     
     







        (102) 

In state space form 

( ) ( ) ( )x t u t r t= + +x A B E                    (103) 

( ) ( ) ( )Tt x t u t= +y C D                     (104) 
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As, 

( )
( )

( )

1 1

2 2

3 3 1
1 T 1 T1 1

4 4 1 2 2

5 5

6 6

1 T

00

0

x x
x x
x x I u tI
x x M M u tM K M C
x x
x x

r t
M

− −− −

−

   
   
   
          = +       − −        
   
   
      

 
+  
 

T g T g

T f













    (105) 

1

2
T

31 1
T

42 2

5

6

0
0

x
x
xy
xy
x
x

 
 
 
     =    

     
 
 
  

b T
b T

                       (106) 

where, A  is state matrix, B  is input matrix, C  is output matrix, D  is 
transmission matrix, E  is external load matrix coupling the disturbance to the 
system and all are in continuous time model of LTI system. The size of matrices 

, , ,A B C E  and T  are ( ) ( ) ( ) ( )6 6 , 6 2 , 2 6 , 6 1× × × ×  and ( )20 3×  with D  
being a null matrix. 

4. Simulation for Controllers for Smart Beams with MIMO 
Using Embedded Piezo 

A cantilever beam of proposed parameters as given in Table 1, the piezo mate-
rial properties in Table 2 and material constants in Table 3. The beam is divided 
into 10 finite elements and shear piezo are embedded into parent structure as 
sensors and actuators as presented in Figure 1. The actuators are placed in be-
tween two thick steel beams at FE position 2 and 5, while the sensors are placed 
at FE location 6 and 10, hence developing a single MIMO system with 2 inputs 
and 2 outputs. 
 
Table 1. Properties of the steel cantilever Timoshenko beam. 

Parameter Symbol Numerical Value 

Length (m) L  0.4 

Width (m) bb  0.02 

Thickness of the top layer and bottom 
steel beam layers (m) beamt  0.01 

Young’s Modulus (GPa) sE  210 

Density (kg/m3) bρ  8030 

Damping Constants ,α β  0.001, 0.0001 
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Table 2. Properties of the piezoelectric shear sensor and actuator when the beam is di-
vided into 10 finite elements. 

Parameter Symbol Numerical Value 

Length (m) PZl  0.04 

Width (m) PZb  0.02 

Thickness (m) ,a st t  0.001 

Young’s Modulus (GPa) PZE  84.1 

Density (kg/m3) PZρ  7900 

Piezoelectric strain constant 31d  −274.8×10-12 

 
Table 3. Material properties and constants. 

Material Constants PZT Steel Foam 

G12 (N/m2) 924.8 10×  978.7 10×  69.99 10×  

G13 (N/m2) 924.8 10×  978.7 10×  69.99 10×  

G23 (N/m2) 924.8 10×  978.7 10×  69.99 10×  

d31 (m/V) 90.166 10−− ×  - - 

d15 (m/V) 91.34 10−×  - - 

Q11 (N/m2) 968.4 10×  9211 10×  685.5 10×  

Q22 (N/m2) 968.4 10×  9211 10×  685.5 10×  

Q12 (N/m2) 912.6 10×  92.88 10×  675.6 10×  

Q66 (N/m2) 912.6 10×  978.7 10×  69.99 10×  

 
The MIMO model achieved by using the TBT, piezoelectric coupling, FE 

modeling and state space approach by taking first three vibratory modes into 
consideration. An external impulsive force extf  of 10 N is employed for 60 ms 
at the free end of the cantilever beam. There are three inputs to the system, the 
first one is the external force extf responsible for the disturbance. Other inputs 
are the control inputs ( )1,2iu i =  to actuators by the controller. 

The control strategy presented in this monograph is implemented to design a 
multi-rate output feedback based discrete sliding mode controller to attenuate 
the first three modes of vibration of a cantilever beam by using smart structure 
approach of smart embedded beam with MIMO. 

The performance of the model with multiple inputs and multiple outputs 
for active vibration attenuation by performing simulations in MATLAB® and 
analyzing different responses. The discrete sliding mode controller is designed 
and implemented to MIMO system. The responses viz. control inputs, sensor 
outputs, and switching are demonstrated in included Figure (2a), Figure (2b), 
Figure (3a), Figure (3b) and Figure (4a), Figure (4b) respectively. The values 
are obtained to be [ ]T101 10 37.56 44.93ζδ

−= ×  and  
[ ]T101 10 566.85 52.29oδ

−= ×  

https://doi.org/10.4236/eng.2017.99046


V. Rathi, A. A. Khan 
 

 

DOI: 10.4236/eng.2017.99046 771 Engineering 
 

 
(a)                                                          (b) 

Figure 2. Plot for control input for embedded smart cantilever beam. 

 

 
(a)                                                          (b) 

Figure 3. Plot for sensor output for embedded smart cantilever beam. 

 

 
(a)                                                          (b) 

Figure 4. Plot for Sliding functions for embedded smart cantilever beam. 

5. Elucidation of Results 

DSM controllers have designed to control first three modes of vibration of a 
flexible cantilever beam modelled based on Timoshenko beam theory. New ac-
tive vibration control scheme to suppress the vibrations of MIMO model has 
developed. The actuators are located at 2nd and 5th FE positions while sensors are 
set at 6th and 10th FE position to form the embedded smart cantilever beam with 
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10 finite elements. The piezo crystals are located in the central core at prescribed 
locations, rest core filled with rigid foam, and this central core is sandwiched 
between two regular steel beams as shown in Figure 1. 

It is obvious from previous works that the control is more persuasive at the 
root with the sensor output voltage is significantly more due to the substantial 
dispensation of the bending moment near the firm end for the rudimentary 
mode, thus provoking a stupendous strain rate and the susceptibility of the sen-
sor/actuator duo rely on its placement in the beam and the vibration attributes 
of the system precarious on collocation of the piezo pair and also on some other 
numerous facet viz. the gain of amplifier employed, the mode number and the 
placement of piezo patches at the nodal points from fixed end [28]. Modelling a 
smart structure inclusive of sensor/actuator mass and stiffness and by altering its 
orientation in the beam from the free end to the fixed end acquaint an ample 
modification in the system’s structural response attributes. Sensor voltage is 
lower when the piezo patch is imposed at the free end due to the exiguous strain 
rate and hence demand more control endeavor. MIMO control is superior over 
SISO control due to its multifarious interactions of input and output and 
all-inclusive control endeavor needed by MIMO controller is less than SISO 
controller and also placing the piezo at two distinct FE locations on the beam 
establishing the significant modification in the system structural traits than 
placing it lonely at a location. [39]. 

The multirate output feedback dependent DSMC strategy are more harmo-
nious as compared to the other control approaches viz. periodic output feedback 
(POF) and fast output sampling (FOS) controllers [40]. The multirate output 
feedback based DSMC policy are more episodic as compared to the other control 
techniques. In discrete quasi sliding mode control (DQSMC) with output sam-
ples, there is a necessity of switching function for control and hence engendering 
some chattering phenomenon [41], while control strategy presented in the 
present article is the MROF based DSMC technique obtained from Bartosze-
wicz’s law does not demand any use of switching function and provides control 
input directly in form of past control data and past samples. The system re-
sponds well in closed loop and does not manifest inexpedient chattering phe-
nomenon. MROF based DSMC employ the signum function in the control input 
and the control is computed from the immediate past control value and the past 
control output samples. The fractious system takes an extended time to damp 
out the oscillations in contrast to the system with the designed sliding mode 
control input means without control the transient response was preeminent and 
with control, the vibrations are quashed. 

From simulation results, it can be inferred that sensor output at FE 6 is more 
than sensor output at FE 10 by approximately 10 times due to its high strain rate 
at FE 6 as compared at FE 10 and also the control input are approximately 10 
times smaller in case of MROF as compared to SISO case [41]. In case of MROF 
technique, the states of the system are needed neither for switching function as-
sessment nor for the feedback denotation. DSMC algorithm are computationally 
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unpretentious, ensures better enduringness, brisk convergence and exalted 
steady state authenticity of the system. The technique used is more feasible as the 
output being used rather than states. 

Hence, it can be concluded that the multivariable control is best among all the 
models due to its multilevel interactions on both input and output. A MIMO 
model furnishes excellent energy distribution and even good administration of 
actuation forces and minimal requirement of control forces as compared to SISO 
model for the case of smart cantilever beam with embedded sensors and actuators. 
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Appendix 

1) The Material Constants are 
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2) The Shape Functions are 
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3) Mass Matrix Coefficients for Embedded Beam Element ( )ijm : 
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4) Stiffness Matrix Coefficients for Embedded Beam ( )ijk : 
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