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Abstract 
 
This paper presents an algorithm for solving Bi-criteria Minimum Cost Dynamic Flow (BiCMCDF) problem 
with continuous flow variables. The approach is to transform a bi-criteria problem into a parametric one by 
building a single parametric linear cost out of the two initial cost functions. The algorithm consecutively 
finds efficient extreme points in the decision space by solving a series of minimum parametric cost flow 
problems with different objective functions. On each of the iterations, the flow is augmented along a cheap-
est path from the source node to the sink node in the time-space network avoiding the explicit time expan-
sion of the network. 
 
Keywords: Dynamic Network, Parametric Cost, Bi-Criteria Minimum Cost Flow, Successive Shortest Path 

1. Introduction 
 
Classical (static) network flow models have been well 
known as valuable tools for many applications [1] and 
therefore efficient algorithms have been developed. 
However, they fail to capture the dynamic property of 
many real-life problems, such as traffic planning, pro-
duction and distribution systems, communication sys-
tems, and evacuation planning. Dynamic flows are 
widely used to model different network-structured, deci-
sion-making problems over time (see for example [2] 
and [3]), but because of their complexity, dynamic flow 
models have not been investigated as well as classical 
flow models. The time is an essential component, either 
because the flows take time to pass from one location to 
another, or because the structure of the network changes 
over time. 

On the other hand, in many combinatorial optimiza-
tion problems, the selection of the optimum solution 
takes into account more than one criterion. For example, 
in transportation problems or in network flows problems, 
the criteria that can be considered are the minimization 
of the cost for selected routes, the minimization of arrival 
time at the destinations, the minimization of the deterio-
ration of goods, the minimization of the load capacity 
that would not be used in the selected vehicles, the 
maximization of safety, reliability, etc. Often, these cri-
teria are in conflict and for this reason, a multi-objective 
network flow formulation of the problem is necessary. 

In this paper, the case of bi-criteria minimum cost dy-
namic flow problem is considered. The proposed method 
consists in iteratively generating efficient extreme points 
in the decision space by solving a series of minimum 
parametric cost flow problems with different objective 
functions. On each of the iterations, the flow is aug-
mented along a cheapest path from the source node to the 
sink node in the time-space network avoiding the explicit 
time expansion of the network.  

Further on, in Section 2 some basic dynamic network 
flow terminology is presented together with some results 
used in the rest of the paper. More specialized terminol-
ogy is developed in later sections. Section 3 deals with 
the bi-criteria minimum cost dynamic flow problem and 
with the parametric approach for solving it. In Section 4 
the development of the proposed algorithm is presented 
while in Section 5, is given an example that helps under-
standing the steps performed by the former algorithm in 
a discrete dynamic network. In the presentation to follow, 
some familiarity with flow algorithms is assumed and 
many details are omitted, since they are straightforward 
modifications of known results. 
 
2. Terminology and Notations 
 
2.1. Dynamic Network Flows 
 
Many dynamic network flow problems are considered as 
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extensions of static network flow problems. These in-
clude maximum dynamic flow and minimum cost dy-
namic flow problems. The maximum dynamic flow 
problem seeks a dynamic flow which sends as many as 
possible a commodity from a single source to a single 
sink of the network within the time horizon T. The 
minimum cost dynamic flow problem seeks a dynamic 
flow that minimizes the total shipment cost of a com-
modity in order to satisfy demands at certain nodes 
within T. 
 
2.2. Discrete-Time Dynamic Network Flows 
 
A discrete dynamic network  is a directed 
graph where  is a set of nodes  with 

 , ,G N A T
 , ,N i   i

N n , A  is a set of arcs  with  , ,a  a A m , 
and T is a finite time horizon discretized into the set 

 1, , 0,H T
 ,i j

  . An arc a from node i to node j is usu-
ally also denoted by . The following functions are 
associated with each arc  ,a i j A  : the time-de- 
pendent capacity (upper bound) function  , ;u i j  , 

 which represents the maximum 
amount of flow that can enter the arc  at time 

: 0,1,  ,T u A
 ,i j   , 

the time-dependent transit time function  , ;h i j  , 
, and the time-dependent cost 

funct ion  
: 0,1,  ,T 

 , ;c i j
h A

 ,   : 0,1, ,T c A   which 
represents the cost for sending one unit of flow through 
the arc  ,i j  at time  . Time is measured in discrete 
steps, so that if one unit of flow leaves node i at time   
on arc , one unit of flow arrives at node j at 
time 

 , j
 , ;j

a i
h i  , where  , ;h i j   is the transit time 

on arc a. The time horizon T is the time until which the 
flow can travel in the network. The demand-supply func-
tion v i ; ,   represents the de-
mand of node i  at the time-moment , 
if v i  or the supply of node i at the time-moment 

, if . The network has two 
special nodes: a source node s with  for 

and there exists at least one moment of 
time 0  such that ; and a sink 
node t with  for  and there 
exists at least one moment of time 1  such 
that . The condition required for the flow to 

: 0,1,v N  
N

0
   ;v i  


 1, ,T

 ; 0v t  

0
v i

,T 


0
v s

 0;v s  
0,1, ,T  

0,1, 

 ; 0

 0,1, ,T

 ; 0 

0


 ,T


 ; 

, ,T

 , ,T
0,

 1;


0,1 

0,1 


v t
exist it that 

 0,1, ,T i N 

 


 

Definition 1: [4] A feasible dynamic flow  , ;f i j   
(feasible flow over time) on  with 
time horizon T is a function 

 , ,h c T
 , ,T

, , ,G N A u
: 0,1f A    

that satisfies the following constraints: 

 
 

  
 
 

 
, ,

, ; 0

, ; , ; , ; ; ,
j i j A j j i A

h j i

f i j f j i h j i v i

 

  
 

 

   

 ; 0,1, ,i N T                          (1.a) 

       0 , ; , ; , 0,1, , , , ;f i j u i j T i j A         

(1.b) 

     , ; 0, , , , ; 1,f i j i j A T h i j T         (1.c) 

where  , ;f i j   determines the rate of flow (per time 
unit) entering arc  ,i j  at time  . 

Capacity constraints (1.b) mean that in a feasible dy-
namic flow, at most  , ;u i j   units of flow can enter 
the arc  ,i j  at the time-moment  . It is easy to ob-
serve that the flow does not enter arc  at time  ,i j    
if it has to leave the arc after time T; this is ensured by 
condition (1.c). The total cost of the dynamic flow 
 , ;f i j   in a discrete-time dynamic network is defined 

as: 

   
  0,1, , ,

, ; , ;
T i j A

C f f i j c i j


  
 

  


   (2) 

 
2.3. Time-Space Network 
 
In the discrete time model, a useful tool for studying the 
minimum cost flow over time problem is the time-space 
network. The time-space network is a static network 
constructed by expanding the original network in the 
time dimension by considering a separate copy of every 
node i N  at every discrete time step in the time hori-
zon T,  0,1, ,T  . 

A node-time pair (NTP)  ,i   refers to a particular 
node i N  at a particular time step , i.e.,  0,1, ,T  
   0,1, T ,i N  , . 

The NTP  ,i 1  is said to be linked to the NTP 
 2,j   if either 

i)  i j, A  and  2 1 1, ;h i j    , or 
ii)  ,j i A  and  , ;h j i1 2 2    . 
Definition 2: [5] The time-space network  of the 

original dynamic network G is defined as follows: 

TG

    : , | , 0,1, ,TN i i N T     ;        (3.a) 

     
    

: , , , , ;

          0 , ; ,  , ;

TA a i j h i j

T h i j i j A

   

 

  

   
    (3.b) 

   : ; forT Tu a u a a A  ;            (3.c) 

   : ; forT Tc a c a a A  .            (3.d) 

  

For every arc  ,i j A  with traversal time  , ;h i j  , 

capacity  , ;u i j   and cost  , ;c i j  , the time-space 

network  contains arcs TG  , ,i j    , ;h i j,    

for  0,1, , , ;T h i j    with capacities  , ;u i j   

and costs  , ;jc i  . 
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flow For the  ;f a   


in the dynamic network G, the 
function Tf a  that re

e 
presents the corresponding flow 

in the tim network TG  is defined as: 

   ; , .T Tf a f a A            

e-spac

a        (4) 

A (discrete-time) dynamic path
qu

 is defined as a se-
ence of distinct, consecutively linked NTPs: 

        , : , , , , , ,P i i i i i i 
 

1 1 2 21 2 1 1

2 2

,

                        , .

q qk k k k k k

i

    


 (5) 

 
.4. Time-Dependent Residual Network 

he time-dependent residual network corresponding to a 

2
 
T
feasible flow f can be viewed as the static residual net-
work of the time-space network corresponding to the 
dynamic network. 

For  , ;f i j   being the flow entering arc  ,i j  at 
time  , an additional flow    , ; ,u i j f i j;    de-
partin from node i at time g   to  arc node j along the
 ,i j  can be sent. Also,  , ;f i j   units of flow can be 

from node j depart   , ;h i jsent ing at time    and 
consequently arriving at node i at time   ov

xistin
er the arc 

 ,i j , which amounts to cancelling the e g flow on 
c. Here, an arc with negative travel time (i.e. de-

parting at  , ;h i j
the ar

   and arriving at  ) is consid-
ered. Where  unit of flow from i at time as sending a   
to j along  ,i j  increases the flow cost by  , ;c i j   
units, sending unit of flow in reverse direction fr  
departing at time  , ;h i j

 a om j
   to i on the same arc de-

creases the flow cost by  , j;c i   units. 
Considering the abov ed idease mention , the residual 

ne

5] The residual dynamic network with 
re

twork with respect to a current dynamic flow f is de-
fined as follows. 

Definition 3: [
spect to a given feasible dynamic flow f is defined as 
    : , ,G f N A f T  with      :A f A f A f    

where 

       
   

: , , , , ;

with , ; , ; 0

f i j i j A T h i j

u i j f i j

A  

 

    

 
 (6.a) 



        
 

: , , , , ;

with , ; 0

A f i j j i A T h j i

f j i

 



     


 (6.b) 

While the direct arcs have the same 
tra

   ,i j A f  
nsit times  , ;h i j   a , ;jnd costs c i   as in the 

original dynam rk G, the artificial reverse arcs 
   ,i j A f  in the residual dynamic network 

ic netwo
 G f  

ith the following attributes: 

   , ; , ; : , ;h i j h j i h j i

are provided w

 ,          (7)  

   , ; , ; : , ; ,c i j h j i c j i        

with 

      (8) 

    , , 0 , ; , , ;j i A h j i T f j i   0   
e residual capacities of the arcs  ,i j  in the 

 . 
resid-Th

namic network ual dy  G f  are defi ollowned as f s: 

     , ; : , ; , ; ,r i j u f i j

    , , 0 , ;

i j

i j A h i j T

   
       (9.a) 

    

   
   

, ; , ; , ; ,

  , , 0 , ;

r i j h j i f j i

j i A h j i T

 

 

  

   
       (9.b) 

Definition 4: [6] A dynamic path 

 i1 2, , , qP s i i i   

from dynamic augmenting 
path if 

node s to node i is said to be a 
 , ; 0r i i  1k k k k k for  and    1,i i A f k   

1, , 1q  . 
Defin n a dy he residual 

f a
ition 5: [6] Give namic flow f, t

capacity o  dynamic augmenting path 

 1 2, , , qP s i i i i   

is defined by: 

   1
1 1

: min , ;k k k
k q

r P r i i ,  
        (10) 

for    1,k ki i A f  , 1, , 1k q  . 
e cost of a dyDefinition 6: [6] Th namic augmenting 

path  , , ,1 2 qP s i i ii   is defined by: 

   ; 1, , 1kC P c i for k q
   1

1
,

: ,
k k

k k
i i A f 

i     

A dynamic augmenting path  1 2, , , qP s i i i i 
dynamic shortest augmenting path (DSAP)

 is 
referred to as a  
from node 1s i  to node qi  i  if    'C P C P  for 
all dynamic augmenting paths 'P  from node s to node i. 

A dynami h c pat       1 1 2 2, : ,q q qP i i i1, , , , ,i i    is 

ca yc e if lled a dynamic c l  and 1qi i 1q 
c cycle whose t

. A g
tiv  dy otal co

 than z

ow 
Problem 

Th minimum cost dynamic flow problem is 
 determine how a given amount of flow that simulta-

ne a-
e cycle is defined as a st nami

is negative and whose capacity is greater ero. 
 
3. Bi-Criteria Minimum Cost Dynamic Fl

 
e bi-criteria 

to
neously minimizes two total costs should be sent from a 
source node to a sink node within the time horizon T, 
subject to the capacity limits on the arcs of the network. 
The successive shortest path approach adapted to the 
dynamic residual network is based on solving a series of 
successive shortest path problems, where each is solved 
in a residual time-space network. An amount of flow 
equal to the capacity of each minimum cost path ob-
tained is augmented, until the entire flow has been sent 
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etwork with a node 
t nd a finite time horizon T discretized 

from the source to the sink. The main difference among 
the algorithms consists in solving the shortest path prob-
lem in the dynamic residual network. 
 
3.1. The Problem Formulation 
 
Let  , ,G N A T  be a dynamic n
se N, an arc set A a

e set 0,1,

ink no

into th ,T . Without loss of generality, we 
consider that no arcs are entering in the source node or 
leaving the s Considering the time-dependent 
capacity (upper bound) function 

de. 
, ; ,u i j   :u A   

 0,1, ,T  , the time-dependent transit time func-
tion  , ; ,h i j    : 0,1, ,h A T   

tions  , ; ,kc i j
,  and the time-de-

pendent cost func    : 0,1, ,kc A T   , 
repre the k-th objective 
function, 1,2k  , for s e  
the arc 

senting the cost associated with 
nding one  unit of flow through

 ,i j  at time  , the BiCMCDF problem can be 
stated as fi e flow function nding th : 0,1, ,f A T    
that sati he followi g constraints: 

   minimize , ;
T

k ky f c i j

sfies t n

 
0 ( , )

, ; ,

1, 2;

i j A

f i j

k


 

 





  
(11.a) 

subject to: 

 
  0 , , ;

, ;
T

i t A h i t

f i t v
    


   

              (11.b) 

 
 

 
  

 
, , , ;

, ;

,

j i j A j j i A h j i

f i j f

i N s t

   


   



  

  
 (11.c) 

 ,

, ; 0,j i  

    
 

0 , ; , ; , 0,1, ,

, .

f i j u i j T

i j A

     

 


     (11.d) 

The value of the dynamic flow for a time
denoted by v. Any vector f that satisfies the constraint 
(1

 horizon T is 

1.b), the flow conservation constraint (11.c) at the dif-
ferent node-time pairs and the bound constraint (11.d) is 
called a feasible solution of the bi-criteria minimum cost 
dynamic flow (BiCMCDF) problem. 

The set of feasible solutions or decision space is de-
noted by F and its image through 

       1 2,Y F y f y f f F   

is called objective space. 
In general, there is no feasible solution 

imultaneously minimizes both 
ob

of the (Bi- 
CMCDF) problem that s

jectives. In other words, an optimum global solution 
does not exist. For this reason, the solutions of these 
problems are searched for among the set of efficient 
points. 

Definition 7: [7] A feasible solution f F  of the 
bi-criteria minimum cost flow problem is c efficient 
if, 

alled 
feasiband only if, there does not exist another le solu-

tion 'f F  so that    'k ky f y f  for all k values 
and    'k ky f y f  for at least one k. 

De  8: [7] finition  f  is a non-doY minated criterion 
vector if f  is an herwiseefficient solution. Ot   Y f  
is 

ed by
a dominated criter ctor.  
The set of efficient solutions of F will be denot  

ion ve

 E F  while, by extension, E Y   F  is called the set 
of non-dominated solutions of  Y F . It is well known 

 characterize that to  E Y F    bi-criteria con-
tinuous minimum cost flow prob t is only necessary 
to identify the extreme points of  Y F . The set 
of efficient extreme points of F will be denoted by and 
by 

 for the
lem, i

ent effici

 exE F  and the corresponding points of  F  will 
be denoted by 

Y
 exE Y F   . 

 
3.2. The Parametric Approach 

g (BCLP) problems, 
ass and Saaty [8] provide an algorithm using the para-

 
For the bi-criteria linear programmin
G
metric programming technique. Geoffrion [9] discusses 
the availability of parametric programming for a broader 
class of bi-criteria problems. The functions  1y f  and 

 2y f  are assumed to be convex and the feasible re-
gion F is a compact convex set. The para pro-

ing problem is defined as: 
metric 

gramm

       1 2minimize 1y f y f y f

f F

    

 

λ λ

λsubject to , for 0  1
  (12) 

He’s procedure is not radically different from 
Gass and Saaty [8]. 

that of 

Lemma 1: [9] If 0f  is efficient, then there exists a 
scalar 0λ  in the unit interval such that 0f  is an opti-
m

rem
e 

fo

al solution of the parametric programming problem. 
Theo  1: [9] The set of all efficient extreme points 

of the bi-criteria minimum cost flow problem can b
und by solving (12) for each λ  in the unit interval. 
Lemma 2: [9] For each fixed value of λ  satisfying 

0  λ 1 , the optimal solution (12) is a compact line of  
segment in the objective space. If  1y f  nd a  2y f  

dpoints of the line segment, then 

 
are the en

       1 2 11 1y t f  - t f t y f - t y f       2

for all 

, 

,t  0 1t  . 
Aneja and Nair [10] developed a simple algorithm for 

ri ranspor ion problems. Their procedure gen-
er
bi-crite a t tat

ates efficient extreme points on the objective space 
 Y F  rather than on the decision space. A series of 

single objective problems are solved with different ob-
 functions and each problems leads to either a new jective

Copyright © 2011 SciRes.                                                                                OJDM 



M. PARPALEA 120 

efficient extreme point or changes the direction of search 
in the objective space. Although the procedure is con-
ceptually simple, it doesn’t provide the λ -regions for 
each efficient point. Lee and Pulat [7] used the paramet-
ric programming procedure for the bi-crit ia minimum 
cost flow problem by modifying the out-of-kilter algo-
rithm. 

The approach that was proposed in this paper finds the 
efficien

er

t points in the decision space using a successive 
dynamic shortest augmenting path algorithm based on a 
linear parametric label setting procedure. 

Instead of the two costs functions  1 , ;c i j   and 
 2 , ;c i j  , a single parametric cost function of λ , 
 , ; ;i j c λ  can be defined as follows: 

      1 2; 1 , ; , ; ,c i j c i j
 

, ;

0,1

c i j       λ λ λ

λ
 (13) 

As it can easily be seen, for t alue 
parametric cost equals the co with the first 
ob

mum cost 
as

00λ  
st associate

1  th

he v
d 

of the 

jective function, while for λ e cost associated 
with the second objective function is obtained. 

The algorithm starts with 0  and, in any of its 
labeling steps, lexicographically finds the mini

0λ

jectivesociated with the first ob  function and the 
minimum cost associated with the second objective func-
tion, i.e.  1 2min ,c c . 

In the more general case, relating to a given value kλ  
of the parameter, the parametric linear cost function 
 , ; ;i j c λ  can be rewritten as: 

       ; , ; , ; ,k ki j i j

 
, ;

,1k

c i j       λ λ - λ

λ λ
  (14) 

with         1 2 1, ; , ; , ;k ki j c i j c i j c i, ;j      λ
he value of the parame function 
; ;

  
being t tric cost 
 ,c i j λ  for kλ λ  and 

     2 1, ; , ; , ;i j c i j c i j      

slope  parabeing the of the metric cost function for 

kλ λ . 
Similarly, the parametric cost function of a dynamic 

augmenting path from the start node s to node q 
ca

 P q  
n be written as: 

       , , ,c P q q q

 
π ,

,1

k k

k

    λ λ - λ

λ λ
    (15) 

with ;j  
   ,

π , ,k k
i j P q

q i  


   being t e 

rametric cost function

h value of 

the pa   ,P q c λ  for kλ λ  
and   , ,q i ;j

   ,i j P q

      being the slope


 of the 

 of 

of the two linear parametric 
co

param 1k k λetric cost function for λ λ . 
Moreover, in every la value beling step, the 1kλ

the parameter by which one 
st functions of λ  which are compared ains 

minimum can be computed as: 
rem

         1 π , , , ,k k k kj i i j          λ λ (16) 

Lemma 3: The set of all efficient extreme points o
bi-criteria minimu st flow problem can be foun
so

f the 
d by m co

lving a classical minimum cost flow problem with the 
parametric cost function 

       1 2, ; ; 1 , ; , ;c i j c i j c i j      λ λ λ  

for successive kλ  values in the unit interval. 
Proof: Th ma results directly from 

im
e proof of the lem

theorem 1 by s ply making the replacement : 1t   λ  
in

m nt the Algorithm 

ths 

th prob-
ms are divided int o classes: label-setting and label- 

 lemma 2.□  
 
4. Develop e  of 

o tw

 
4.1. Parametric Shortest Dynamic Pa
 
Solution approaches for bi-criteria shortest pa
le
correcting [11]. Label setting algorithms can only be 
applied on acyclic networks and networks with nonnega-
tive. The time-dependent residual network is composed 
of two sub-networks: a forward network consisting of the 
set of forward arcs, denoted by  A f , having positive 
travel times and travel costs; and a reverse network con-
sisting of the set of reverse ar oted by cs, den  A f  
and having negative travel times and travel costs. Each 
of the two sub-networks, alone, is acyclic. In ex  
the time-dependent residual network, the forward and 
reverse arcs are explored simultaneously. 

Property 1: [12] If a time-space network contains no 
negative cycle, then the time-dependent re

ploring

sidual network 
generated based on a dynamic shortest augmenting path 
contains no negative cycle. 

The basic idea of the label setting algorithm is to start 
from NTP  , ss   and to label the NTPs which are 
reachable from  , ss  , according to their cost from 

 , ss  . The algorithm maintains a parametric cost label 
with each NTP  ,i   memorized in the set  , :i    

    , ,iπ ,i    . For every NTP  ,i  , the distance 
label  π ,i   is   either  , indicating that it was not yet 

ugmenting path from discovered any a   , ss   to  ,i  , 
or it is ngth (cost)  the shortest augmenting path 
to 

 the le of

 ,i  . 
At any point in the algorithm, the distance labels are 

divided in two grou permanent and temporary. The 
la

ps: 
bel  π ,i   is permanent once it denotes the length of 

shortest augmenting path from  , ss   to  ,i  , other-
wise it is temporary. A set L of candidate nodes with 
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which lly itemporary labels is maintained,  initia ncludes 
only the source node. The set L holds, in increasing order 
of their temporary labels, all node-time pairs which have 
been reached so far by the algorithm and which are to be 
visited. At any iteration, the algorithm selects a node- 
time pair  ,i   with minimum temporary label, makes 
its distance label permanent, checks optimality condi-
tions and u s labels accordingly. 
 
Optimality Conditions 

pdate

n vaFor a give lue kλ  of the parameter, the distance 
labels  π ,i   represent the length of shortest augment-
ing paths from NTP , ss   to NTP  ,j   if they sat-
isfy the ing: 

a)      , , , ;i j A f i u i j
 follow

, ;j       
 ,h i j

 and
;     if either 

i)     , ,k i jπ , πj i ;     ,


 or 
ii)     π ,j i jπ , ,k i ;      

    , , ,j i   ;jand  i        
 , , , ; 0A f j i    if either b) 

  
 j i
 , π , ,j i hi) π ,j   ; ;kj i i   

   π , , ,kj i h j j
 , or  

   ii) ;i π , ;i       
    , , , ; ,j i h j i      ;iand  j          
 cost labels  π ,iThe minimum   of all node-time 

e exception of 
m
pairs are initialised to infinity with th the 

inimum cost labels of the source node which are ini-
tialised to zero,  π , : 0s   ,  0,1, ,T   . For 
every node-time pair  ,i   selected from L, the arcs 
with positive resi tydual capaci  connecting  ,i   to 
 ,j   are explored, w  0 , ;h i j T  here      if 
the arc connecting  ,i   to  ,j   is a forw arc 

 ;h j i T      en 
the minimum cost lab re up  and the node-time 
pair 

ar
reverse arc. T

d 
hand 0 ,

els a
 if it is a 

dated
 ,j   is ad

didate n

ded to the candidate set if it is not al-
ready in L. The process is repeated until there are no 
more odes in L. 

The travel cost of the minimum cost path, computed 
based on predecessor vector

 can

 p, is given by 

 
 

  
0,1, ,

π π ,
T

t min t








 

with 

 
 

      
0,1, ,

, | π , π
T

t min t t t    


. 

The Pa tric Shortest Dynamic Path (PSDP) pro-
cedure is ted in Table 1. 



rame
presen

Procedure next_lambda         1 2 1 2π ,π , ,i i i i   pre-
sented in Table 2, returns the value of the parame

ear parametric cost functions 
ter up 

to which one of the two lin
of λ  remains minimum. The two linear parametric 
functions to be compared, regarding the arguments of the 
function, are      

Theorem 2: The complexity of Dynamic Parametric 
Sh

1 1π ki i  λ λ  and 

     i   . 2 2π ki λ λ

ortest Path (DPSP) procedure is   . 
Proof: The algorithm performs  iterations 

(se

2O nmT
 O nT

lections) and in each of the iterations  T  arcs 
are explored (which corresponds to the num  of rcs in 
the time-space network). Hence, the total complexity of 
the (DPSP) procedure is 

O m
ber a

 2O nmT .□  
 
4.2. Successive Parametric Shortest Path    

ach successive shortest path algorithm for 

the p

Algorithm 
 

 step of the E
the bi-criteria minimum cost dynamic flow problem will 
repeatedly perform the following operations: 

i) Compute a parametric shortest dynamic path P from 
the source node to the sink node; 

ii) Find the residual capacity  r P  of the minimum 
cost path; 

iii) Augment the flow along arametric shortest 
dynamic path and update the residual network. 

For a given value kλ  of the parameter, the algorithm 
co of hmputes the values t e parametric costs  , ;k i j   

      1 2 1, ; , ; , ;kc i j c i j c i j     λ  for kλ λ  
and the slopes of the ions parametric cost funct

     2 1, ; , ; , ;i j c i j c i j      

for all arcs in the time-dependent residual network. Then 
the algorithm successively finds parametric shortest dy-
namic paths and increases the flow until the value of the 
dynamic flow for the time horizon T equals the total 
deficit of all sink node-time pairs,  . In each of the it-
erations, the value of the parameter by which the para-
metric shortest dynamic path remains minimal is com-
puted and then the algorithm reiterates with this new 
value of the parameter. The algorithm will terminate 
when the value of the parameter becomes equal to 1. The 
Successive Parametric Shortest Path (SPSP) algorithm is 
presented in Table 3. 

Theorem 3: The Successive Parametric Shortest Path 
(SPSP) algorithm computes correctly a bi-criteria mini-
mum cost dynamic flow for a given time horizon T. 

Proof: The consecutive kλ  values are computed as 
the closest values of the parameter for which the order of 
the parametric linear cost functions do not reverse, i.e. do 
not have crossing points within the interval  1,k kλ λ . 
Since for a kλ  value, the flow is augmented along suc-
cessive shortest paths, the correctness of the algorithm 
results from the classical (non-parametric) algorithm. For 
consecutive kλ  values of the parameter, the proof re-
sults directly from Lemma 3.□  

A series of single objective problems are solved with 
different objective functions, corresponding to different  
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hor st Path (DPSP) procedure. Table 1. Dynamic Parametric S

 (1) procedure PSDP

te

),λ,λ,( 1 Bkkp ; 
(2) begin 
(3) for all T},1,{0, θ  do 

(4) begin 
(5) 0:),( θsπ ;  0:),( θsτ ; 
(6) for all }{-N si  do  
(7) begin 
(8) :),( θiπ ; :),( θiτ ; 
(9) end; 

(10) end; 

(11) :)(tπ ; :)(tτ ; }T,1,0,|),({:  θθsL ; 

(12) while ( L ) do 

(13) begin 

(14) select ),( iθi  with minimum ),( iθiπ  from L ;  }),({ iθiLL  ; 

(15) for all (i)Aj  with 0);,( iθjir  do 

(16) if ));,(( Tθjihθ ii   then 

(17) begin 

(18) );,(: iij θjihθθ  ; 

(19)  :λ 1k next_lambda )λ,);,(),(,),(,);,α(),( ,),((( 1 kiijiij θjiβθiτθjτθjiθiθj ππ ; 

(20) 
if ( )),();,α(),(( jii θjθjiθi ππ  ) or 

))),();,(),((  )),();,α(),((( jiijii θjτθjiβθiτθjθjiθi  andππ ) then 

(21) begin 

(22) );,α(),(:),( iij θjiθiθj  ππ ; );,(),(:),( iij θjiβθiτθjτ  ; 

(23) ),(:),( ij θiθj p ; 

(24) if )),(( Lθj j   then }),({: jθjLL  ; 

(25) end; 
(26) end; 

(27) for all (i)Aj  do 

(28) for all jθ  such that );,( jji θijhθθ   and );,();,( jj θijuθijr   do 

(29) begin 

(30)  :λ 1k next_lambda )λ,);,(),( ,),( ,);,α(),( ,),((( 1 kjijjij θijβθiτθjτθijθiθj ππ ; 

(31) 
if ( )),();,α(),(( jji θjθijθi ππ    or 

))),();,(),((  )),();,α(),((( jjijji θjτθijβθiτθjθijθi  andππ )then 

(32) begin 
(33) );,α(),(:),( jij θijθiθj  ππ ; );,(),(:),( jij θijβθiτθjτ  ; 

(34) ),(:),( ij θiθj p ; 

(35) if )),(( Lθj j   then }),({: jθjLL  ; 

(36) end; 
(37) end; 
(38) end; 

(39) }),({)(
T},1,{0,

θtmint
θ

ππ


 ;  )}(),(),({)(
T},1,{0,

tθt|θtτmintτ
θ

ππ 
 

; 

(40) if ))(( tπ  then 0:B   

(41) else for all T},1,{0, θ  do  

(42)  :λ 1k next_lambda )λ,),(,)(( 1,),(,)( kθtτtτθtt ππ ; 

(43) end; 
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Table 2. Procedure next_lambda. 

 (1) procedure next_lambda )λ,)(,)(( 1,)(,)( kiτiτii 2121 ππ ; 

(2) begin 

(3) 1λ:λ"  k ; 

(4) if 0))(-)(( iτiτ 12  then 
(5) begin 

(6) ))(-)((λ:λ' ))/((-)( iτiτiik 1221 ππ ; 

(7) if ( )λ '(λ k  and )1λ '(λ  k ) then λ':λ"  ; 

(8) end; 
(9) return(λ"); 
(10) end;  

 
Table 3. Successive Parametric Shortest Path (SPSP) algorithm. 

 (1) SPSP )(G,v ; 
(2) begin 

(3) 0:k ; 0:λ k ;  

(4) for all T},1,{0, θ  do  

(5) for all Aji ),(  do );,(-);,(:);,( 12 θjicθjicθjiβ  ; 

(6) while 1)(λ k  do 

(7) begin 
(8) 1:λ 1k ; vv' : ;  

(9) for all T},1,{0, θ  do  

(10) for all Aji ),(  do 
(11) begin 

(12) 0:);,( θjifk ; ));,();,((λ);,();,(α 121 θjicθjicθjicθji kk  ;   
(13) end; 
(14) while 0)( v'  do 
(15) begin 
(16) 1:B  ; 
(17) for all T},1,{0, θ  do 

(18) begin 
(19) 0:),( θsp ; 

(20) for all }{-N si  do 1:),( θip ; 
(21) end; 

(22) PSDP ),λ,λ,( 1 Bkkp ; 

(23) if 0)(B  then STOP (no path can be found) 
(24) else  
(25) begin 
(26) build path P  based on p ; 

(27) });,({:)(
),(

i
Pji

θjirminPr


 ; })(,{: Prv'minδ  ; v'-δv': ; 

(28) for all arcs Pji ),(  do 
(29) begin 

(30) if )( ij θθ  then δθjirθjir ii -);,(:);,(    

(31)  else δθijrθijr jj  );,(:);,( ; 

(32) compute );,( ik θjif ; 

(33) end; 
(34) end; 
(35) end; 

(36) ))}(),({(Y 21 kk fyfy:k ; 

(37) 1:  kk ; 
(38) end; 
(39) end;  
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kλ  

term
maxi

values, and each problem leads (for the non-degen-
erate case) to a new efficient solution. The algorithm 

inates when the value of the parameter reaches to the 
mum value of the unit interval. Starting with 0k λ  

for 0k   and ending when  for 1k λ k K , the
K  

 
 performs  steps 

linear segments between two consecutive efficient ex-
treme points. 

Theorem 4: The complexity of the Successive Para-
metric Shortest Path (SPSP) algorithm for computing the 

t of efficient extreme points in the decision space is 
 

 For the labelling operation and computing pa-
rametric costs, all arcs at all times have to be examined, 
so the running time is . Updating the residual 
networks after augm ow also requires a run-
ning time of ost 

algorithm K corresponding to the 

se
 2O K nmT v .
Proof:

 O mT
enting the fl

. Since at m O mT   augmentations 
are done by t DPSP is called he algorithm, procedure   
times for every kλ  

trem
value of th

com
e eter. Hence

efficient ex e point is  
param

puted in
 an 

 O mT
onseque

segments be- 

 + 
ntly, O mT +

for the K 
 2O nmT

steps corresp
  , 

on
i.e.  
ding to 

 2T
 linear 

O nm
the K

. C  

tween two consecutive efficient extreme points, the total 

complexity of the SPSP algorithm is  2O K nmT  .

rk presented in 
3

□  

Fig-

 
5. Example 
 
In the discrete-time dynamic netwo
ure 1(a), the problem is to send    units of flo

rce node s (nod
e horizon wh

acity) of all ar

w at 
e 1) 

ich is
cs ar

minimum bi-criteria cost from th
to the sink node t (node 5) with  
set to T = 4. The upper bounds ( e 
set to 

e sou
in a tim

cap
 , ; : 2u i j   ,  ,i j A 

osts are 
, 0,1, 2,3 
sented in Table
 

 , 4
 4. 

 
and the t s and c

lope 
ransit time pre

 , ;j2, ;i j c i  In the initialisation step, the s  
 1 , ;c i j   

puted (as pr
of the parametric costs 

esented in Table 4) an
corresponding initial value of th

functions are c
 for 0k   and 

e parameter 0

om-
th
0

d, e 
λ , 

   0 1 , ;c i j, ; :i j    
m

 for the so


is initialised at all ti
nodes except

are set. Th
e values to 
urce node, 

e predecessor ve
 , : 1p i     fo

r which 

ctor 
r all 

fo  ,p s   is 

sed to
set to zero, and procedure PSDP

Iteration 1: The distance labe  
 is called. 

ls are initiali
 π 1, : 0   for  0,1, ,T  


 and the set L of can-

didate nodes is set to         : 1,0 , 1L 
ode-time pair, (1,0

, . 
) is removed from the 

1 , 1,2 , 1,3 , 1,4
The selected n

 

 

Figure 1. (a) The dynamic network G considered for exemplifying how the Successive Parametric Shortest Path (SPSP) algorithm 
works; (b) The set of all non-dominated points which lie on the efficient boundary in the objective space for the bi-criteria 
minimum cost dynamic flow problem in network G . 
 

Table 4. Transit times and costs on arcs for the dynamic network in Figure 1. 

(i,j) (1,2) (1,3) (2,4) (2,5) (3,4) (3,5) (4,5) 

2, 0 1

3, 1



 

 
 

1, 0 2

2, 2



 

 
 

3, 0 2

1, 2



 

 
1 

2, 0 2

1, 2



 

 

1, 0 2

3, 2



 

 
 1 h(i,j;) 

c1(i,j;) 2 2 7 9 
4, 0 2

5, 2



 

 
7 1 

c2(i,j;) 3 4 2 2 
6, 0 2

1, 2



 

 
5 5 

β(i,j;) 1 2 –5 –7 
4, 2

2, 0 2 
 

–2 4 
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test ath (SPSP) algorithm on the dynamic network in Figure 1. Table 5. The steps performed by Successive Parametric Shor

k k P 

P

 k  k+1 

 : (1,0), (3,1), (4,3), (5, 4)P   2 
0 0 

 : (1,1), (3, 2), (4,3), (3,1), (5, 2)P 
0 (24,34)   1 6  1 

1 

 : (1,1), (3, 2), (4,3), (5, 4)P   
1 

2 
1 6  

 : (1,0), (3,1), (5,2)P   
1 (25,29)   2 1 3   

1 

 : (1,1), (3, 2), (4,3), (5, 4)P   2 
2 1 3  

 : (1,0), (2,2), (5,3)P   
2 (27,25)   3 3 8   

1 

 ), (2, 2), (5,3)  
3 

: (1,0P  2 
3 8  

 : (1,1), (3,2), (4,3), (5,4)P   
3 (30,20)   4 1 2   

1 

4 1 2   : (1,0), (2, 2), (5,3)P   4 (31,19)   5 1   2 

 
d, ward a d (1,3) at time 

0
set L an  for the for rcs (1,2) an
  , node-time pairs (2,2) and (3,1) are added to the 
set L, labelled as: π(2, 2) : 2 , (2, 2) : 1  , π(3,1) : 2 , 

(3,1) : 2   and (2,2) : (1,0)p  , (3p .,1) : (
,1) is rem
(1,3) at time 

1,0)  are set
oved from the 

1

 
xt no
for th

Then t
set L

he ne
 and, 

de-time pair, (1
e forward arc   , the

t L, labelled 
 

e pair node-tim
as: π(3

 (3,2) is are adde
(3, 2) : 2

d to the se
,2) : 2 ,  

) at time 
 and 

,2
(3,2) :p 

1
(1,1) . Since 

for the arc (1  
will be 
) to the si

me
 time values: 

, the transit time
no path which 
nk node within 

 thing will happen for
2,3,4

 

 

 1 1 
e node

 horizon 

1,2; 
h

e
rc

1

T
e node at all th

3 4   there 
-time pair (2,4
 = 4. The sa

e other

h
connects t
the tim
the sou   . 

in increasing 
bels, is now
oved and, for
me 2

Since the 
ordere

: (L 
the fo

set of candidate nod
rresponding

 3,2) , the first
2,4) and (

e-time pairs, 
 distance la
 one is rem
2,5) at ti

d of
2,2)
rwar

 thei
, (3,1)
d 

r co
, (

arcs (

 
 

  , 
o the set Lnode-time pairs (4,3) and (5,3) are added t  

and labelled as: π(4,3) : 9 , (4,3) : 4   , π(5,3) : 11  
and (5,3) : 6   . The predecessor nodes are set to 

(4,3) : (2, 2)p   and (5,3) : (2, 2)p  . Starting from node 
3 at time 1 

e pair (
, i.e. from th

5,2) 
e node-time pair (3,1), the 

is labelled as π(5,2) : 9node-tim  , 
(5,3) : 0 

,3), 
 a
since 

nd (5,2) : )p

0(3,1) (3,
(3,1 . As f

;1) 6
or the node-time 

pair (4 π 4   and π(4,3) 9 , 
the new label is set to π(4,3) 6 , (4,3) : 4   and the 
predecessor node (is (4,3) :p 3,1)  instea

(2, 2)
d of the pre-

viously stated value (4,3) :p  . Proc
ling node-tim

edure next_ 
e pair (4,3),lambda

com
, in

putes the
voked for relabe

 
 

 value ' : 0 (6 λ
ter than λ
ext value 

9) 4 4) 3   
0  and smalle

he parameter is 

8  wh

set

ich 
r than 

 to
proves to 

1 1λ
be grea 0

at the n so th of t  

1kλ
Sim

1 : λ
ilarly,

3 8 . 
 startin


g from node 3 at time 2  , i.e. 

from the node-time pair (3,2), since 0π(3, 2) (3,4;2)  

7  and π(4,3) 6 , the node-time pair (4,3) keeps its 
tated ure next_lambda, still 

computes the value 
previously but proced s label 

' : 0 (6 7) ( 2 4) 1 6     λ  
is greater than 0 0

 which
λ  and smaller than 1 3 8λ  so 

that the ne he parameter is set to xt value of t : 1 6λ . 
Finally, fo d arc (4,5) at time r the forwar 3  , the 

-tim  is labelled as node e pair (5,4) π 7(5,2) : , 
(5,3) : 8   and (5,p 4) : (4,3)  is set.  

inimum  
puted as:

Since the set L is em
sink node at all time

pty, the m
 values is com

 label of the
 

 (5,4) ,π(5) : min π(5,0),π(5,1),π(5, 2),π(5,3),π  i.e. 

 ,7 7  and π(5) : min , ,9,11    (5) : 8 
pute the

. 
 comProcedure , consecutively will  

values 
 next_lambda
' : 1 4λ  and ' : 3 14λ , both b  

than th f 
e eatering gr

e previously computed value o 1λ
h

: 1 6 . 
e shortest pathBased vector, t  on the predecessor 

 : (1,0), (3,1) , 4)P   is built and its residual , (4,3), (5
capacity   : 2r P   is computed. The flow is augmented 
with     : min ', min 3, 2 2v r P     units along this 
path, the resi ork is 
and the updated e value 

dual netw
xcess 

corresp
'

ondi  ngly updated
  is set to ' : 3 2 1    . 

Since ' 0  , the algorithm reiterates in th
residu etwor  the sh ath

e updated 
al n k finding ortest p  

 )  : , 2), (4,3), (3,1), (5,2P  (1,1), (3
with   : 2r P  ,  in 1, 2 1  and : m   ' : 0  , which

ution
 

ma  kes the algorithm to stop. The first efficient sol

0f  in the 
the path 

decision space sends two units of flow along 
 )  :P 

 along th
(1,0), (3,1

e path 
), (4,3), (5,4 and one unit of 

flow  ), (3,1), (5,2)
int in th

: (1,1), (3,
domina d 

(24, 34)

2), (
ex

4 . 
trem e 

,3P
ing non-

 is 0Y
The correspond

 space
te e po

objective  . 
1Iteration 2: With k  , th le a gorithm computes the 

new parametric costs for 1 : 1 6λ  and co  rrespondingly
finds the second efficient solution 1f , sending two units 
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one unit of flow alo
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