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Abstract 
The harmonic and interharmonic analysis recommendations are contained in 
the latest IEC standards on power quality. Measurement and analysis experiences 
have shown that great difficulties arise in the interharmonic detection and mea-
surement with acceptable levels of accuracy. In order to improve the resolu-
tion of spectrum analysis, the traditional method (e.g. discrete Fourier trans-
form) is to take more sampling cycles, e.g. 10 sampling cycles corresponding to 
the spectrum interval of 5 Hz while the fundamental frequency is 50 Hz. How-
ever, this method is not suitable to the interharmonic measurement, because 
the frequencies of interharmonic components are non-integer multiples of the 
fundamental frequency, which makes the measurement additionally difficult. 
In this paper, the tunable resolution multiple signal classification (TRMUSIC) 
algorithm is presented, which the spectrum can be tuned to exhibit high reso-
lution in targeted regions. Some simulation examples show that the resolution 
for two adjacent frequency components is usually sufficient to measure inter-
harmonics in power systems with acceptable computation time. The proposed 
method is also suited to analyze interharmonics when there exists an undesira-
ble asynchronous deviation and additive white noise. 
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1. Introduction 

Interharmonics can be thought of as the inter-modulation of the fundamental 
and harmonic components of the power system with any other frequency com-

How to cite this paper: Zhang, M., Zhang, 
X., Yao, H. and He, S.F. (2017) A Tunable 
Resolution MUSIC Algorithm for Interhar-
monics Analysis. Journal of Power and Ener-
gy Engineering, 5, 1-13. 
https://doi.org/10.4236/jpee.2017.59001 
 
Received: July 27, 2017 
Accepted: August 28, 2017 
Published: August 31, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jpee
https://doi.org/10.4236/jpee.2017.59001
http://www.scirp.org
https://doi.org/10.4236/jpee.2017.59001
http://creativecommons.org/licenses/by/4.0/


M. Zhang et al. 
 

 

DOI: 10.4236/jpee.2017.59001 2 Journal of Power and Energy Engineering 
 

ponents and can be observed in an increasing number of loads. These loads in-
clude static frequency converters, cycloconverters, sub-synchronous converter 
cascades, induction motors, arc furnaces and so on [1]. 

A method, which is aimed to standardize the harmonic and interharmonic 
measurement, has been proposed by the IEC [2]. This method utilizes discrete 
Fourier transform (DFT) performed over a rectangular time window of exactly 
10 cycles for 50 Hz power systems. The window width fixes the frequency reso-
lution at 5 Hz, so the interharmonic components that are between the bins spaced 
of 5 Hz would spill over primarily into adjacent interharmonic bins with a mini-
mum of spill into harmonic bins. Therefore, the harmonic and interharmonic 
groups are introduced. The interharmonic group is defined as the RMS (Root- 
mean-square) value of all the interharmonic components between adjacent har-
monic groups (see Figure 1). 

However, the accurate estimation method of the interharmonic components 
has not been established yet. Many researchers have been studying new methods. 
For analyzing a range of the interharmonic components, researchers often use 
DFT and its improved algorithms to calculate amplitudes, frequencies and phas-
es of the interharmonic components [3] [4] [5] [6] [7]. The major pitfalls in the 
common DFT applications are the spectral leakage and picket fence effects. 

The multiple signal classification (MUSIC) algorithm exploits the noise sub-
space to estimate the unknown parameters of the random process, which was 
proposed by R. O., Schmidt [8]. This algorithm can also estimate the frequencies 
of complex sinusoids corrupted with additive white noise. T. Lobos et al. [9] [10] 
have already proposed the frequencies determination method of the harmonic 
components using the MUSIC algorithm. But it is difficult to estimate the fre-
quencies of the interharmonic components. 

In this paper, the tunable resolution MUSIC (TRMUSIC) algorithm is pre-
sented to estimate the parameters of interharmonics, which the spectrum can be 
tuned to exhibit high resolution in targeted regions. The organization of this paper 
is as follows. The interharmonic measurement method based on the TRMUSIC 
algorithm is proposed in Section 2. Then, simulation results to demonstrate the 

 

 
Figure 1. Harmonic and interharmonic (sub) groups. 
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validity, precision feasibility and robustness of the algorithm are presented in 
Section 3. At last, the conclusions are given in Section 4. 

2. Trmusic Algorithm 
2.1. Music Algorithm 

The MUSIC algorithm is an eigenvalue subspace decomposition method for es-
timation of the frequencies of complex sinusoids observed in additive white noise. 
Consider a noisy signal vector y  comprised of P  complex sinusoids modeled 
as 

( ) ( ) ( )2π

1
e , 0,1, , 1i

P
j f n t

i
i

y n A e n n N∆

=

= + = −∑ 
           (1) 

with 

e ij
i iA A ϕ=                              (2) 

where iA , if  and iϕ  represent the amplitude, frequency and phase of i-th 
complex sinusoid, respectively. N  is the number of samples in one data rec-
tangular window, t∆  is the fixed time interval, and ( )e n  is a zero mean Gaus-
sian white noise vector with variance 2

nσ . 
Suppose that ( )nY  is the sampled set. Since it is known that  
( ) ( ) ( ) ( ) T

, 1 , , 1n y n y n y n N= + + −  Y  , the ( )nY  can be expressed as 

( ) ( ) ( ) ( )n f n n= +Y A X E                      (3) 

with 

( ) ( ) ( ) ( )1 2, , Pf f f f=   A a a a，                      (4) 

( ) ( ) T2π 12π1, e , , e ii j N f tj f t
if

− ∆∆ =  a                      (5) 

( ) ( ) ( ) ( ) T
1 2, , , Pn x n x n x n=   X                      (6) 

where ( ) 2e ij f n
i ix n A π= . 

The auto-correlation matrix of the noisy signal ( )nY  can be written as 

( ) ( )H H 2EYY XX EE nn n σ = = + = + R Y Y R R APA I              (7) 

where E  denotes the expectation, H  denotes the Domitian transpose and 
( ) ( )HE n n =  P X X  is the diagonal matrix. In addition, H

XX =R APA  and 
2

EE nσ=R I  are the auto-correlation matrices of the signal and noise processes 
respectively, as follows 

H

1

N

XX i i i
i
λυυ

=

= ∑R                           (8) 

2 H

1

N

EE n i i
i

σ υυ
=

= ∑R                          (9) 

where iλ  and iυ  are the eigenvalues and convector of the matrix XXR , re-
spectively. So, the auto-correlation matrix of the noisy signal may be expressed 
as 
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H 2 H H

1 1 1

N N N

YY i i i n i i i i i
i i i
λυυ σ υυ µυυ

= = =

= + =∑ ∑ ∑R                 (10) 

where { }2 , 1, 2, ,i i n i Nµ λ σ= + =   are the eigenvalues of the matrix YYR . All 
the eigenvalues are the real numbers and satisfy 

2
1 2 1p p N nµ µ µ µ µ σ+≥ ≥ ≥ > = = =                  (11) 

Furthermore, the singular value decomposition (SVD) of the matrix YYR  can 
be written as 

H
YY = ΣR U V                               (12) 

where the columns of U and V  are the left and right singular vectors, respec-
tively. Σ  is a diagonal matrix whose diagonal entries are the positive eigenva-
lues of YYR , and [ ]1 2diag Nµ µ µΣ =  . 

Then, the MUSIC spectrum is defined as [11] 

( )
( ) ( ) ( )H H2H

1

1 1
MUSIC N

i
i p

P f
f ff υ

= +

= =

∑ a SS aa
           (13) 

with 

( ) ( ) T2π 12π1, e , , e rr j N f tj f t
rf

− ∆∆ =  a                 (14) 

[ ]1P Nυ υ+=S                         (15) 

where ( )rfa  is the complex sinusoidal vector, rf  is the frequency resolution of 
the MUSIC spectral estimation, and S  is the matrix of convector of the noise 
subspace. 

2.2. The Proposed Tunable Resolution Method 

The frequency resolution rf  of the DFT spectral estimation is low when the 
sampling time ct  (it is also the width of rectangular window) is short because 

1r scf t f N= = , where sf  is the sampling frequency. The frequency resolu-
tion can be improved by increasing the number of frequency points, but it may 
increase the calculation time. The MUSIC algorithm is known as a high-resolu- 
tion frequency estimation method, however, its frequency resolution rf  is in-
variable, which doesn’t allow the best frequency resolution in a dynamic signal. 

Here, a method of obtaining spectral interpolation data on the use of tunable 
factor ∆  is presented. According to the required frequency resolution of inter-
harmonics analysis, the tunable factor ∆  is decided. Furthermore, the frequency 
resolution can be adapt adjusted by changing the tunable factor ∆ . Thus, ( )rfa  
in Equation (14) can be expressed as 

( ) ( ) T2π 12π1, e , , e rr j N f tj f t
rf

′− ∆′∆ ′ =  a                  (16) 

with 

[ ]0,1, , ,r
r

ff k k′ = ⋅ = ∆
∆

                     (17) 
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where rf ′ is the frequency bin sets with the tunable factor ∆ , rf ∆  is the updated 
frequency resolution, and ∆  must be an integer, as shown in Figure 2. There-
fore, such data will replace the initial data for the frequencies estimation. 

2.3. Denouncing Algorithm Based on Cross-Spectral Estimation 

The most important step is to estimate the signal subspace dimension P  for spec-
tral analysis. However, the noise yields an inconsistent estimation that tends to 
estimate the number of peaks in the range profile. To overcome this problem a 
denouncing algorithm based on cross-spectral estimation has proposed. 

Assume two signal sequences  

( ) ( ) ( ) ( ) T
, 1 , , 1n y n y n y n N= + + −  Y   

( ) ( ) ( ) ( ) ( ) T
, 1 , , 1n n m y n m y n m y n N m′ = + = + + + + + −  Y Y   

then 

( ) ( ) ( ) ( )n f n n= +Y A X E                      (18) 

( ) ( ) ( ) ( ) ( ) ( ) ( )n f n n f n n m′ ′ ′= + = Ω + +Y A X E A X E        (19) 

with ( )1 22π 2π 2πdiag e ,e , ,e Pj f m t j f m t j f m t∆ ∆ ∆Ω =  . Thus, the cross-correlation matrix 

YY ′R  of the noisy signal ( )nY  and ( )n′Y  is 

( ) ( )H
YY XX EE XE EXE n n′ ′ ′ ′ ′ ′= = + + + R Y Y R R R R            (20) 

From Equation (20), the matrix YY ′R  is composed of XX ′R , which is the 
cross-correlation matrix of the clean harmonic signal sequences, EE ′R , which is 
the cross-correlation matrix of the noise sequences, and two other cross-correla- 
tion terms XE ′R  and EX ′R . For two noise sequences assumed to be indepen-
dent, we can get 0EE ′ =R  [12]. Typically it is assumed that the clean harmonic 
signal and noise sequences are uncorrelated. This has the effect of removing the 
cross-correlation terms XE ′R  and EX ′R  from the matrix YY ′R . Therefore, the 
matrix YY ′R  simplifies to 

( ) ( )H H H
YY XXE n n′ ′ ′= = = Ω R Y Y R AP A            (21) 

where ( ) ( ) Hn n′ = ΩX X . Equation (21) showsthat the cross-correlation matrix 

YY ′R  of the noisy signal ( )nY  and ( )n′Y  is correlative to the noise. Thus, the 
SVD of the matrix YY ′R  can be writtenas [13]. 

[ ] [ ]HH
1 2 1 2

0
0 0YY ′

′Σ ′ ′ ′ ′ ′ ′ ′= Σ =  
 

R U V U U V V               (22) 

 

 
Figure 2. Resolution of MUSIC spectrum. 
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where the columns of ′U and ′V  are the left and right singular vectors respec-
tively, and [ ]1 2′ ′ ′=U U U , [ ]1 2′ ′ ′=V V V , [ ]1 2diag , , , Pλ λ λ′Σ =  . 

In a real application, the cross-correlation matrix YY ′R  is not known, and it 
should be estimated with sampled data as follows 

( ) ( ) ( ) ( )
1 1

H H

0 0

1 1ˆ
N N

YY
n n

n n n n m
N N

− −

′
= =

′= = +∑ ∑R Y Y Y Y            (23) 

The matrix YY ′R  also takes the form 

11 12 1

21 22

1 2

ˆ

N

YY

N N NN

r r r
r r

R

r r r

′

 
 
 =
 
 
 





   



                    (24) 

where each element ijr  ( ), 1, 2, ,i j N=   is a positive real number such that 

( ) ( )
1

0

1 N

ij
n

r y n i y n j
N

−

=

′= + ⋅ +∑ . 

So, the Equation (23) can be used to estimate the signal subspace dimension 
P  accurately. For example, because zero coefficients are concentrated in the 
higher-lags, a noise robust algorithm by using only the lower-lags of the matrix 
ˆ

YY ′R  can be designed to estimate the signal subspace dimension P . Therefore, 
Equation (13) can be rewritten as 

( )
( ) ( ) ( )H H2H

1

1 1
MUSIC N

i
i P

P f
f ff υ

= +

= =
′ ′′∑ a S S aa

        (25) 

where ′S  is the updated matrix of convector of the noise subspace. 

2.4. Estimation Method of the Amplitude and Phase of the  
Harmonic and Interharmonic Components 

The frequencies of the harmonic and interharmonic components can be esti-
mated from the peak location of the MUSIC spectrum, i.e., the frequencies 
{ }, 1, 2, ,if i p=   can be derived from the horizontal coordinate of the peak 
point of ( )MUSICP f . After the estimation of the frequencies, the signal subspace 
dimension P  of the input signal can also be estimated. In a real application, 
( )ŷ n  is not known. Because the amplitude of the noise is very smaller than that 

of the signal components, let ( )y n  replaces ( )ŷ n . Then, the estimation 
( )ŷ n  of ( )y n  can be represented by 

( ) ( ) ( ) 2π

1
ˆ e i

P
j f n t

i
i

y n y n e n A∆

=

= − = ⋅∑                  (26) 

where ( )0,1, , 1n N= −

.
, i.e., 

( ) ( ) ( )

( )
( )

( )

1 2

1 1 1

1
2π 2π 2π

2

2π 1 2π 1 2π 1

ˆ 01 1 1
e e e ˆ 1

ˆe e e 1

Pj f t j f t j f t

j f N t j f N t j f N t
P

yA
A y

A y N

∆ ∆ ∆

− ∆ − ∆ − ∆

    
    
     =     
    
 −      





   







    (27) 
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Equation (27) can be used to solve least squares for the coefficients 
{ }, 1, 2, ,iA i p=   using only the available data samples [14]. Therefore, the 
amplitude and phase of the components can be obtained from  
{ }, 1, 2, ,iA i p=  , as follows 

( )( ) ( )( )2 2
Re Imi i iA A A= +                       (28) 

( )
( )

Im
arctan

Re
i

i
i

A
A

ϕ
 

=   
 

                          (29) 

where Re( )⋅  returns the real part of the argument, and Im( )⋅  returns the im-
aginary part of the argument. 

3. Simulation Results 

Three cases are performed in Matlab to demonstrate the effectiveness of the pro-
posed algorithm. 

3.1. Case 1 

In practice, the fundamental frequency often deviates from its nominal value. In 
the first simulation, the fundamental frequency is set to 49 Hz, and the signal is 

( ) ( ) ( ) ( ) ( )0.1sin 2π44 30 sin 2π49 45 0.2 2π57 60y t t t t e t= + + − + + +     (30) 

the sampling frequency sf  is 6400 Hz, the number of samples N  is 1280 (10 
cycles), the noise variance 2

nσ  is 0.1, the tunable factor ∆  is set to 5. It can be 
seen from Equation (30) that includes the interharmonic components of 44 Hz 
and 57 Hz. Figure 3 displays the spectrums of MUSIC algorithm based on auto- 
spectral estimation, TRMUSIC algorithm based on cross-spectral estimation, 
and DFT algorithm when the width of rectangular window is 0.2 s (10 cycles), 
respectively. 

In the second simulation, the fundamental frequencies is set to 50.2 Hz, and 
the signal is 

( ) ( ) ( ) ( ) ( )0.1sin 2π44.5 30 sin 2π50.2 45 0.2 2π57.3 60y t t t t e t= + + − + + +   (31) 

the sampling frequency sf  is 6400 Hz, the number of samples N  is 1280, the 
noise variance 2

nσ  is 0.1, the tunable factor ∆  is set to 50. It can be seen from 
Equation (31) that includes the interharmonic components of 44.5 Hz and 57.3 
Hz. Figure 4 displays the spectrums of the MUSIC algorithm based on auto- 
spectral estimation, TRMUSIC algorithm based on cross-spectral estimation, and 
DFT algorithm when the width of rectangular window is 0.2 s, respectively. 

In Figure 3 and Figure 4, the results demonstrate that the TRMUSIC algo-
rithm is not affected by asynchronous sampling, while the MUSIC algorithm 
performs badly in that the peaks of the MUSIC spectrum are not sharp, and the 
DFT algorithm produces large spectral leakage and it even cannot detect most of 
the true frequencies of components in the signal. For example, the second simu-
lation requires that the best frequency resolution is 0.1 Hz, however, the fre-
quency resolution of the MUSIC and DFT algorithm is 5 Hz, respectively. When 
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(a) 

 
(b) 

 
(c) 

Figure 3. Spectrums of DFT, MUSIC and TRMUSIC algorithm for the first simulation: (a) 
Original signal; (b) DFT spectrum; (c) MUSIC and TRMUSIC spectrum. 

 
the tunable factor ∆  is set to 50, the frequency resolution of the TRMUSIC al-
gorithm is 0.1 Hz. It is seen from Figure 4 that the TRMUSIC spectrum has 
sharp peaks. Figure 4 shows the accurate frequencies estimation of the funda-
mental and interharmonic components (44.5 Hz, 50.2 Hz, 57.3 Hz).The corres-
ponding estimation results are listed in Table 1. 

3.2. Case 2 

In this section, simulations are presented to demonstrate the anti-noise perfor-
mance of TRMUSIC algorithm based on cross-spectral estimation comparing to 
that of the MUSIC algorithm based on auto-spectral estimation. When the signal 
represented by Equation (31) is contaminated with additive noise (SNR = 10 dB), 
the results of four simulations are shown in Figure 5. It can be seen that the 
TRMUSIC algorithm based on cross-spectral estimation is only slightly affected 
by additive noise because the pseudo-peaks can locate steadily in the correspond-
ing frequency bins. Although the TRMUSIC spectrums are variable in the mag-
nitudes, the estimation results are quite accurate. Therefore, the TRMUSIC algo-
rithm based on cross-spectral estimation has satisfying results in analyzing noise- 
smeared signals. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Spectrums of DFT, MUSIC and TRMUSIC algorithm for the 
second simulation: (a) Original signal; (b) DFT spectrum; (c) MUSIC 
and TRMUSIC spectrum. 

 
Table 1. Results of fundamental and interharmonic components measurement. 

Case 

Frequency [Hz] Amplitude [Pu] Phase [degree] 

True  
Values 

TRMUSIC 
Estimation 

Values 

True  
Values 

TRMUSIC 
Estimation 

Values 

True  
Values 

TRMUSIC 
Estimation 

Values 

1 

44 44 0.1 0.099 30 30.7237 

49 49 1 1.001 −45 −44.8523 

57 57 0.2 0.199 60 60.6537 

2 

44.5 44.5 0.1 0.098 30 30.6235 

50.2 50.2 1 1.002 −45 −44.7641 

57.3 57.3 0.2 0.1998 60 60.5574 

 
In contrast, the MUSIC algorithm based on auto-spectral estimation has large 

errors of the signal subspace dimension P  estimation; in consequence, the ampli-
tude and phase estimation of the harmonic and interharmonic components may 
produce big deviation. 
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 5. Comparison between the auto-spectral and cross-spectral estimation algorithm: (a) Simulation 1; (b) Simulation 2; (c) 
Simulation 3; (d) Simulation 4. 

3.3. Case 3 

This simulation analyzes the harmonics in the AC/DC/AC converter system. 
The AC/DC/AC converter system is a typical source of interharmonics [7] 

[15]. The inter-harmonic frequencies of the input current derive from the mod-
ulation of the converter harmonic components of operated by the rectifier har-
monics (see Figure 6). The simulation model of the AC/DC/AC converter sys-
tem is established in Matlab/Simulation. The parameters of the model are as fol-
lows. The parameters of the ac supply are 25 3 KVsU = , 1 HsL = , 20sR = Ω . 
The inductance of the dc side is 5 HdcL m= . The parameters of load are

50 HlL m= , 10lR = Ω  .The parameters of transformer are 25 KV 600 V ,  

https://doi.org/10.4236/jpee.2017.59001


M. Zhang et al. 
 

 

DOI: 10.4236/jpee.2017.59001 11 Journal of Power and Energy Engineering 
 

 
Figure 6. AC/DC/AC converter system. 

 
Y-Y connection. The fundamental frequencies of system side and output side are 
50 Hz and 60 Hz, respectively. 

Figure 7 shows the interharmonics analysis results of current wave of phase B 
of the supply system side (5 cycles of samples). The components in the signal are 
measured by the TRMUSIC algorithm, which the tunable factor ∆  is set to 10. 
The frequencies of characteristic harmonics in system side are ( )6 1 mk f±  ( )mf  
is the fundamental frequency of system side). It can be seen from Figure 7 that 
the system side of 50 - 60 Hz AC/DC/AC converter system includes not only the 
characteristic harmonics of 50 Hz, 250 Hz, and 350 Hz, but also the interhar-
monics of 10 Hz, 110 Hz, 310 Hz, and 410 Hz, although the amplitudes of some 
interharmonics are small. 

Then, the results of the TRMUSIC algorithm are compared with that of the 
MUSIC and DFT algorithm. For this simulation, we can see that the frequency 
analysis precision of the TRMUSIC algorithm is higher than that of the MUSIC 
and DFT algorithm, because the frequency resolution of the MUSIC and DFT 
algorithm is 10 Hz while that of TRMUSIC algorithm is 1 Hz, respectively. In 
Figure 7, when the frequencies don’t locate closest to the value of the integer 
frequency, the estimations with the TRMUSIC algorithm are quite accurate by 
predetermining the proper tunable factor ∆ . Unfortunately, this may result in false 
frequency components with the MUSIC and DFT algorithm, and it requires a 
longer data record. From the simulation, it is shown that the TRMUSIC algorithm 
indeed has a clearly higher frequency analysis precision than the MUSIC and 
DFT algorithm. 

3.4. Comparison with MUSIC and DFT Algorithm 

If fast Fourier transform (FFT) algorithm is used to compute its DFT, one such 
limitation is the power-of-two rule, requiring the number of input samples to be 
an integer power of two (i.e., 128, 256, 512). Therefore, choosing to lower sam-
pling frequencies for better resolution is no longer a viable option. A clever en-
gineer would simply increase the number of samples being taken. However, this 
solution quickly gets out of hand. In spite of this, the TRMUSIC algorithm may 
never be faster than the DFT algorithm. 

Ldc

 

   

Inverterrectifier

System Side Output Side

Motor
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 7. Interharmonics analysis of 50 - 60 Hz AC/DC/AC converter system: (a) Current wave of phase B in system side; (b) DFT 
spectrum; (c) MUSIC spectrum; (d) TRMUSIC spectrum. 

 
Compared to the traditional MUSIC algorithm, the TRMUSIC algorithm is 

much more flexible. Given the required frequency resolution of interharmonic 
analysis, you can choose the proper tunable factor ∆ . Having expended the ef-
fort on increasing the accuracy, the TRMUSIC algorithm can be carried out ef-
fectively. 

4. Conclusions 
This paper proposes an effective method to estimate the parameters of inter-
harmonics in power systems. With the increase of points in time domain, the 
frequency resolution is improved because the frequency resolution of MUSIC 
algorithm is sf N  while that of TRMUSIC algorithm is ( )sf N∆ ⋅ . Moreover, 
the frequency resolution of TRMUSIC algorithm can be adapt adjusted by chang-
ing the tunable factor ∆ . 

This research is very fundamental as an application to interharmonic analysis. 
Many tests were made in this work and the TRMUSIC algorithm is the most 
suitable to be used when estimating interharmonic spectrum. It gives us a handy 
solution for some drawbacks that can be found in methods like the DFT or tra-
ditional MUSIC algorithm. 

The TRMUSIC algorithm really meets the need of offline applications. Fur-
thermore, if this algorithm can be implemented in parallel computation, it should 
meet the need of online applications and be more practical. 
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