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Abstract 
In this paper, we present an extension of the so-called classical Sherman- 
Morrison-Woodbury (for short SMW) formula for bounded homogeneous 
generalized inverse in Banach spaces. Some particular cases and applications 
will be also considered. Our results generalize the results of many authors for 
finite dimensional matrices and Hilbert space operators in the literature. 
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1. Introduction 

It is well known the Sherman-Morrison-Woodbury (for short SMW) formula 
gives an explicit form for the inverse of matrices of the form *A YGZ+ :  

( ) ( )1 1* 1 1 1 * 1 * 1,A YGZ A A Y G Z A Y Z A
− −− − − − −+ = − +

          
(1) 

where A and G be n n×  and r r×  nonsingular matrices with r n≤ . Also, let 
Y and Z be n r×  matrices such that 1 * 1G Z A Y− −+  is invertible. The SMW 
formula (1) is valid only if the matrices A and 1 * 1G Z A Y− −+  are invertible. 
Over the years, Generalizations (see [1] [2] for example) have been considered in 
the case of singular or rectangular matrices using the concept of Moore-Penrose 
generalized inverses. Certain results on extending the SMW formula to operators 
on Hilbert spaces are also considered by many authors (see [3] [4] [5]). 

Let X and Y be Banach spaces, and ( ),B X Y  be the Banach space consisting 
of all bounded linear operators from X to Y. For ( ),A B X Y∈ , let ( )A  
(resp. ( )A ) denote the kernel (resp. range) of A. It is well known that for 

( ),A B X Y∈ , if ( )A  and ( )A  are topologically complemented in the 
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spaces X and Y, respectively, then there exists a linear projector generalized inverse 
( ),A B Y X+ ∈  defined by ( ), cA Ax x x A+ = ∈  and ( )0, cA y y A+ = ∈ , 

where ( )cA  and ( )cA  are topologically complemented subspaces of 
( )A  and ( )A , respectively. In this case, A A+  is the projection from X 

onto ( )cA  along ( )A  and AA+  is the projection from Y onto ( )cA  
along ( )A . But, in general, we know that not every closed subspace in a 
Banach space is complemented, thus, the linear generalized inverse A+  of A 
may not exist. In this case, we may seek other types of generalised inverses for T. 
Motivated by the ideas of linear generalized inverses and metric generalized 
inverses (cf. [6]), by using the so-called homogeneous (resp. quasi-linear) 
quasi-linear projectors in Banach space, in [7], the authors defined homogeneous 
(resp. quasi-linear) projector generalized inverse. Then, in [8] [9], the authors 
give a further study on this type of generalized inverse in Banach space. More 
important, from the results in [9], we know that, in some reflexive Banach spaces 
X and Y, for an operator ( ),T B X Y∈ , there may exist a bounded homogeneous 
(quasi-linear) projector generalized inverse of T, which is generally neither 
linear nor metric generalized inverse of T. So, from this point of view, it is 
important and necessary to study homogeneous (resp. quasi-linear) generalized 
inverses in Banach spaces. From then on, many research papers about the 
Moore-Penrose metric generalized inverses have appeared in the literature. 

The objectives of this paper are concerned with certain extensions of the so 
called Sherman-Morrison-Woodbury formula to operators between some 
Banach spaces. We consider the SMW formula in which the inverse is replaced 
by bounded homogeneous generalized inverse. More precisely, let ,X Y  be 
Banach spaces, and we denote the set of all bounded linear operators from X into 
Y by ( ),B X Y  and by ( )B X  when X Y= . Let ( )T B X∈ , ( )G B Y∈ , and 

( ),U B Y X∈ , ( ),V B X Y∈  such that hA  and hG  exist, In the main part of 
this paper, we will develop some conditions under which the 
Sherman-Morrison-Woodbury formula can be represented as  

( ) ( ) ,
hh h h h h hT UGV T T U G VT U VT+ = − +  

where hT  is a bounded homogeneous generalized inverse of T. As a consequence, 
some particular cases and applications will be also considered. Our results 
generalize the results of many authors for liner operator generalized inverses. 

2. Preliminaries 

In this section, we recall some concepts and basic results will be used in this 
paper. We first present some facts about homogeneous operators. Let ,X Y  be 
Banach spaces. Denote by ( ),H X Y  the set of all bounded homogeneous 
operators from X to Y. Equipped with the usual linear operations for ( ),H X Y , 
and for ( ),T H X Y∈ , the norm is defined by { }sup 1,T Tx x x X= = ∈ . 
then similar to the space of bounded linear operators, we can easily prove that 

( )( ), ,H X Y ⋅  is a Banach space. For a bounded homogeneous operator 
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( ),T H X Y∈ , we always assume that ( )T X= . 
Definition 2.1 ([8]). Let M X⊂  be a subset and let :T X Y→  be a 

mapping. Then we call T  is quasi-additive on M  if T  satisfies  

( ) ( ) ( ) , , .T x z T x T z x X z M+ = + ∀ ∈ ∀ ∈  

For a homogeneous operator ( ),T H X X∈ , if T  is quasi-additive on 
( )T , then we will simply say T  is a quasi-linear operator.  
Definition 2.2 ([8]). Let ( ),P H X X∈ . If 2P P= , we call P  is a 

homogeneous projector. In addition, if P  is also quasi-additive on ( )P , i.e., 
for any x X∈  and any ( )z P∈ ,  

( ) ( ) ( ) ( ) ,P x z P x P z P x z+ = + = +  

then we call P  is a quasi-linear projector.  
The following concept of bounded homogeneous generalized inverse is also a 

generalization of bounded linear generalized inverse.  
Definition 2.3 ([8]). Let ( ),T B X Y∈ . If there is ( ),hT H Y X∈  such that  

, ,h h h hTT T T T TT T= =  

then we call hT  is a bounded homogeneous generalized inverse of T .  
Definition 2.3 was first given in paper [8] for linear transformations and 

bounded linear operators. The existence condition of a homogeneous generalized 
inverse is also given in [8]. 

3. Main Results 

In this section, we mainly study the SMW formula for bounded homogeneous 
generalized inverses of a bounded linear operator in Banach spaces. In order to 
prove our main theorems, we first need to present some lemmas. The following 
result is well-known for bounded linear operators, we can generalize it to 
bounded homogeneous operators as follows. 

Lemma 3.1 ([10]). Let ( ),T S H X∈  such that T  is quasi-additive on 
( )S  and S  is quasi-additive on ( )T , then I TS+  is invertible if and 

only if I ST+  is invertible. Specially, when ( )T B X∈  and ( )S H X∈ , if S  
is quasi-additive on ( )T , then I TS+  is invertible if and only if I ST+  is 
invertible.  

The following result is well-known for bounded linear operators, we 
generalize it to the bounded homogeneous operators and metric projections in 
the following form. 

Lemma 3.2. Let ( )A H X∈ . Let L X⊂  be a subspace and LP  be the 
quasi-linear projection from X  onto L .  

1) LP A A=  if and only if ( )A L⊂ ;  
2) If A  is quasi-additive on L , then LAP A=  if and only if 
( ) ( )LP A⊂  .  

Proof. Here, we only prove (1), and (2) can be proved in the same way. On the 
one hand, if LP A A= , then ( ) ( ) ( )L LA P A P L= ⊂ =   . On the other hand, 
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for any x X∈ , since, ( )A L⊂ , we can get that ( ) ( ) 0L LA P A x I P Ax− = − = , 
thus, LP A A= . This completes the proof.                               

Lemma 3.3. Let ( ),A H X Y∈  such that hA  exists. Then ( ) ( )h hA A A=   
and ( ) ( )h hAA A=  .  

Proof. Since h h hA A AA= , we have  

( ) ( ) ( ) ( ).h h h h hA A A A AA A A⊂ = ⊂     

So, ( ) ( )h hA A A=  . Similarly, we also have  

( ) ( ) ( ) ( ).h h h h hAA A AA A AA= = ⊂     

Therefore, ( ) ( )h hAA A=  .                                     
Theorem 3.4. Let ( )T B X∈ , ( )G B Y∈ , and ( ),U B Y X∈ , ( ),V B X Y∈  

such that hT  and hG  exist, also, let ( )=S T UGV B X+ ∈  and = hC G +

( )hVT U H X∈  such that hS  and hC  exist. Suppose that hS  is 
quasi-additive on ( )T  and ( )U , if  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

, .

h h h h

h h

T S T S

G U C G

⊂ ⊂

⊂ ⊂

   

   
             

(2) 

Then ( )hh h h h h hT T T U G VT U VT= − + .  
Proof. From (2) and Lemma 3.3,  

( ) ( ) ( )
( ) ( ) ( ) ( )

,

.

h h h

h h h h
X

T S S S

I TT TT T S

⊂ =

− = = ⊂

  

   
            

(3) 

Then, using Lemma 3.2, we obtain  

( ), 0.h h h h hT S ST S I TT= − =  

Note that hS  is quasi-additive on ( )T , thus, we have h h hS S TT= , and 
then  

( ) .

h h h h h h h h h

h h h

T U S ST U S ST U S TT U S TT U
S S T T U S U

= = − +

= − +
 

Similarly, by Lemma 3.2, and also note that ( ),U B Y X∈ , then, from 

( ) ( )hG U⊂  , we get hU UGG= . Now, Since hS  is also quasi-additive on 
( )U  and S T UGV− = , thus  

( ) .h h h h h h h hT U S S T T U S U S UGVT U S GGU S UGC= − + = + =      (4) 

Now using Lemma 3.2 again, also note that ( ) ( )hC G⊂   and (4), we get  

.h h h h hS UG S UGCC T UC= =                    (5) 

Now, using (5), by simple computation, we can obtain  

( ) ( )

( ) .

h h h h h h h h h

hh h h h h

T UGV S TT S S UGV T T T UC VT

T T U G VT U VT

+ = = − = −

= − +
 

This completes the proof.                                          
In above Theorem 3.4, if C  and G  are all invertible, we have the following 

https://doi.org/10.4236/jamp.2017.59132


J. B. Cao 
 

 

DOI: 10.4236/jamp.2017.59132 1611 Journal of Applied Mathematics and Physics 
 

result.  
Corollary 3.5. Let ( )T B X∈ , ( )G B Y∈ , and ( ), ,U V B Y X∈  such that hT  

and 1G−  exist, also, let ( )S T UGV B X= + ∈  and ( )1 hC G VT U H X−= + ∈  
such that hS  and 1C−  exist. Suppose that hS  is quasi-additive on ( )T  
and ( )U , if  

( ) ( ) ( ) ( ), .h h h hT S T S⊂ ⊂   
               

(6) 

Then, ( )hh h h h h hS T T U G VT U VT= − + .  
Furthermore, if A  is invertible and YG I=  in Corollary 3.5, then we also 

have the following result. 
Corollary 3.6 ([1], Theorem 2.1). Let ( )A B X∈ , ( ),U B Y X∈ , and 

( ),V B X Y∈  such that A  is invertible. Then A UV+  is invertible if and only 
if 1

YI VA U−+  is invertible. Furthermore, when A UV+  is invertible, then  

( ) ( ) 11 1 1 1 1.YA UV A A U I VA U VA
−− − − − −+ = − +

             
(7) 

Proof. Since 1A−  exists, then, from Lemma 3.1, we see 1
XI A UV−+  is 

invertible if and only if 1
YI VA U−+  is invertible. Now, using the equality 

( )1
XA UV A I A UV−+ = + , we see A UV+  is invertible if and only if 

1
XI A UV−+  is invertible. The formula (7) can be obtained by some simple 

computations.                                                      
Theorem 3.7. Let ( )T B X∈ , ( )G B Y∈ , and ( ),U B Y X∈ , ( ),V B X Y∈  

such that hT  and hG  exist, also, let ( )S T UGV B X= + ∈  and hC G=

( )hVT U H Y+ ∈  such that hS  and hC  exist. Suppose that hT  and hS  are 
quasi-additive on ( )T  and ( )U . If any of the following conditions holds:  

i) ( ) ( ) ( ) ( ) ( ) ( ), , ,h h hT T V C C U V G⊂ ⊂ ⊂        
ii) ( ) ( ) ( ) ( ) ( ) ( ), , ,h h hG U V C C U TT⊂ ⊂ ⊂        

then ( ) .
hh h h h h hS T T U G VT U VT= − +   

Proof. For convenience, set ( )hh h h h hT T U G VT U VTΓ = − + , we will show 
that hS = Γ . Here, we only give the proof under the assumption (i). Another 
can be proved similarly. Note that, if ( ) ( )hT T V⊂  , ( ) ( )hC C U⊂  , 

( ) ( )hV G⊂   then by Lemma 3.2, we have  

( ) ( ) ( )0, 0, 0.h h hV I T T U I C C I G G V− = − = − =  

Consequently, we obtain  

( )( )( )

( )
( )

( )
( ) ( )

.

hh h h h h

hh h h h h h

hh h h h

hh h h h h

h h h h h G

h

S T T U G VT U VT T UGV

T T T UGV T U G VT U VT T

T U G VT U VT UGV

T T U G VT U VT

T T T U I C C GV T UC I G V

T T

Γ = − + +

= + − +

− +

= + +

= + − − −

=

 

Similarly, we can also check that hS TTΓ = . Thus, we have  
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, .h hS T T S S TT S SΓ Γ = Γ = Γ Γ = =  

From Definition 2.3, we have hSΓ =  This completes the proof.          
If we let YG I=  and assume that h

YI VT U+  is invertible in Theorem 3.7, 
then we can get the following result. 

Corollary 3.8. Let ( )T B X∈ , ( ),U B Y X∈  and ( ),V B X Y∈  such that 
hT  exists. Suppose that hT  is quasi-additive on ( )T . If ( )h

YI VT U H Y+ ∈  
is invertible and ( ) ( )N T V⊂  , ( ) ( )U T⊂   then  
( ) ( ) 1h h h h h

YT UV T T U I VT U VT
−

+ = − +  and  

( ) .
1

h h
h h

h

T U VT
T UV T

VT U
+ − ≤

−
 

4. Conclusions 

In this paper, we develop conditions under which the so-called 
Sherman-Morrison-Woodbury formula can be represented by the bounded 
homogeneous generalized inverse. More precisely, we will develop some 
conditions under which the Sherman-Morrison-Woodbury formula holds for 
the bounded homogeneous generalized inverse in Banach space. Note that this is 
the first related results about nonlinear generalized inverse. As a result, our 
results generalize the results of many authors for finite dimensional matrices and 
Hilbert space operators in the literature. 
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