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Abstract 
In this paper, the existence and uniqueness of the global generalized solution 
and the global classical solution for the Cauchy problem of the singularly per-
turbed sixth order Boussinesq type equation are proved. 
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1. Introduction 

In this paper, we consider the following Cauchy problem 

4 6( ) 0tt xx xx x x
u u u u u x R tσ α β= + + + , ∈ , > ,           (1.1) 

0 1( 0) ( ) ( 0) ( )tu x u x u x u x x R, = , , = , ∈ ,             (1.2) 

where ( , )u x t  is the unknown function, subscript x  and t  indicate partial 
derivatives, ( )sσ  is the given function, 0α >  and 0β >  are real numbers, 

0 ( )u x  and 1( )u x  are given functions defined on R . 
There are also several equations which are closely related to Equation (1.1). In 

the numerical study of the ill-posed Boussinesq equation 
2( )tt xx xx xxxxu u u u= + + ,                       (1.3) 

In [1], Darapi and Hua proposed the singularly perturbed Boussinesq equa-
tion 

2( )tt xx xx xxxx xxxxxxu u u u uδ= + + +                   (1.4) 

as a dispersive regularization of the ill-posed classical Boussinesq Equation (1.3), 
where 0δ >  is small parameter. The authors use both filtering and regulariza-
tion techniques to control growth of errors and to provide better approximate 
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solutions of this equation. 
Dash and Daripi presented a formal derivation of (1.4) from two-dimensional 

potential flow equations for water waves through an asymptotic series expansion 
for small amplitude and long wave length in [2] [3]. The physical relevance of 
equation (1.4) describes the bi-directional propagation of small amplitude and 
long capillary-gravity waves on the surface of shallow water for bond number 
(surface tension parameter) less than but very close to 1/3. 

In [4], Feng investigated the generalized Boussinesq equation including the 
singularly perturbed Boussinesq equation 

(2 2)
1

[ ( )]
n

tt xx i i x
i

u Q u b u +
=

= + ,∑                (1.5) 

where 0( ) rQ u u b u r= + ,  and ( 1 )ib i n= , ,�  are all real constants. By the means 
of two proper ansatzs, the author obtained explicit traveling solitary wave solu-
tions. 

In [5], Song et al. studied the existence and uniqueness of the global genera-
lized solution and the global classical for the initial boundary value problem of 
Equation (1.1). In [6], Song et al. also studied the nonexistence of the global so-
lutions for the initial boundary value problem of Equation (1.1). 

The aim of the present article is to prove that, by virtue of the Galerkin me-
thod and prior estimates, the problem (1.1), (1.2) has a unique global generalized 
solution and a unique global classical solution. 

In order to prove that the Cauchy problem (1.1), (1.2) has a unique global so-
lution, we shall consider the following auxiliary problem 

4 6( ) 0tt xx x x x x
v v v v v x R tσ α β= + + + , ∈ , > ,          (1.6) 

0 1( 0) ( ) ( 0) ( )tv x v x v x v x x R, = , , = , ∈ .              (1.7) 

First of all, we shall prove that the periodic boundary value problem of Equa-
tion (1.6) has a unique global solution by the Galerkin method. Next, we prove 
that the Cauchy problem (1.6), (1.7) has a unique global solution by constructing 
a sequence of periodic boundary value problem of Equation (1.6). Then, we can 
obtain a unique global solution of the Cauchy problem (1.1), (1.2) from (1.6), 
(1.7) by setting ( ) ( )xv x t u x t, = , , 0 0( ) ( )xv x u x=  and 1 1( ) ( )xv x u x= . 

2. Periodic Boundary Value Problem of (1.6), (1.7) 

To obtain the global solution for the Cauchy problem (1.6), (1.7), we first discuss 
the following periodic boundary value problem on TQ  

4 6( )tt xx x x x x
v v v v vσ α β= + + + ,                 (2.1) 

( ) ( 2 )x xv x t v x D t, = + , ,                    (2.2) 

0 1( 0) ( ) ( 0) ( )tv x v x v x v x, = , , = ,                (2.3) 

where 0[0 ] [ ] 0 ( )TQ T D D D v x= Ω× , , Ω = − , , > ,  and 1( )v x  are given functions 
defined on Ω  and satisfy (2.2). 
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Let 1 1 1{ ( )} { cos sin 1 2 }
2n n ny x x x n

D D D
δ δ= , , , = , ,�  be the orthogonal  

base in 2 ( )L Ω  composed of the eigenfunctions of the eigenvalue problem 

0y y xλ′′ + = , ∈Ω,  

( ) ( 2 )x xy x y x D= +  

corresponding to eigenvalue 2 2( ) ( 1 2 )i i
i i
D
π

λ δ= = = , ,� . Let 

1
( ) ( ) ( )

N

N Ni i
i

v x t t y xα
=

, = ∑  

be the Galerkin approximate solution of the problem (2.1)-(2.3), where ( )Ni tα  
are the undermined functions, N  is a natural number. 

Substituting ( )Nv x t,  and the approximations 0 1( ), ( )v x v x  into the problem 
(2.1)-(2.3), we get 

4 6( )Ntt Nxx Nx x Nx Nx
v v v v vσ α β= + + + ,               (2.4) 

( ) ( 2 )Nx Nxv x t v x D t, = + , ,                 (2.5) 

0 1( 0) ( ) ( 0) ( )N N Nt Nv x v x v x v x, = , , = .            (2.6) 

Multiplying both sides of (2.4) and (2.6) by ( )sy x , summing up for 
1 2s N= , , ,�  and integrating on Ω , we have 

4 6( ( ) ) 0Ntt Nxx Nx x sNx Nx
v v v v v yσ α β− − − − , = ,              (2.7) 

(0) (0) 1 2 .Ns s Nst sv v s Nβ γ= , = , = , , ,�               (2.8) 

Lemma 2.1. (Adams [7]) There exist constants 0ε >  and ( ) 0C ε >  such 
that for any integers j  and 0m j m, ≤ ≤ , the following inequality holds 

2 22( )j m
x xD u C u D uε ε≤ + .  

Lemma 2.2. Assume that 1( ) ( )C R sσ σ ′∈ ,  is bounded blow, i.e., there is a 
constant 0C  such that 0( )s Cσ ′ ≥  for any 3 2

0 1( ) ( )s R v H v L∈ , ∈ Ω , ∈ Ω . Then 
for any N , the problem (2.7), (2.8) has a global classical solution  

2( ) [0 ]Ns t C Tα ∈ ,  ( 1 2 )s N= , , ,� . Moreover, we have the following estimate 

3
2 2

1( )
( ) ( ) ( ) [0 ]N NtHv t v t C T t T

Ω
⋅, + ⋅, ≤ , ∈ , ,                (2.9) 

where and in the sequel ( )( 1 2 )iC T i = , ,�  are constants which depend on T , 
but not on N  and Ω . 

Proof: Let 1 0 0 0( ) ( ) (0) { 0} 0s s k s k min Cσ σ σ= − − , = , ≤ , then 1(0) 0σ = , 

1 0( ) ( ) 0s s kσ σ′ ′= − ≥  and 1( )sσ  is a monotonically increasing function, and 
thus 

10
( ) 0

s
d s Rσ τ τ ≥ ,∀ ∈∫ . 

Obviously, system (2.7) is equivalent to the following system 

4 60 1( (1 ) ( ) ) 0 1 2Ntt Nxx Nx x sNx Nx
v k v v v v y s Nα β σ− + − − − , = , = , , , .�  (2.10) 

Multiplying both sides of (2.10) by 2 ( )Ns tα� , summing up for 1 2s N= , , ,� , 
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and integrating by parts, we obtain 

3

22 2 2
0 10

( (1 ) 2 ( ) ) 0Nxv
Nt Nx Nxx Nx

d v k v v v s dsdx
dt

α β σ
Ω

+ + − + + =∫ ∫  (2.11) 

When 0 1k < − , by virtue of Lemma 2.1, there is constants 1 0C >  and  

2 0C >  such that 

3

22 2
1

0

( ) ( ) ( ) 0
4(1 )Nx N Nx

v t C v t v t t
k

β
⋅, ≤ ⋅, − ⋅, , > ,

+
     (2.12) 

2 3

2 22
2( ) ( ) ( ) 0

4NNx Nx
v t C v t v t tβ

α
⋅, ≤ ⋅, + ⋅, , > .        (2.13) 

Adding 1 0 22[1 (1 ) ]( )N NtC k C v vα− + + ,  to the both sides of (2.11), integrating 
in [0 ]t, , making use of (2.12), (2.13), we get 

3

 
0

22 2
1

2 22
0 1 0 1

2 2
1 0 2 0

( ) ( ) ( ) 2 ( )
2

2 ( )

[1 (1 ) ] ( ( ) ( ) ) [0 ]

Nxv
N Nt Nx o

v

o
t

N Nt

v t v t v t s dsdx

v v v s dsdx

C k C v v d t T

β
σ

β σ

α τ τ τ

′

Ω

Ω

⋅, + ⋅, + ⋅, +

′′′≤ + + +

+ − + + ⋅, + ⋅, , ∈ , .

∫ ∫

∫ ∫

∫

  (2.14) 

Applying the Gronwall inequality to (2.14), we can obtain (2.9). When 
1 0k− ≤ < , adding 22(1 )( )N NtC v vα+ ,  to the both sides of (2.11), integrating 

the product over [0 ]t, , making use of (2.13) and the Cauchy inequality and 
Gronwall inequality, we get (2.9) immediately. 

Using (2.9) and the Leray-Schauder fixed point theorem [8], we can prove that 
the problem (2.7), (2.8) has a solution 2[0 ]( 1 2 )Ns C T s Nα ∈ , = , , ,� . Lemma 2.2 
is proved. 

Lemma 2.3. (Zhou and Fu [9]) Assume that ( )G z  is a k-times ( 1)k ≥  con-
tinuously differentiable function with respect to variables z  and 

([0 ] ( ))kz L T H∞∈ , ; Ω . Then 
2

2

( )( ) ( ) ( ) k

k

k HG z C m k z t
x Ω

∂
≤ , ⋅, ,

∂
 

where 
( ) [0 ]

max ( ) ( )
x t T

m z x t C m k
, ∈ , ×Ω

= | , |, ,  is a positive constant depending only on  

m  and k . 
Lemma 2.4. Assume that the assumption of Lemma 2.2 hold, 1( )kC Rσ +∈ , 

3
0 1( ) ( )k kv H v H+∈ Ω , ∈ Ω , then there exist the estimates 

3
2 2

2( ) ( )
( ) ( ) ( ) 0k kN NtH Hv t v t C T k+ Ω Ω
⋅, + ⋅, ≤ , ≥ ,         (2.15) 

1

2
3 1 1( )

( ) ( ) 3 , 0.pNtt Hv t C T k p p
Ω

⋅, ≤ , = + ≥           (2.16) 

Proof: We apply the mathematical induction to prove the estimate (2.15). The 
estimate (2.9) is the estimate (2.15) when 0k = . Suppose that when k n= , the 
estimate (2.15) holds. We shall prove that, when 1k n= + , the estimate (2.15) 
holds too. 

Multiply both sides of (2.7) by 1 12( 1) ( )n n
s Nst tλ α+ +− , summing up for 
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1 2s N= , , ,� , integrating by parts, we obtain 

1 2 3 4

2 1

2 2 2 2
( ( ) ( ) ( ) ( ) )

2( ( ) )

n n n n

n n

Nx t Nx Nx Nx

Nx x Nx t

d v t v t v t v t
dt

v v

α β

σ

+ + + +

+ +

⋅, + ⋅, − ⋅, + ⋅,

= , .
 (2.17) 

By lemma 2.1, there is a constant 3 0C > , such that 

3 4

2 22
3( ) ( ) ( ) 0

2n nNNx Nx
v t C v t v t tβ

α+ +⋅, ≤ ⋅, + ⋅, , > .          (2.18) 

Adding 32(1 )( )N NtC v vα+ ,  to the both sides of (2.17), integrating the prod-
uct over [0 ]t, , Cauchy inequality, Lemma 2.3, (2.9) and (2.18), we have 

1 2 4

21 2 4

1

2 2 22

2 2 22 2
0 ( )1 0 0 0

2 2 2
3

( ) ( ) ( ) ( )
2

[ ( 2) ( )

( ) (1 )( ( ) ( ) )]

n n n

nn n n

n

N Nx t Nx Nx

t
Nx Hx x x

N NNx

v t v t v t v t

v v v v C m n v

v C v v dττ

β

β τ

τ α τ τ τ

+ + +

++ + +

+

Ω

⋅, + ⋅, + ⋅, + ⋅,

≤ + + + + , + ⋅,

+ ⋅, + + ⋅, + ⋅, ,

∫ (2.19) 

where 
( ) [0 ]

max ( )Nxx t T
m v x t

, ∈ , ×Ω
= | , | . It follows from (2.9), (2.19) and the Gronwall 

inequality, we get 

2 1 4 61 1 1 1 1 1

2
( ( ) )p p p p p pNxNx tt Nx x Nx Nx Nx tt

v v v v v vσ α β+ + + +≤ + + +  (2.20) 

Multiply both sides of (2.7) by 1 1( 1) ( )p p
s Nstt tλ α− , summing up for 

1 2s N= , , ,� , integrating by parts, Holder inequality, (2.15), we get 

1 5 ( ) [0 ]pNx tt
v C T t T≤ , ∈ , .                  (2.21) 

Theorem 2.1. Under the assumptions of Lemma 2.4, if 3k ≥ , then the prob-
lem (2.1) - (2.3) has a unique generalized global solution ( )v x t, , which has con-
tinuous derivatives ( )(0 2)sx

v x t s, ≤ ≤  and generalized derivatives 
( )(0 6)sx

v x t s, ≤ ≤ , ( )(0 3)sx t
v x t s, ≤ ≤  and ( )ttv x t, . 

Proof: First we give the definition of the generalized solution, which ( )v x t,  
satisfies the identity 

4 6
2

0
[ ( ) ] ( ) 0 ( ) ( )

T
tt xx x x Tx x

v v v v v g x t dxdt g x t L Qσ α β
Ω

− − − − , = ,∀ , ∈∫ ∫  (2.22) 

and the periodic boundary value conditions (2.2), (2.3) in the classical sense. 
By Lemma 2.4, we have 

3
2 2

2( ) ( )
( ) ( ) ( ) [0 ]k kN NtH Hv t v t C T t T+ Ω Ω
⋅, + ⋅, ≤ , ∈ , ,  

1

2
3( )

( ) ( ) [0 ]pNtt Hv t C T t T
Ω

⋅, ≤ , ∈ , ,  

It follows from Sobolev embedding theorem, when 3k = , we know 

([0 ] ) 0 5 , ([0 ] ) 0 2s sNx Nx t
v C T s v C T s∈ , ×Ω ≤ ≤ ∈ , ×Ω ≤ ≤ .（ ） （ ） 

We can select a subsequence of { ( )}Nv x t,  and a function ( )v x t,  and 
N →∞ , the subsequence uniformly converges to the limiting function ( )v x t,  

in TQ . In fact, { ( )}Nv x t,  is the uniformly bound in TQ . Meanwhile 
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1 2

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

N N

N N N N

Nx Nt

v x x t t v x t
v x x t t v x t t v x t t v x t
v x x t t x v x t t tθ θ

| + ∆ , + ∆ − , |

≤| + ∆ , + ∆ − , + ∆ | + | , + ∆ − , |

=| + ∆ , + ∆ || ∆ | + | , + ∆ || ∆ |,

  (2.23) 

where 1 20 1, xθ θ< , < ∆  and t∆  are the change vectors. Therefore, { ( )}Nv x t,  
is equicontinuous in TQ . 

According to Ascoli-Arzela, we can select a subsequence of { ( )}Nv x t, , still 
denoted by { ( )}Nv x t, , such that there exists a function ( )v x t,  and N →∞ , 
the subsequence ( )v x t,  uniformly converges to the limiting function ( )v x t,  
in TQ . The corresponding subsequences { ( )}( 1 2)sNx

v x t s, = ,  also uniformly 
converges to ( )( 1 2)sx

v x t s, = ,  in TQ , respectively. 
Making use of the weakly compact theorem of the space 2 ( )TL Q , we know 

that the subsequences { ( )}(0 6)sNx
v x t s, ≤ ≤ , { ( )}(0 3)sNx t

v x t s, ≤ ≤  and 
{ ( )}Nttv x t,  weakly converge to ( )(0 6)sx

v x t s, ≤ ≤ , ( )(0 3)sx t
v x t s, ≤ ≤  and  

( )ttv x t,  in 2 ( )TL Q , respectively. 
In fact, 

2 2 2

2 2

2

0

30

0

3 0

[ ( ) ( ) ] ( )

[ ( )( ) ( ( )) ] ( )

max ( ) ( ) ( )

max ( ( )) ( ) ( )

T

T

T
Nx x x x

T
Nx x Nx xNx x x

T
Nx Nx xQ

T
x Nx x Nx xxQ

v v g x t dxdt

v v v v v v v g x t dxdt

v v v g x t dxdt

v v v v v v g x t dxdt

σ σ

σ σ θ

σ

σ θ

Ω

Ω

Ω

Ω

| − , |

′ ′′=| − + + − , |

′≤ | || − , |

′′+ | + − || − , |,

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 (2.24) 

where 30 1θ< < . So the identity (2.22) holds. Obviously ( )v x t,  satisfies the 
periodic boundary value conditions (2.2), (2.3) in the classical sense. Therefore 
when 3k ≥ , there exists a generalized global solution ( )v x t,  of the problem 
(2.1) - (2.3). 

It is easy that we can get the uniqueness of the solution of the periodic boun-
dary value problem (2.1) - (2.3). The Theorem 2.1 is proved. 

Theorem 2.2. Under the assumptions of Lemma 2.4, if 7k ≥ , then the peri-
odic boundary value problem (2.1) - (2.3) has a unique global classical solution 

( )v x t, . 
Proof: Differentiating (2.7) with respect to t , we have 

3 4 6( ( ) ) 0 1 2Nxxt Nx xt sNt Nx t Nx t
v v v v v y s Nα β σ− − − − , = , = , , , .�   (2.25) 

Multiplying both sides of (2.25) by 2 2
3( 1) ( )p p

s Nst
tλ α− , summing up for 

1 2s N= , , ,� , integrating by parts and using the Holder inequality, combining 
(2.15), we conclude 

32 7 2 2( ) 6 0pNx t
v C T k p p≤ , = + , ≥ .           (2.26) 

Combining (2.26) and Sobolev embedding theorem, we know that 

3 ([0 ] ) 0 7sNx t
v C T s k∈ , ×Ω , ≤ ≤ − .  

Using the method of Theorem 2.1, when 7k ≥ , the periodic boundary value 
problem (2.1) - (2.3) has a global classical solution ( )v x t, . It is easy to prove the 
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uniqueness of solution for the problem (2.1) - (2.3). 

3. Cauchy Problem (1.6), (1.7) 

Theorem 3.1. Suppose that 1( ) ( )kC R sσ σ+ ′∈ ,  is bounded blow, 3
0 ( )kv H R+∈ , 

1 ( )kv H R∈ . If 1 13( 3 0)k k p p≥ = + , ≥ , then the Cauchy problem (1.6), (1.7) has 
a unique global generalized solution ( )v x t, . 

Proof: Let us take a real sequence { }( 1)s sD D >  such that sD →∞  as 
s →∞ . For every s , let us construct periodic functions 0 ( )sv x  and 1 ( )sv x  
with period 2 sD  such that 

i) 3
0 1[ ] [ ]k k

s s s s s sv H D D v H D D+∈ − , , ∈ − , ; 
ii) 0 0 1 1( ) ( ) ( ) ( )s sv x v x v x v x= , =  for [ ( 1) 1]s sx D D∈ − − , −  and 

2 20 0[ ] ( )
0 1 3i i

s ssx xL D D L R
v v i k

− ,
≤ , = , , , + ,�  

2 21 1[ ] ( )
0 1 1i i

s ssx xL D D L R
v v i k

− ,
≤ , = , , , + .�  

we consider the following periodic boundary value problem 

4 6( )tt xx x x x x
v v v v vσ α β= + + + ,                  (3.1) 

( ) ( 2 )x x sv x t v x D t, = + , ,                     (3.2) 

0 1( 0) ( ) ( 0) ( ).s t sv x v x v x v x, = , , =                (3.3) 

Let 1 1 1{ ( )} { cos sin 1 2 }
2n n ny x x x n

D D D
δ δ= , , , = , ,�  be the orthogonal  

base in 2 ( )sL Ω  composed of eigenfunctions of eigenvalue problem 

0
( ) ( 2 )

s

x x s

y y x
y x y x D

λ′′ + = , ∈Ω ,

= +
 

corresponding to eigenvalue 2 2( ) ( 1 2 )i i
s

i i
D
π

λ δ= = = , ,� , where ( )s s sD DΩ = − , . 

Suppose that the Galerkin approximate solution of (3.1)-(3.3) is 

1
( ) ( ) ( )

s

s s

N

N N i i
i

v x t t y xα
=

, = ∑  

where ( )
sN i tα  are the undermined functions. 

Let ( )
sNv x t,  satisfy the following equation and conditions 

4 6( )
s s s s s

N tt N xx N x x N x N x
v v v v vσ α β= + + + ,             (3.4) 

( ) ( 2 )
s sN x N x sv x t v x D t, = + , ,                   (3.5) 

0 1( 0) ( ) ( 0) ( )
s sN s N t sv x v x v x v x, = , , = .               (3.6) 

By the same method as in the estimates (2.15), (2.16), we have 

23 1
8( ) ( ) ( )
( ) [0 ]k ks s pss s s

N N t N tH H H
v v v C T t T+ Ω Ω Ω

+ + ≤ , ∈ , ,    (3.7) 

where and in the sequel ( )( 8 9 )iC T i = , ,�  are constants independent of sN  
and sD . By the Sobolev imbedding theorem when 4k = , we get 
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26 3 2 9( ) ( ) ( )
( ) [0 ]

s s ss s s
N N t N tH H L

v v v C T t T
Ω Ω Ω

+ + ≤ , ∈ , ,       (3.8) 

5 2 10( ) ( )
( ) [0 ]

s s
s s

N N tC C
v v C T t T

Ω Ω
+ ≤ , ∈ , .             (3.9) 

By virtue of (3.9) and Ascoli-Arzela theorem, we can select from { ( )}
sNv x t,  a  

subsequence, still denoted by { ( )}
sNv x t, , such that when sN →∞ , 

{ ( )}(0 2)k
sN x

v x t k, ≤ ≤  uniformly converge to limiting functions  

( )(0 2)ksx
v x t k, ≤ ≤  in [0 ]s T× ,Ω , respectively. 

The estimates (3.8) still holds for the above subsequence { ( )}
sNv x t, . Hence, 

we can select from { ( )}
sNv x t,  a subsequence, still denoted by { ( )}

sNv x t, , such  
that when sN →∞ , the subsequences { ( )}(0 6)k

sN x
v x t k, ≤ ≤ ,  

{ ( )}(0 3)k
sN x t

v x t k, ≤ ≤ and { ( )}
sN ttv x t,  weakly converge to limiting functions 

( )(0 6)ksx
v x t k, ≤ ≤ , ( )(0 3)ksx t

v x t k, ≤ ≤  and ( )sttv x t,  in 2 2((0 ) ( ))sL T L, ; Ω ,  

respectively. 
From the corollary of the resonance theorem [10], it follows that the estimates 

(3.8), (3.9) still hold for ( )sv x t, , which is the generalized solution of the prob-
lem (3.1)-(3.3). Using Ascoli-Arzela theorem, we can select from { ( )}sv x t,  a 
subsequence still denoted by { ( )}sv x t, , such that when s →∞ , the subse-
quences { ( )}(0 2)ksx

v x t k, ≤ ≤  uniformly converge to limiting functions  
( )(0 2)kx

v x t k, ≤ ≤  in any domain { 0 }L x L t T− ≤ ≤ , ≤ ≤ , respectively. 
It follows from (3.8) that we can select from ( )sv x t,  a subsequence, still de-

noted by ( )sv x t, , such that when s →∞ , in 2 2((0 ) ( ))L T L L L, ; − , , the subse-
quences { ( )}(0 6)ksx

v x t k, ≤ ≤ , { ( )}(0 6)ksx
v x t k, ≤ ≤  and { ( )sttv x t,  weakly 

converge to limiting functions { ( )}(0 6)kx
v x t k, ≤ ≤ , { ( )}(0 3)kx t

v x t k, ≤ ≤  and 
{ ( )}ttv x t, , respectively. The obtained limiting function ( )v x t,  is just the global 
generalized solution of the auxiliary problem (1.6), (1.7). 

Clearly, the generalized solution of the auxiliary problem (1.6), (1.7) is also 
unique. Therefore when 3k ≥ , the Cauchy problem (1.6), (1.7) has a unique 
global generalized solution. 

Theorem 3.2. Assume that the assumptions of Theorem 3.1 hold, If  

2 27( 6 0)k k p p≥ = + , ≥ , then the Cauchy problem (1.6), (1.7) has a unique  
global classical solution ( )v x t, . 

Proof: Combining the estimates (2.15), (2.16) with (2.35), we obtain 

2 33 1 2
11( ) ( ) ( ) ( )

( ) [0 ]k ks s p ps ss s s s
N N t N t N tH H H H

v v v v C T t T+ Ω Ω Ω Ω
+ + + ≤ , ∈ ,  (3.10) 

By the Sobolev imbedding theorem when 7k = , we get 

2 310 7 4 1 12( ) ( ) ( ) ( )
( )

s s s ss s s s
N N t N t N tH H H H

v v v v C T
Ω Ω Ω Ω

+ + + ≤ ,  

39 6 3 13( ) ( ) ( ) ( )
( )

s s s ss s s s
N N t N tt N tC C C C

v v v v C T
Ω Ω Ω Ω

+ + + ≤ .  

Using the method of Theorem 3.1, when 7k ≥ , the Cauchy problem (1.6), 
(1.7) has a global classical solution. It is easy to prove the uniqueness of solution 
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for the problem (1.6), (1.7). 

4. Cauchy Problem (1.1), (1.2) 

Lemma 4.1. [11] Suppose that 
1 (0 1)
2

s m m Zλ λ += + + , ∈ , , ∈ , then ( )sH R   

may be embedded into ( )mC Rλ+ , and for any ( )su H R∈ , we have 

( ) 0( ) 0
k

k

d u x x k Z k m
dx +| |→ | |→∞ ,∀ ∈ , ≤ ≤ ,  

where Z+  is a set of nonnegative integers. 
Theorem 4.1. Suppose that 2 ( )kC Rσ +∈ , ( )sσ ′  is bounded blow,  

2
0 ( )ku H R+∈ , 1

1 ( )ku H R−∈ . If 1 11 3( 3 0)k k p p− ≥ = + , ≥ , then the Cauchy 
problem (1.1), (1.2) has a unique global generalized solution ( )u x t, . 

Proof: Differentiating (3.4) and (3.6) with respect to x , we have 

3 5 7( )
s ss s s

N xtt N x xxN x N x N x
v v v v vσ α β= + + + ,             (4.1) 

0 1( 0) ( ) ( 0) ( )
s sN x sx N xt sxv x v x v x v x, = , , = .              (4.2) 

Let 

( ) ( )
s sN x Nv x t u x t, = , .                       (4.3) 

Substituting (4.3) into (4.1), (3.5) and (4.2), we obtain 

4 6( )
s s s s s

N tt N xx N xx N x N x
u u u u uσ α β= + + + ,             (4.4) 

( ) ( 2 )
s sN N su x t u x D t, = + , ,                (4.5) 

0 1( 0) ( ) ( 0) ( )
s s s sN N N t Nu x u x u x u x, = , , = .             (4.6) 

By using the change (4.3), it follows from (3.7) that 

22 1 11
14( ) ( ) ( )

( ) [0 ]k ks s pss s s
N N t N tH H H

u u u C T t T+ − −Ω Ω Ω
+ + ≤ , ∈ , .   (4.7) 

From (4.7) and the Sobolev imbedding theorem, we know that 

21 2 1 15( ) ( ) ( )
( ) [0 ]pk ks s s

s s s
N N t N ttC C C

u u u C T t T−+ −
Ω Ω Ω

+ + ≤ , ∈ , .    (4.8) 

By using the same method as in Section 3, it follows from (4.7) and (4.8) that, 
when 4k ≥ , the Cauchy problem (1.1), (1.2) has a generalized global solution 

( )u x t, . 
It is easy that, we prove the uniqueness of solution for the problem (1.1), (1.2). 

Hence, Theorem 4.1 is proved. 
Theorem 4.2. Assume that the assumptions of Theorem 4.1 hold, If 1 7k − ≥

2 2( 6 0)k p p= + , ≥ , then the Cauchy problem (1.1), (1.2) has a unique global 
classical solution ( )u x t, . 

Proof: By virtue of Theorem 3.2, when 8k ≥ , the problem (1.6), (1.7) has a 
unique global classical solution ( )v x t, . Differentiating Equation (1.6), (1.7) with 
x  and substituting ( ) ( )xv x t u x t, = ,  into this equation and 

0 0 1 1( ) ( ) ( ) ( )x xv x u x v x u x= , =  into the obtained initial value condition, we get 
( )u x t,  is the classical global solution of (1.1), (1.2). The proof is completed. 
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