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Abstract 
This paper considers a multi-period mean-variance portfolio selection prob-
lem with no shorting constraint. We assume that the sample space is finite, 
and the possible securities price vector transitions is equivalent to the number 
of securities. By making use of the embedding technique of Li and Ng (2000), 
the original nonseparable problem can be solved by introducing an auxiliary 
problem. After the risk neutral probability is calculated, the auxiliary problem 
can be solved by using the martingale method of Pliska (1986). Finally, we de-
rive a closed form of the optimal solution to the original constrained problem. 
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1. Introduction 

Portfolio theory deals with the question of how to find an optimal distribution of 
the wealth among various assets. Mean-variance analysis and expected utility 
formulation are two different tools for dealing with portfolio selections. A fun- 
damental basis for portfolio selection in a single period was provided by Mar- 
kowitz. Under the assumption that short-selling of stocks is not allowed, ana- 
lytical expression of the mean-variance efficient frontier in single-period port- 
folio selection was derived by solving a quadratic programming problem in 
Markowitz (1952) [1]. Later, an analytical solution to the single-period mean- 
variance problem with assumption that short-selling is allowed is derived in 
Merton (1972) [2]. 

Recently, a multi-period portfolio selection problem has been studied. This 
problem is more interesting as investors always invest their wealth in multi 
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periods instead of only one period. Work of Li and Ng (2000) [3] considers the 
multi-period portfolio selection problem in a mean-variance framework when 
short-selling of stocks is allowed. Li and Ng have derived the analytical formu- 
lation of the frontier of the multi-period portfolio selection by embedding the 
assets-only multi-period mean-variance problem into a large tractable problem. 
When short-selling is not allowed, the multi-period portfolio selection problem 
is much more difficult to deal with. For continuous-time mean-variance port- 
folio selections, Xun, Xunyu and Andrew (2002) [4] use stochastic optimal 
linear-quadratic method. For multi-period setting, the portfolio selection pro- 
blem with no-shorting constraint has been studied in Xu and Shreve (1992) [5] 
[6]. These papers investigated a utility maximization problem with a no short- 
selling constraint using a duality analysis. 

The objective of this paper is to investigate dynamic mean-variance portfolio 
selection when short-selling is not allowed. Instead of using optimization me- 
thod, this paper used a martingale approach, which was originally proposed by 
Pliska (1986) [7]. To our knowledge, no analytical numerical method using 
martingale measure for finding the optimal portfolio policy with no-short 
shelling constraint for the multiperiod mean-variance formulation has been 
reported in the literature. In this sense, this paper extends existing literature by 
utilizing a martingale approach to solve an optimal portfolio selection problem 
with no-shorting constraint. This approach also showed that a unique equivalent 
martingale measure exist in the no-arbitrage complete market model. An effec- 
tive algorithm is derived for finding the maximum quadratic utility function 
with no-short selling constraint. 

To outline of this paper, In Section 2, we build up the security market model. 
In Section 3, we consider the optimal portfolio selection problem with no short- 
selling constraint. By transforming the original market to some auxiliary 
markets, the optimal value of original constrained problem can be derived by the 
optimal valued of the unconstrained problem in the auxiliary markets. In 
Section 4, we use martingale approach to solve the unconstrained problem in the 
auxiliary markets. In Section 5, the optimal terminal wealth was derived by 
solving a dual problem. In Section 6, the derive the optimal trading strategy 
based on the optimal terminal wealth. A numerical example is also given in the 
Section 7. Finally, we conclude the paper. 

2. Security Market Model 

We consider a multi-period security market model with 1T +  trading dates 
(indexed by 0,1, ,T ), and the time horizon T is finite. There are n risky 
securities and one bond in the market. Let ( ), , PΩ   be the probability space. 
Suppose there are finite states of the world, and let ( ) ( ){ }1,2, ,K t N t=   be 
the state space of the economy at time t. The sample space Ω  of the economy 
has a finite number of element { }1 2, , , Te e eω = 

 with ( )te K t∈ . The filtra- 
tion { }, 0,1, ,t t T= = F  where t  is generated by { }1 2, , , Te e e

 reveals 
the information on the economy. Specifically, { }0 ,= ∅ Ω  and T =  . We 
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claim that the process ( ) ( ){ };0 1k t K t t T= ∈ ≤ ≤ −K  is  -adapted. For any 
\A∈ ∅ , ( ) 0P A > . 

The 1n +  securities are traded in the market without transaction cost. 
Denote the stochastic process of the security price as { };0tS t T= ≤ ≤S , where 

( ) ( )( )1 , ,t t tS S S n ′=   is a random vector, and the bond price process as  
{ };0tB B t T= ≤ ≤ , where tB  is constant. Let { };1tR t T= ≤ ≤R  be the risky 

security return process defined by ( ) ( )( )1 , ,t t tR R R n ′=   and  
( ) ( ) ( )1 1 1t t tR i S i S i−= − ≥ −  for ( )1 0tS i− > , and { };1tr t T= ≤ ≤r  be the bond 

return process defined by 1 1 0t t tr B B −= − ≥  with tr r=  for all 1, ,t T=  . 
Assumption 2.1. 1) The state space at time t  has ( ) 1N t nt= +  elements; 2) 

For any { }1 2, , , Te e eω = 
, if ( )te j K t= ∈ , then  

( ) { } ( )1 1 , 1, , 1j
te K t j j j n K t+ ∈ + = + + ⊆ + ; 3) Denote a matrix D  of the 

securities’ prices 

( ) ( ) ( )

( ) ( ) ( )

1, ,

1, ,

t t t
j

t

t t t

B j S j S n j
D

B j n S j n S n j n

 
 =  
 + + + 



   



 

( ) 1j
trank D n= +  for 1,2, ,t T=   and ( )j K t∈  

The above assumption makes the security market a complete one. We can 
easily verify that the sample space of the market Ω  has ( )1 Tn +  elements 
under assumption 2.1. 

We consider an investor in the financial market with initial wealth v. She or 
he follows a self-financing trading strategies  

{ }; 1, 2, ,tH H t T= = 
 

where ( ) ( )( )1 , ,t t tH H H n ′=   and ( )tH i  is the number of units of the ith 
risky security held between time 1t −  and t . The number of money invested 
in the bond is th . 

Assumption 2.2. The investor invests her or his wealth in the complete 
market with no short-selling constraint, that is  

  for 1, , .tH t T≥ = 0                        (1) 

Let tV  be the value of portfolio at time t , it satisfies  

1 1 1 ,t t t t t t t t t t t tV h B H S V h B r H R− − −′ ′= + = + + S               (2) 

where  

( )

1

1

1

(1) 0
.

0

t

t

t

S

S n

−

−

−

 
 =  
 
 



  



S  

For our convenience, we introduce the discounted price process  

{ }* *;0tS S t T= ≤ ≤  with ( ) ( )( )* * *1 , ,t t tS S S n ′=   and ( ) ( )*
t t tS i S i B= . So the 

discounted value of portfolio is * *
t t tV h H S′= + . The change of the discounted 

prices of risky security is defined as ( ) ( ) ( )( )1 , ,t t ti nδ δ δ ′=   with  
( ) ( ) ( )* *

1t t ti S i S iδ −= − . 
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We can also defined the self-financing trading strategies as { }; 1, 2, ,t t Tπ π= = 
, 

where ( ) ( )( )1 , ,t t t nπ π π ′=   and ( )t iπ  is the fraction of money invested in 
ith risky security at time 1t − . Similarly, the no short-selling requires that 

( )t iπ  is non-negative for any t . Therefore, the value of portfolio can be re- 
written as ( )( )1 11 1 n

t t t t t tiV V i r Rπ π− =
 ′= + − +
 ∑ . It is easy to verify that  

1 1t t t tH S Vπ − −′= . 

3. Primal and Auxiliary Problem 

The multi-period portfolio optimization problem under mean-variance frame- 
work in this paper can be formulated as follows:  

( ) ( )
( ) ( )

max
s.t. 1 & 2 ,

T TE V Var Vω −



 

for 0ω ≥ . Varying the value of ω  yields the set of efficient solutions. 
As indicated in Li and Ng (2000), above problem is difficult to be solved 

directly because of the non-separability in the sense of dynamic programming. 
In Li and Ng (2000), the relation between the multi-period mean-variance 
portfolio selection problem with a fixed investment horizon and a separable 
portfolio selection problem with a quadratic utility function is investigated and 
the analytical solution is derived by using an embedding scheme. Fortunately, 
Theorems 1 and 2 in Li and Ng (2000) can be also applied in the current subject 
with an uncertain investment horizon. We now consider the following auxiliary 
problem:  

( )
( ) ( )

2max

s.t. 1 & 2 ,
T TE V Vλ ω −




 

The objective function of the auxiliary problem is equivalent to the quadratic 

utility function ( ) 21
2

U x x xβ= − , 0
2
λ

β
ω

= > . It is concave and twice con- 

tinuously differentiable function.  
Proposition 3.1. 1) The first derivative of ( )U x  is ( )U x xβ′ = − . 
2) The inverse function of ( )U x′  is ( ) :I y yβ= − . 
The optimal portfolio problem is to maximize the expectation of ( )TU V  

under the no short selling constraint { }; 0n
tπ π π∈ = ∈ℜ ≥K . So the con- 

strained optimal portfolio problem is:  

( )
0

max
s.t , 

TEU V
V vπ ∈ =

 

where   denote the set of all admissible trading strategies belong in K . 
Since there is a no short-selling constraint in the optimal portfolio selection 

problem, it is difficult to be solved directly by dynamic programming. We will 
try to solve the problem by introducing unconstraint auxiliary problems. 

Denote the support function ( )xσ  of K  by  

( ) ( )sup .x x
π

σ π
∈

′≡ −
K
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In order to eliminate the situation ( )xσ = ∞ , we defined that the effective 
domain of σ  is the convex cone ( ){ } { }: ;n nx x x xσ= ∈ℜ < ∞ = ∈ℜ ≥K 0 , 
and ( ) 0xσ =  for x∈ K . We introduce the predictable process  

{ }; 0,1, , 1t t Tκ κ= = −
 with ( ) ( )( )1 , ,t t t nκ κ κ ′= ∈  K  for all 1t ≥ . Let   

denote the set of all such process κ . Define an auxiliary market κM  for each 
κ ∈  by modifying the return processes for the bond and the risky securities 
as:  

1

, 1
, 1

t t

t t t t

r r t
R R B tκ −

→ ≥

→ + ≥
 

Specially, the market 0M  with κ = 0  is the original market. 
We consider the unconstraint optimal portfolio problem in the market κM :  

( )
0

max

s.t
TEU V

V v

κ

=
 

Let ( )J vκ  denote the corresponding optimal objective value in the market 

κM . 
Theorem 3.1. Suppose *

0J  is the optimal solution of the primal constrained 
problem, and *J  is the optimal solution of the dual problem  

( )min ,J vκκ∈
 

where ( )J vκ  is the optimal objective value in the unconstrained market κM , 
associated with the optimal solution *κ . If the optimal trading strategy π  for 
the unconstrained market *κ

M  satisfies. 
a) π ∈   
b) *

1 0t tπ κ −′ = , for all 1t ≥   
Then π  is the optimal strategy for the original constrained market, and 

*
0J J= . 
Proof. For the market *κ

M  and optimal trading strategy π  which satisfies 
(a) and (b), the value of portfolio at time T  is  

( ) ( )
( )

( ) ( )

* *
11

*
11

0
1

1

1

1

T
T t t t t t tt

T
t t t t t t tt

T
t t t t Tt

V v r R B r

v r R r B

v r R r V

κ π π κ

π π κ

π π

−=

−=

=

 ′= + + + − 

 ′ ′= + + − + 

′ = + + − = 

∏
∏
∏

1

1

1

 

As π  is a feasible solution of the original constrained problem, the expected 
utility of ( )0

TV π  is smaller than or equal to the optimal value of the original 
constrained problem. So we have ( ) ( )** 0 *

0T TJ EU V EU V Jκ= = ≤ . 
On the overhands, for an arbitrary market κM  and the optimal trading 

strategy *π  of the original constrained portfolio problem, we have,  

( ) ( )

( )

( ) ( )

* *
11

* *
11

* 0 *
1

1

1

1

T
T t t t t t tt

T
t t t t t t tt

T
t t t t Tt

V v r R B r

v r R r B

r R r V

κ π π κ

π π κ

π π

−=

−=

=

 ′= + + + −
 
 ′ ′= + + − +
 
 ′≥ + + − =
 

∏

∏

∏

1

1

1
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Since ( )( ) ( )( ) ( ) ( )* *

*
*

T TEU V EU V J v J vκ κ
κκ

π π≤ = ≤  for any κ , therefore, 

( )( ) ( )( ) ( )** 0 * *
0 T TJ EU V EU V J vκ

κπ π= ≤ ≤  for any κ . Hence, ( )*
* *
0J J v J

κ
≤ = . 

Putting together the above two inequalities, we have * *
0J J= .  

4. Martingale Method 

Now we try to solve the auxiliary problems  

( )
0

max

s.t
TEU V

V v

κ

=
 

Denote the risk neutral probability in the market κM  as Qκ . Let  
( ) ( ) ( )L Q Pω ω ω=  be the state price density.  
Proposition 4.1. Under the no-arbitrage consideration, The expected dis- 

counted terminal wealth based on the risk neutral probability is equal to the 
initial wealth, i.e.  

( ) .Q T TE V B v
κ

κ κ =  

So the problem is equivalent to  

( )
( )

max

s.t

T

Q T T

EU V

E V B v
κ

κ

κ κ =
 

Theorem 4.1. For the above optimal problem with quadratic utility function, 
the optimal attainable wealth is:  

( ) ( )
*

2 2
,T

T T

T

v E L B
V L B

E L B

κ κ
κ κ κ

κ κ

β
β

 
 −  = +       

 

and the optimal objective value is  

( ) ( )
( ) ( )

2

* 2
2 2

1 .
2 2

T
T

T

v E L B
EU V

E L B

κ κ
κ

κ κ

β
β

 −  = −
 
  

 

Proof.  

( ) ( )
( ) ( )

( )
( ) ( )( ) ( ) ( )

1

1

T

T Q T

T T T

n

i T i T i i T
i

EU V E V

EU V E V L B

P U V V L B

κ

κ κ

κ κ

κ κ

λ

λ

ω ω λ ω ω
+

=

−

= −

 = − ∑

 

The necessary conditions to maximize this expression must be:  

( )( ) ( ) ,  for all .T TU V L Bκ ω λ ω ω′ = ∈Ω  

This is equivalent to  

( ) ( )( ) ( ) ,  for all .T T TV I L B L Bκ ω λ ω β λ ω ω= = − ∈Ω  

The value of the parameter λ  is the one that makes TV κ  satisfies ( )*
Q TE V v
κ

κ = . 
Hence  

( )( ) ( )( ) ( ) ( )2 2
Q T T T T T TE L B B E L B L B E L B E L B v
κ

β λ β λ β λ− = − = − =  
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Therefore, ( ) ( )2 2
T TE L B v E L Bλ β= −   . Hence, we have  

[ ]*
2 2

,  all ,T
T T

T

v E L B
V L B

E L B
κ β

β ω
 −
 = + ∈Ω

    
 

and the optimal objective value  

( )
[ ]( )2

2
2 2

1 .
2 2

T

T

v E L B
J v

E L Bκ

β
β

−
= −

  
 

5. Optimal Terminal Wealth 

Now we come to the dual problem:  

( )
[ ]( )2

2
2 2

1min .
2 2

T

T

v E L B
J v

E L Bκκ

β
β

∈

−
= −

  


 

Since [ ] [ ] 1T T TE L B E L B B= =  and 2 2 2 2
T TE L B E L B   =    , the problem 

is equivalent to  
( )

( )
1

2 2

1
min .

Tn

i
i

E L Q
κ

ω
+

∈ =

  =  ∑


 

Definition 5.1. For arbitrary { }1 , ,i i
i Te eω = ∈Ω , we defined the matrix of 

the price change at time t  as  

( ) ( ) ( )

( ) ( ) ( )
1

1 1 1

1 1 1

1, 1, 1 1,

,

, , 1 ,

i
t

i i i
t t t t t t

e
t

i i i
t t t t t t

e e e n

D

n e n e n e n

δ δ δ

δ δ δ

−

− − −

− − −

 + +
 
 =
 
 + + 



   



 

where ( ),t j iδ  is the change of discounted price of jth security at time t  when 
the market is at state ( )1i K t∈ −  at time 1t − . 

Definition 5.2. Denote ( )1
i
te

tD j−  as an n n×  matrix, which comes from 
1

i
te

tD −  by deleting column j . 
Definition 5.3. Denote ( )1 ,

i
te

tD l j−
  as an n n×  matrix, which comes from 

( )1
i
te

tD l−  by replacing the row j  with 1 n×1 .  
Theorem 5.1. Under the assumption 2.1, the market exists an unique risk 

neutral probability 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

1

1 1 1 11

1
1

1

1 , , ,
,

1

i i it t t

i
t

ne e ei i i i
T t t t t t t t tj

i n j et
tj

D e D e j S j e j e
Q

D j

κ
ω

− −

−

− − − −=

+
=

=

 − +  =
−

∑
∏

∑



 

( ),tS i j  is the price of the ith risky security at time t  when the market is at 
the state ( )j K t∈ .  

Proof. We can see that ( ) 0iQ ω >  for any ( )1,2, , 1 Ti n= + . First, we try to 
prove that the sum of ( )iQ ω  is equal to one. 

For 1T = , we have  

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1
1 1 1 1 0 01

1 1
11

1 ,
,

1

i ne i i
j

i n j

j

D e D e j S j j
Q

D j

κ
ω =

+

=

 − + =
−

∑
∑
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and ( )1ie i= .  

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 11 1
1 1 0 01 1 1

1 1
11

1 1 ,
.

1

n n ni i

j j j
i n j

i
j

D i D i j S j j
Q

D j

κ
ω

+ +

= = =
+

=

− + −
=

−

∑ ∑ ∑
∑

∑



 

Because  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
1 1
1 0 0 1 0 0

1 1 1 1

11 1 1
1 1 1 0 0

1

1 0 0
1

1 , 1 ,

1 1, 2, 1 1,

0,

n n n ni i

i j j i
n n

j
n

j

D i j S j j D i j S j j

D j D j D n j S j j

A j S j j

κ κ

κ

κ

+ +

= = = =

+

=

+

 − = −  

 = − + + + − + 

= =

∑ ∑ ∑ ∑

∑

∑

 

  

  

where 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1 1

1 1 1
1,1 1,2 1,1

1,1 1,2 1,1
,

1 1 1
1,1 1,2 1,1

,1 ,2 ,1

t t t

t t t
t

t t t

t t t n n

n

j j j n
A j

j j j n

n n n n

δ δ δ

δ δ δ

δ δ δ

δ δ δ
+ × +

 
 + 
 
 − − − +
 =
 
 + + + +
 
 
 + 





   







   



 

hence  

( )
( ) ( )
( ) ( )

1 1
11

1 1
11

1
1.

1

n i

i
i n j

i
j

D i
Q

D j
ω

+

=
+

=

−
= =

−

∑∑
∑

 

Suppose for T k= , the sum of the ( )k iQ ω  ( )( )1,2, , 1 ki n= +  is one.For 
1T k= + , the sample space is 1k+Ω . Under the assumption 2.1, 1k+Ω  can be 

divided into ( )1 kn +  subspace ( )11 2
1 1 1 1

kn
k k k k

+
+ + + +Ω = Ω Ω Ω  , where 1

l
k+Ω  

includes all the ω  which has the same state in the first k period (i.e.  

( )1 , ,l l
k le e ω=  ), and ( ) { }1 1 , 1, ,

l
ke l l l

k k k ke K k e e e n+ ∈ + = + + . 1 1
i j
k k+ +Ω Ω =∅

 
for any i j≠ . So for arbitrary subspace 1

l
k+Ω ,   

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

1

1 1

1
1

1 1

1

1

1 1 1 1 11

1
1

1

1 1 1 11

1
1

1

1 , , ,

1

1 , , ,

1

l
i k

i i it t t

i
l t

i k

i i it t t

i
t

k i

ne e ei i i i
k t t t t t t t tj

n j et
tj

ne e ei i i i
k t t t t t t t tj

n j et
tj

Q

D e D e j S j e j e

D j

D e D e j S j e j e

D j

ω

ω

ω

ω

κ

κ

+

− −

−
+

− −

−

+
∈Ω

+ − − − −=

+
=∈Ω

=

− − − −=

+
=

=

 − +  =
−

 − +  =
−

×

∑

∑
∑ ∏

∑

∑
∏

∑





( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

1

1

1 1

1

1 1 11

1
11

1 1 1 11

1
1

1

1 , , ,

1

1 , , ,

1

i i i
k k k

i
l k

i k

i i it t t

i
t

ne e ei i i i
k k t k k k k kj

n j e
kj

ne e ei i i i
k t t t t t t t tj

n j et
tj

D e D e j S j e j e

D j

D e D e j S j e j e

D j

κ

κ

+

+

− −

−

+ + +=

+
∈Ω

+=

− − − −=

+
=

=

 − +  

−

 − +  =
−

∑
∑

∑

∑
∏

∑
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we can verify that  

( ) ( )
1

1 .
l

i k

k i k lQ Q
ω

ω ω
+

+
∈Ω

=∑   

Therefore,  
( )

( )
( )

( )
( )

( )
1

1

1 1 1

1 1
1 1 1

1.
k k k

l
i k

n n n

k i k i k l
i l l

Q Q Q
ω

ω ω ω
+

+

+ + +

+ +
= = =∈Ω

 
= = =  

 
∑ ∑ ∑ ∑   

So we conclude that for any T, the sum of ( )iQ ω  is one, and this defines a 
probability. 

Now we try to prove that the probability is a risk neutral probability in the 
market. Consider an arbitrary time t, and arbitrary event A corresponding to 

1t−  (i.e. for Aω∈ , ( )1 1, , te e ω− = 
 have been known). Suppose 1te ζ− = , we 

know that Aω∀ ∈ , ( ) { }, 1, ,te K t nζ ζ ζ ζ∈ = + + . We denote the subset of A 
as 1 1, , nA A +

 , where all element in iA  has 1te iζ= + −  ( 1 2 1nA A A A +=   ). 
For ith ( )1, ,i n= 

 risky security we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

*
1 1 1 1

1 1

1 1 11

1
1

1

1 1

1 11

1

, , ,

1 , , ,

1

, , ,

1 , ,

Q t t Q t t t t

t t t
A

nl
n t t t tj

n j
l tj

t t t

nl
n t t t tj

l

E S i E i S i i

Q i S i i

D l D l j S j j
Q w

D j

i l S i i

D l i l D l j S
Q w

ω

ζ ζ

ζ ζ

ζ ζ

ζ

σ κ

ω σ ω ω κ ω

ζ κ ζ

σ ζ κ ζ

σ

− − − −

− −
∈

+ − −=

+
=

=

− −

+ −=

=

   = +  
= +  

 − + =
−

× +  

− +
=

∑

∑
∑

∑

∑
∑









 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1

1 1 11
1 11

=1
1

1

1
1

1

1
1 11

, , ,

1

1 , , ,
, ,

1

1 ,

1

1 , , , ,

t t

n j
tj

nl
n t t t tj

t tn j
l tj

n l
t tl

n j
tj

n l
t t t tjl

j j i l

D j

D l D l j S j j
S i i

D j

D l i l
Q w

D j

D l j S j j i l

ζ

ζ ζ

ζ

ζ

ζ ζ

ζ

ζ κ ζ σ

ζ κ ζ
ζ κ ζ

σ

ζ κ ζ σ

−

+

=

+ − −=
− −+

=

+

=
+

=

+
− −≠=

  
  


−
 − +  + × 

− 
 −= 

−

−
+

∑

∑
∑

∑

∑
∑

∑







( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

1

1

1 1

1 1
1 11

1

1
1 11 1

1 11

1

1

1 , , 1
, ,

1

1 , , ,
, ,

1

i
n j

tj

n nl l
t t tl l

t tn j
tj

n nl
t t tl j

t tn j
tj

D j

D l j i l D l
S i i

D j

D l j S j j
S i i

D j

ζ

ζ ζ

ζ

ζ

ζ

σ
ζ κ ζ

ζ κ ζ
ζ κ ζ

+

=

+ +

= =
− −+

=

+
− −= =

− −+

=

−

− + −
+

−

− + 
− 

∑
∑

∑ ∑
∑

∑ ∑
∑





 

There are four part. For part (1),  

( ) ( ) ( )
1

1
1 , 0,

n l t
t t

l t

C
D l i l

D

ζ
ζ

ζσ
+

=

 
− = − = 

 
∑  

where tCζ  is the ith row of tDζ . 
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For part (2), because  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1
1

1 1

1 , , , ,

, , 0
,

n l
t t t t

l

t
t t

t

D l j S j j i l

C
S j j

D l j

ζ

ζ

ζ

ζ κ ζ σ

ζ κ ζ

+

− −
=

− −

−

 
= − =  

 

∑ 



 

for j i≠ , where tCζ  is the ith row of tDζ . Hence,  

( ) ( ) ( ) ( ) ( )
1

1 1
=1

1 , , , , 0.
n l

t t t t
l j i

D l j S j j i lζ ζ κ ζ σ
+

− −
≠

− =∑∑   

For part (3),  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

1

2

1 , , 1

1
1 1

,

1 1 0
, ,

n nl l
t t t

l l

nt

tt

t t

t t

D l i i l D l

C
D lD l i

C C
D l i D l i

ζ ζ

ζ

ζζ

ζ ζ

ζ ζ

σ
+ +

= =

×

− + −

   
= − + −       

   
= − + − =      

   

∑ ∑



 

 

For part (4),  

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1
1 1

1 1
1

1 , , ,

, , 0.

n nl
t t t

l j

n

t t t
j

D l j S j j

A j S j j

ζ ζ κ ζ

ζ κ ζ

+

− −
= =

− −
=

−

= =

∑ ∑

∑



 

Hence,  

( ) ( ) ( )1 1 1 0,  , .Q t t t tE i S i i i tσ κ− − − + = ∀   

So this probability is a risk neutral probability of the market.  
The dual problem is equivalent to  

( ) ( ) ( ) ( )1 1

2

1 1 1 1
11

min , , , .
i i
t t

T n
e ei i i i
t t t t t t t t

i jt
D e D e j S j e j e

κ
κ− −

− − − −∈ ==

 
+ 

 
∑ ∑∏ 


 

To simplify our problem, we give the following notations:  

( ) ( ) ,l l
t ta i D i=  

( ) ( ) ( )( )1 1 11, , , , ,t t tl l n lκ κ κ− − −
′=   

( ) ( ) ( )1, , , ,l l
t t tb i j D i j S j l−=   

( ) ( ) ( )( ),1 , , , .l l l
t t tb i b i b i n ′=   

So the problem can be rewrite as:  

( ) ( ) ( )1 1

2

1 1
1

min
i i
t t

T
e ei i i
t t t t t t

i t
a e b e e

κ
κ− −

− −∈ =

 ′+  
∑∏


 

There have some special properties of the objective function, which makes the 
calculus much easy. Denote  
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( )
( ) ( ){ }

( ) ( ) ( )
2

1 1 1 1
, , ;

.t t

T

T
e e
t t t t t t

e e e i K t
i a e b e e

τ τ

τ
τ τ

ϕ κ+ + + +
= ∈ =

 ′= +  ∑ ∏


 

Proposition 5.1. Under the assumption 2.1, ( )iτϕ  have the following pro- 
perty: 

( )
( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

2

1 1 1 1 1
, , , ; 1 1

2

1 1 1 1
, , , ; 1 , 1

2

1

t t

T

t t

T

T
e e
t t t t t t

e e e e l K t

Tl n
e e
t t t t t t

i l e e e e l K e i K t

l n
l l

i l

l a e b e e

a e b e e

a i b i l i

τ τ τ

τ τ τ τ

τ
τ τ

τ τ τ

τ τ τ τ

ϕ κ

κ

κ ϕ

− −

− −

− + + + +
= ∈ − = −

+

+ + + +
= = ∈ − = ∈ = −

+

−
=

 ′= +  

 ′= +  

 ′= +  

∑ ∏

∑ ∑ ∏

∑





 

So we have  

( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 1

1 1

1 2

1 1

3

2

0 1 1
1

2 2
1 1
1 1 1 1 0 2 2 2 2 1 1

1 2

2

1 1
3

:

1

.

i i
t t

T T

T

T
e ei i i
t t t t t t

i t

l l

l K l K

l l
T T T T T T

l K l K T

f a e b e e

a l b l a l b l l

a l b l l

κ

κ κ

κ

− −

− −

− −
=

∈ ∈

− −
∈ ∈

 ′= +  
   ′ ′= + +      

     ′+        

∑∏

∑ ∑

∑ ∑

 

The problem is separable and can be solved by dynamic programming.  

Theorem 5.2. If ( ) ( ) ( )1 1 1
m n m m

t t ti m i b i b iϕ+ + + +=
 ′⋅  ∑  has full rank for any t  and 

( )m K t∈ , then the optimal solution of the dual problem is  

( ) ( ) ( )( )* * *1, , , ,t t tm m n mκ κ κ ′=   

for 0,1,2, , 1t T= −  and 1,2, , 1m nt= + , with  

( )
( ) ( )

( )
*

1

, if , 0
,

0 if , 0
t t

t

j m j m
j m

j mτ

κ κ
κ

κ −

≥= 
<

 



 

where ( ) ( ) ( )( )1, , , ,t t tm m n mκ κ κ ′=  
  is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 1 1 1 ,
m n m n

m m m m
t t t t t t t

i m i m
m i b i b i i b i a iκ ϕ ϕ

−+ +

+ + + + + +
= =

   ′= − ⋅ ⋅ ⋅ ⋅      
∑ ∑  

( ) ( ) ( ) ( ) ( )
2

*
1 2 2 1 2 .

m n
m m

t t t t t
i m

m a i b i m iϕ κ ϕ
+

+ + + + +
=

 ′= +  ∑  

Proof. Let  

( )
( )

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1 1

1 1

1 1

1

1 1

1

2

1 1 1 1
1

2

1 1

2

1 1

: t t

l lt tt t

T T

lTT

t t

ltt

l l
t t t t t t t t

l K t l K t

l l
T T T T T T

l K T

l l
t t t t t t t t

l K t

f l a l b l l

a l b l l

a l b l l f l

κ

κ

κ

− −

− +

− −

−

− −

−

− − − −
∈ ∈ +

− −
∈

− −
∈

 ′= +    
   ′+     

 ′= +  

∑ ∑

∑

∑
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At 1s T= − , for ( ) ( ){ }1 1 1,2, , 1 1Tl K T n T− ∈ − = − + ,  

( )
( )

( ) ( ) ( )1 1

1

2

1 1 1 1 .T T

lTT

l l
T T T T T T T T

l K T

f l a l b l lκ− −

−
− − − −

∈

 ′= +  ∑  

We separately solve the following problem for each 1Tl m− = :  

( ) ( ) ( )

( )

2

1

1

max

s.t

m n m m
T T Ti m

T

a i b i m

m

κ

κ

+
−=

−

 ′+  
≥

∑
0

 

We solve the unconstrained problem, and the optimal  
( ) ( ) ( )( )1 1 11, , , ,T T Tm m n mκ κ κ− − −

′=  
  is:  

( ) ( ) ( ) ( ) ( )
1

1

m n m n
m m m m

T T T T T
i m i m

m b i b i b i a iκ
−+ +

−
= =

   ′= − ⋅ ⋅ ⋅      
∑ ∑  

The optimal solution of the constrained problem is  
( ) ( ) ( )( )1 1 11, , , ,T T Tm m n mκ κ κ− − −

′=   where  

( ) ( ) ( )
( )

1 1*
1

1

, if , 0
,

0 if , 0
T T

T
T

j m j m
j m

j m
κ κ

κ
κ

− −
−

−

 ≥=  <

 



 

So ( ) ( ) ( ) ( ) ( )
2

*
1 1 1

m n m m
T T T T Ti mf m m a i b i mϕ κ+
− − −=

 ′= = +  ∑ , and  

( )
( )

( ) ( ) ( ) ( )2 2

21

2

2 2 1 1 1 1 2 2 1 1
1

.T T

lTT

l l
T T T T T T T T T T

l K T

f l a l b l l lκ ϕ− −

−−

− − − − − − − − − −
∈ −

 ′= +  ∑  

Now we come to 2s T= − . We separably to solve the following problem for 

2Tl m− = :  

( ) ( ) ( ) ( )

( )

2

1 1 2 1

2

max

s.t

m n
m m
T T T T

i m

T

a i b i m i

m

κ ϕ

κ

+

− − − −
=

−

 ′+  
≥

∑
0

 

We solve the unconstrained problem, and the optimal  
( ) ( ) ( )( )2 2 21, , , ,T T Tm m n mκ κ κ− − −

′=  
  is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

2 1 1 1 1 1 1

m n m n
m m m m

T T T T T T T
i m i m

m b i b i i b i a i iκ ϕ ϕ
−+ +

− − − − − − −
= =

   ′= − ⋅ ⋅ ⋅      
∑ ∑  

The optimal solution of the constrained problem is  
( ) ( ) ( )( )2 2 21, , , ,T T Tm m n mκ κ κ− − −

′=   where  

( ) ( ) ( )
( )

2 2*
2

2

, if , 0
,

0 if , 0
T T

T
T

j m j m
j m

j m
κ κ

κ
κ

− −
−

−

 ≥=  <

 



 

So ( ) ( ) ( ) ( ) ( ) ( )
2

*
2 2 1 1 2 1

m n m m
T T T T T Ti mf m m a i b i m iϕ κ ϕ+
− − − − − −=

 ′= = +  ∑ , and  

( )
( )

( ) ( ) ( ) ( )3 3

32

2

3 3 2 2 2 2 3 3 2 2
2

.T T

lTT

l l
T T T T T T T T T T

l K T

f l a l b l l lκ ϕ− −

−−

− − − − − − − − − −
∈ −

 ′= + ×  ∑  

Generally, at stage s τ= , we suppose is  

( )
( )

( ) ( ) ( ) ( )
1

2

1 1 1 1 1 1
1l

l l

l K

f l a l b l l lτ τ

ττ

τ τ τ τ τ τ τ τ τ τ
τ

κ ϕ
+

+ + + + + +
∈ +

 ′= +  ∑  
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We separably to solve the following problem for each ( )l m Kτ τ= ∈ :  

( ) ( ) ( ) ( )

( )

2

1 1 1max

s.t , 0

m n m m
i m

a i b i m i

j m

τ τ τ τ

τ

κ ϕ

κ

+
+ + +=

 ′+  
≥

∑  

We solve the unconstrained problem, and the optimal  
( ) ( ) ( )( )1, , , ,m m n mτ τ τκ κ κ ′=  

  is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 1 1 1

m n m n
m m m m

i m i m
m i b i b i i b i a iτ τ τ τ τ τ τκ ϕ ϕ

−+ +

+ + + + + +
= =

   ′= − ⋅ ⋅ ⋅ ⋅      
∑ ∑  

The optimal solution of the constrained problem is  
( ) ( ) ( )( )1, , , ,m m n mτ τ τκ κ κ ′=   where  

( ) ( ) ( )
( )

* , if , 0
,

0 if , 0
j m j m

j m
j m

τ τ
τ

τ

κ κ
κ

κ
 ≥=  <

 



 

Hence, the optimal solution of the dual problem is  

( ) ( ) ( )( )* * *1, , , ,t t tm m n mκ κ κ ′=   

for 0,1,2, , 1t T= −  and 1,2, , 1m nt= + , with  

( ) ( ) ( )
( )

*

1

, if , 0
,

0 if , 0
t t

t

j m j m
j m

j mτ

κ κ
κ

κ −

 ≥=  <

 



 

where ( ) ( ) ( )( )1, , , ,t t tm m n mκ κ κ ′=  
  is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 1 1 1 ,
m n m n

m m m m
t t t t t t t

i m i m
m i b i b i i b i a iκ ϕ ϕ

−+ +

+ + + + + +
= =

   ′= − ⋅ ⋅ ⋅ ⋅      
∑ ∑  

( ) ( ) ( ) ( ) ( )
2

*
1 2 2 1 2 .

m n
m m

t t t t t
i m

m a i b i m iϕ κ ϕ
+

+ + + + +
=

 ′= +  ∑  

Hence, the risk neutral probability with optimal *κ  is  

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

1

*
1 1 1 11

1
1

1

1 , , ,
,

1

i i it t t

i
t

ne e ei i i i
T t t t t t t t tj

i n j et
tj

D e D e j S j e j e
Q

D j

κ
ω

− −

−

− − − −=

+
=

=

 − +  =
−

∑
∏

∑



 

and the optimal terminal wealth is  

( ) ( ) ( )

( ) ( )
( )

* *
*

* * * *

* * *

*

2 2 2

2

( )

1 .
1

T
T

T i T

T

T
iT

i

v E L B vBV L B L
E L B E L

vB Q
n E Q

κ κ
κ

κ κ κ κ

κ κ κ

κ

β β
ω β β

β
β ω

ω

   
 −   −    = + = +

      
            

 
− = +   +    

 

Hence, the expectation and variance of terminal wealth are:  

( ) ,TE V a bvβ= +  
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( ) ( )* 2
,T TVar V c vBκ β= +  

where  

( )
( )
( )2

11 ,
1 T

E Q
a

n E Q

ω

ω

  =
 +
 

 

( )
( )
( )

*

2

1 ,
1

TT

E Q
b B

n E Q
κω

ω

  =
 +
 

 

( )
( ) ( )

( )( )
2

2 22

1 .
1 T

E Q E Q
c

n E Q

ω ω

ω

  −    =
+  

 

 

The optimal β  must satisfy the optimality condition of 
d 0
d
U
β
= , that is,  

*

* 2 .
2

Ta cvB
c

κω
β

ω
+

=  

6. Optimal Trading Strategy 

Let 
( ) ( )

*

2

1
1

T
T

i

vB
n E Q

κ β
α

ω

 
− =   +    

, so ( ) ( )T i iV Qω β α ω= + . 

Proposition 6.1. For any { }0,1, ,t T∈  , ( )tV ω  are equivalent for 

( ) ( ){ }1 1, , ; , , ,
t tl T t le e e eω ω∈Ω = =


   

where 
tl

ω  is belong to the t  period sample space, and ( ){ }1,2, , 1 t
tl n∈ + . 

We denote  

( ) ( ).tt t lV Vω ω=   

We have the relationship between tV  and 1tV +  for any t :  

( ) ( ) ( )1 1 1 1 1 11 .t t t t t t t tV r R B r Vω π κ ω+ + + + + +′ ⋅ + + + − = 1  

So we can iteratively derive tV  and corresponding trading strategy 1tπ +  for 
each t . 

For 1t T= − , we consider ( ) ( ){ }1 11 1 1, , ; , ,
T Tl T T le e e eω ω
− −−∈Ω = =     

( ){ }( )1
1 1, 2, , 1 T

Tl n −
− ∈ + , and 

( ) 11 1 Tn −+
Ω = Ω Ω . For each i there are 1n +  

element in the set iΩ . For an arbitrary set 
1Tl −

Ω , we notate the 1n +  element 
in it as 1 1

1 1, ,T Tl l
nω ω− −
+ . So  

( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1 1
1

1 1
1

1 1
1

1 1 1 1

1 2 1 2

1 1 1 1

1

1

1

T T
T

T T
T

T T
T

l l
T l T T T T T T T

l l
T l T T T T T T T

l l
T l T T T n T T T T n

V r R B r V

V r R B r V

V r R B r V

ω π ω κ ω

ω π ω κ ω

ω π ω κ ω

− −
−

− −
−

− −
−

− −

− −

− + − +

 ′⋅ + + + − = 
 ′⋅ + + + − = 

 ′⋅ + + + − = 









1

1

1

 

Rewrite the above equations as the matrix form as G X b⋅ = , where  
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( ) ( )( )

( ) ( )( )

1 1

1 1

1 1 1

1 1 1

T T

T T

l l
T T T T T

l l
T n T n T T T

V R B r

G

V R B r

ω ω κ

ω ω κ

− −

− −

−

+ + −

 ′+ − 
 

=  
 ′ + −
 

 

1

1

 

( )111
TT l

T

V
X

ω

π
−−

 
 =
 
 



 

( )1 Tb r= + 1  

If G  is full rank, 1X G b−= . 
Generally, for t τ= , we consider ( ) ( ){ }1 1 1, , ; , ,l le e e e

τ τ

τ
τ τω ω+∈Ω = =


   

( ){ }( )1,2, , 1l n τ
τ ∈ + , and 

( )
1

1 1n τ
τ τ τ+

+
Ω = Ω Ω  

 . For each i there are 1n +  
element in the set i

τΩ . For an arbitrary set lτ
τΩ , we notate the 1n +  element in 

it as 1 1, ,l l
n

τ τω ω + . So  

( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1 1

1 1

1 1

1 1 1 1 1 1 1 1

1 1 1 2 1 1 1 2

1 1 1 1 1 1 1 1

1

1

1

l l
l

l l
l

l l
l n n

V r R B r V

V r R B r V

V r R B r V

τ τ
τ

τ τ
τ

τ τ
τ

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

ω π ω κ ω

ω π ω κ ω

ω π ω κ ω

+ +

+ +

+ +

+ + + + + +

+ + + + + +

+ + + + + + + +

 ′⋅ + + + − = 
 ′⋅ + + + − = 

 ′⋅ + + + − = 









1

1

1

 

Rewrite the above equations as the matrix form as G X bτ τ τ⋅ = , where  

( ) ( )( )

( ) ( )( )

1 1 1 1 1 1

1 1 1 1 1 1

l l

l l
n n

V R B r

G

V R B r

τ τ

τ τ

τ τ τ τ τ

τ

τ τ τ τ τ

ω ω κ

ω ω κ

+ + + +

+ + + + + +

 ′+ − 
 

=  
 ′ + −
 

 

1

1

 

( )
1

1 lV
X ττ
τ

τ

ω

π +

 
 =
 
 



 

( )11b rτ τ += + 1  

If Gτ  is full rank, 1X G bτ τ τ
−= . 

7. Numerical Example 

We consider a market with one risky security and one bond, and the investment 
horizon is 3T = . Suppose the bond price is constant. The prices of the risky 
security are: 
 

ω S0 S1 S2 S3 

ω1 5 8 9 12 
ω2 5 8 9 6 
ω3 5 8 6 8 

ω4 5 8 6 5 

ω5 5 4 6 8 

ω6 5 4 6 5 

ω7 5 4 3 5 

ω8 5 4 3 2 
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The risk neutral probability in market κM  are: 
 

ω ( )Qκ ω  

ω1 
( )( ) ( )( ) ( )( )0 1 21 1 2 8 1 1 9 1

48
κ κ κ− − −

 

ω2 
( )( ) ( )( ) ( )( )0 1 21 1 2 8 1 3 9 1

48
κ κ κ− − +

 

ω3 
( )( ) ( )( ) ( )( )0 1 21 1 1 8 1 1 6 2

36
κ κ κ− + −

 

ω4 
( )( ) ( )( ) ( )( )0 1 21 1 1 8 1 2 6 2

36
κ κ κ− + +

 

ω5 
( )( ) ( )( ) ( )( )0 1 23 1 1 4 2 1 6 2

36
κ κ κ+ − −

 

ω6 
( )( ) ( )( ) ( )( )0 1 23 1 1 4 2 2 6 2

36
κ κ κ+ − +

 

ω7 
( )( ) ( )( ) ( )( )0 1 23 1 2 4 2 1 3 3

36
κ κ κ+ + −

 

ω8 
( )( ) ( )( ) ( )( )0 1 23 1 2 4 2 2 3 3

36
κ κ κ+ + +

 

 
We solve the dual problem:  

( )28

1
max

s.t 0  for 1,2,3  
ii

t

Q

t
κ ω

κ
=

≥ =
∑  

The optimal solution of this is easily found to be:  

( ) ( ) ( )2 2 21 2 3 0κ κ κ= = =  

( ) ( )1 1
51 ,  2 0
68

κ κ= =  

( )0 1 0κ =  

The optimal value is 
 

ω ( )V ω  

ω1 1.846853464 

ω2 1.540560391 

ω3 1.770280196 

ω4 1.540560391 

ω5 1.566084814 

ω6 1.131648721 

ω7 1.131648721 

ω8 0.263818349 
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Finally, we get the optimal trading strategy of the original problem by solving 
some linear equations. The optimal strategy are 
 

ω π  

ω1 1 2 31.0287,  0,  0.4262π π π= = =  

ω2 1 2 31.0287,  0,  0.4262π π π= = =  

ω3 1 2 31.0287,  0,  0.2841π π π= = =  

ω4 1 2 31.0287,  0,  0.2841π π π= = =  

ω5 1 2 31.0287,  1.2144,  0.6807π π π= = =  

ω6 1 2 31.0287,  1.2144,  0.6807π π π= = =  

ω7 1 2 31.0287,  1.2144,  1.569π π π= = =  

ω8 1 2 31.0287,  1.2144,  1.569π π π= = =  

8. Conclusion 

Optimal mean-variance multiperiod portfolio selection with no shorting con- 
straints problem is studied in the paper. We connect the original mean-variance 
problem to an auxiliary problem by using an embedding technique. Since the 
auxiliary problem is difficult to solve directly, we extend the literature by using 
duality theory and martingale approach to do the analysis. Finally, the derived 
analytical optimal multiperiod portfolio strategy provides investors with the best 
strategy to follow in a no-short selling dynamic investment environment. The 
limitation in this paper is that we derive the optimal portfolio policy by maxi- 
mizing the quadratic utility function. A future research subject is investigation of 
an optimal solution using different utility objective function.  
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