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Abstract 
The Immersed Interface Method (IIM) is derived to solve the corresponding 
Fokker-Planck equation of Brownian motion with pure dry friction, which is 
one of the simplest models of piecewise-smooth stochastic systems. The IIM is 
capable of treating a discontinuity in the drift of Fokker-Planck equation and 
it is readily extended to the dry and viscous friction model. Analytic results of 
the considered model are used to confirm the effectiveness and design accu-
racy of the scheme. 
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1. Introduction 

In recent years, piecewise-smooth stochastic systems (governed by piecewise-smooth 
stochastic differential equations) are usually used to describe biological and 
physical systems. Although for some simple piecewise-linear stochastic differen-
tial equations, analytical solutions of the transition probability distribution can 
be obtained [1] [2], it is difficult to attain analytical expressions for many other 
cases. Hence, we need to develop some effective numerical methods to deal with 
the difficulty in order to know more dynamical behaviors of the systems. 

In this paper, we attempt to solve numerically a Fokker-Planck equation with 
discontinuous drift, which results from a so-called Brownian motion with pure 
dry friction [3]. This dry friction model can be described as the following piece-
wise linear Langevin equation 

( )( ) ( ) ( ).v t v t tσ ξ′ = − +                      (1.1) 
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Here ( )( )v tσ  denotes the sign of the velocity ( )v t , representing the dry 
friction force. ( )tξ  is the Gaussian white noise with zero mean and delta cor-
relation ( ) ( ) 2 ( )t t D t tξ ξ δ′ ′= −  with 0D > . The notation i  stands for the 
average overall possible realizations of the noise, and δ  is the Dirac delta func-
tion. The transition probability distribution 0( , | ,0)p v t v  of (1.1) satisfies the 
following Fokker-Planck equation [4] [5], 

( ) 2
00 0

2

( ) ( , | ,0)( , | ,0) ( , | ,0)
.

v p v t vp v t v p v t vD
t v v

σ∂∂ ∂
= +

∂ ∂ ∂
         (1.2) 

The corresponding initial condition is 0 0( ,0 | ,0) ( )p v v v vδ= −  if 0(0)v v=  
for (1.1). 

Since Equation (1.2) has a discontinuous drift ( )vσ , we must deal with it 
carefully. The IIM is a sharp interface method which can accurately capture dis-
continuities in the solution and the flux. This method has been used for many 
problems, such as elliptic interface problems [6], parabolic interface problems 
[7], moving interface problems [8] and many other applications [9] [10] [11] 
(see [12] [13] for excellent reviews). To the best of our knowledge, there is no li-
terature about the IIM for solving Fokker-Planck equations with discontinuous 
drift so far. Hence, our goal is to solve it. 

The rest of this paper is organized as follows. In Section 2, we derive the IIM 
for the Fokker-Planck Equation (1.2). The numerical results are compared with 
the analytical solutions in Section 3. In addition, the accuracy of the scheme is 
also obtained. Finally, conclusions are made in Section 4. 

2. The Scheme 

We set 1D =  for convenience. At the discontinuous point 0v = , we have the 
matching condition for the solution, 

p p+ −=                            (2.1) 

where +  and −  stand for the limiting values from the right- and left-hand 
sides of 0v = . Integrating (1.2) across the discontinuity, we find 

2v vp p p+ − −= −                         (2.2) 

and then 

2v vp p p− + += +                         (2.3) 

by replacing p−  with p+  in (2.2). 
It follows from (2.1) that t tp p+ −= , that is 

( ) ( )( ) ( )vv vvv vv p p v p pσ σ+ −+ −+ = +  

according to Equation (1.2). Then using the relations (2.1)-(2.3) we have 

2 2vv vv vp p p p+ − − −= − +                       (2.4) 

and 

2 2 .vv vv vp p p p− + + += + +                       (2.5) 

For the numerical scheme, we have first to truncate the computational do-
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main ( , )−∞ +∞  to a finite domain. Without loss of generality, let us assume the 
finite domain to be [ , ]v vL L− , where vL  is a positive constant. Then we assume 
the probability vanishes at the boundary, i.e., 

0( , | ,0) 0vp L t v± = .                  (2.6) 

A uniform grid with step 2 /vh L M=  is chosen here, where M  is a positive 
constant. 

Therefore, the grid points can be expressed as ( 1)i vv L i h= − + − ,  
1, 2, , 1i M= ⋅⋅ ⋅ +  with the discontinuous point being between jv  and 1jv + , 

10j jv v +≤ < . 
We hope to develop finite difference scheme of the form 

1

,1 1 ,2 ,3 1

n n
n n n ni i

i i i i i i i
p p p p p Cγ γ γ

τ

+

− +
−

= + + + , 2,3, ,i M= ⋅⋅ ⋅ ,     (2.7) 

where τ  is the time-step size. This means that we need to determine the coeffi-
cients γ  and the correction term n

iC  so that 

( ) 2

,1 1 ,2 ,3 1 2

( )
.

i

n n n n
i i i i i i i

v v

v p pp p p C
v v

σ
γ γ γ− +

=

∂ ∂
+ + + ≈ + 

∂ ∂ 
      (2.8) 

At a regular grid point iv , , 1i j j≠ + , the coefficients γ  in the explicit dif-
ference scheme (2.7) are obtained by the standard approximation as follows 

1/2
,1 2

( )1 ,
2

i
i

v
hh

σ
γ −= −  1/2 1/2

,2 2

( ) ( ) 2 ,
2

i i
i

v v
h h

σ σ
γ + −−

= −  1/2
,3 2

( )1 ,
2

i
i

v
hh

σ
γ += +  (2.9) 

and the correction term 0.n
iC =  

At the irregular grid point jv , we expand 1
n
jp − , n

jp  and 1
n
jp +  in Taylor se-

ries at the discontinuous point 0v =  to obtain 

2 3
1 1 1

1 ( ),
2

n
j j v j vvp p v p v p O h− − −
− − −= + + +              (2.10) 

2 31 ( ),
2

n
j j v j vvp p v p v p O h− − −= + + +                (2.11) 

2 3
1 1 1

1 ( ).
2

n
j j v j vvp p v p v p O h+ + +
+ + += + + +              (2.12) 

For Equation (2.12), using (2.1), (2.2) and (2.4), we have 

2 2 2 3
1 1 1 1 1 1

1(1 2 ) ( ) ( ).
2

n
j j j j j v j vvp v v p v v p v p O h− − −
+ + + + + += − + + − + +  (2.13) 

Furthermore, substituting (2.10), (2.11) and (2.13) into (2.8) we have 

 

( )

2 2
,1 1 1 ,2

2 2 2
,3 1 1 1 1 1

2

2
0

1 1
2 2

1(1 2 ) ( ) ( )
2

( )
( ).

j j v j vv j j v j vv

n
j j j j j v j vv j

v

p v p v p p v p v p

v v p v v p v p C O h

v p p O h
v v

γ γ

γ

σ

−

− − − − − −
− −

− − −
+ + + + +

=

   + + + + +   
   
 + − + + − + + + 
 

∂ ∂
= + + 

∂ ∂ 

 (2.14) 
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Then by arranging terms we obtain 

( ) ( )2 2
,1 ,2 1 1 ,3 1 ,1 ,2 1 1 ,3

2 2 2
1 ,1 ,2 1 ,3

(1 2 ) ( )

1 1 1 ( )
2 2 2

( ).

j j j j j v j j j j j j j

n
vv j j j j j j j

v vv

p v v p v v v v

p v v v C O h

p p O h

γ γ γ γ γ γ

γ γ γ

− −
+ + − + +

−
− +

− −

+ + − + + + + −

 + + + + + 
 

= − + +

(2.15) 

Comparing both sides of (2.15), one obtains three equations for ,1jγ , ,2jγ  
and ,3jγ  as follows 

2
,1 ,2 1 1 ,3(1 2 ) 0,j j j j jv vγ γ γ+ ++ + − + =                (2.16) 

2
1 ,1 ,2 1 1 ,3( ) 1,j j j j j j jv v v vγ γ γ− + ++ + − = −               (2.17) 

2 2 2
1 ,1 ,2 1 ,3 2,j j j j j jv v vγ γ γ− ++ + =                  (2.18) 

and the correction term 0.n
jC =  

Therefore, one can solve (2.16) - (2.18) to attain the coefficients of Equation 
(2.7) for .i j=  

In a similar way, we can compute the coefficients at the irregular grid point 

1jv +  from the equations 
2

1,1 1,2 1,3(1 2 ) 0,j j j j jv v γ γ γ+ + ++ + + + =              (2.19) 

2
1,1 1 1,2 2 1,3( ) 1,j j j j j j jv v v vγ γ γ+ + + + ++ + + =             (2.20) 

2 2 2
1,1 1 1,2 2 1,3 2,j j j j j jv v vγ γ γ+ + + + ++ + =                  (2.21) 

and the correction term 1 0.n
jC + =  

3. Numerical results 

For the Fokker-Planck Equation (1.2), using spectral decomposition method, 
one can get the transition probability distribution in closed analytic form [1] 
[14]: 

0 0
1 1 1 1ˆ( , | ,0) , ,0 ,p v t v p v t v
D D D D

 
=  

 
            (3.1) 

where 

( )2
/4 | |

(| | | |)/2 ( ) /(4 ) | | | |
ˆ ( , | ,0) 1 erf

42 2

x
x x x x x xe ep x x e e

τ
τ τ

τ
πτ τ

− −
′ ′− − − −  ′− + 

′ = + +  
   

 (3.2) 

is the transition probability distribution in non-dimensional units and 

2

0

2erf( )
z tz e dt

π
−= ∫                       (3.3) 

is the error function. In addition, when t →∞  the Fokker-Planck Equation 
(1.2) admits a steady stationary state 

| |/1( ) .
2

v Dp v e
D

−=                        (3.4) 

Let 1D = , 0 2v =  and the computing interval be [ 10,10]− . We choose the 
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space-step 0.01h =  and the time-step 55 10τ −= × . For simplicity, we take the 
analytic distribution (3.1) at time 0.01t =  as the initial condition for compu-
ting. Figure 1 shows the comparison of numerical and analytical results of the 
probability distribution 0( , | ,0)p v t v  at different times. It can be seen that the 
numerical solutions (points) coincide with the exact solutions (solid lines), indi-
cating the effectiveness of the Scheme (2.7). 

To see the accuracy of the scheme numerically, we consider the 2L  and L∞  
errors between the numerical solutions and the exact solutions defined by 

2

2

1
( ) ,

M

i iL
i

Error h p p
=

= −∑                  (3.5) 

1
max | |,i iL i M

Error p p
∞ ≤ ≤
= −                    (3.6) 

where ip  is the numerical solution and ip  is the exact solution. Then we cal-
culate the order of accuracy. A small time-step 51 10τ −= ×  and 0 2v =  are 
chosen and the problem is recalculated from time 0.01t =  to 1t = . As illu-
strated in Table 1, the scheme is approximated second order in the velocity di-
rection. 
 

 
Figure 1. Transition probability distribution 0( , | , 0)p v t v  of Fokker-Planck Equation 
(1.2) with solid lines corresponding to the exact solutions, points to the numerical solu-
tions, and dashed line to the stationary solution. 
 
Table 1. Accuracy test in the velocity direction for 1t =  and 51 10τ −= × . 

h  2L  error Order L∞
 error Order 

0.04 46.9701 10−×   48.9056 10−×   

0.02 41.7441 10−×  2.00 42.2432 10−×  1.99 

0.01 54.2682 10−×  2.03 55.5016 10−×  2.03 

0.005 69.7086 10−×  2.14 51.2371 10−×  2.15 

-8 -6 -4 -2 0 2 4 6 8

0

0.5

1

1.5

 t = 10

 t = 0.25

 t = 0.5
 t = 1.25

 t = 0.04

 stationary

solution 

https://doi.org/10.4236/jamp.2017.59133


B. Y. Zhang et al. 
 

 

DOI: 10.4236/jamp.2017.59133 1618 Journal of Applied Mathematics and Physics 
 

4. Conclusions 

We have used the IIM to solve a Fokker-Planck equation with discontinuous 
drift in this paper. The numerical results show that the developed scheme is ef-
fective and has second order of accuracy. Moreover, the scheme can be readily 
extended to other dry friction models and the numerical results obtained are 
important references to see whether the dry friction effect exists in engineering 
applications. 
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