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Abstract 
Throughout scientific research, the state space reconstruction that embeds a 
non-linear time series is the first and necessary step for characterizing and 
predicting the behavior of a complex system. This requires to choose appro-
priate values of time delay T and embedding dimension Ed . Three methods 
are applied and discussed on nonlinear time series provided by the Rössler at-
tractor equations set: Cao’s method, the C-C method developed by Kim et al. 
and the C-C-1 method developed by Cai et al. A way to fix a parameter neces-
sary to implement the last method is given. Focus has been put on small size 
and/or noisy time series. The reconstruction quality is measured by using a 
criterion based on the transformation smoothness. 
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1. Introduction 

In many fields of science and industry, complex systems are studied through 
temporal time series of scalar observations of a k dimensional dynamical system 
[1] [2] [3] [4] [5]. In most cases, the state space dimension and the system of 
equations that define the system evolution and behavior in the state space are 
unknown. Each value in a time series results from the interaction of the state va-
riables in the state space. The main purpose of time series analysis is to learn 
about the dynamics behind some time ordered measurement data. To investigate 
an experimental kth order dynamical system from a scalar time series, it is ne-
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cessary to reconstruct a state space by using time delay or time derivative coor-
dinates. The reconstructed trajectory is expected to have the same characteristics 
than the trajectory embedded in the original phase space. It can be proved 
through Taken’s theorem that the unstable periodic orbits of a strange attractor 
could be recovered in an embedded state space whenever the time series is long 
enough with no noise [1] [2] [5] [6] [7] [8] [9]. In that case, the embedding di-
mension Ed  and the time delay T [1] [2] [3] [10] [11] are not correlated and 
can be selected independently [7] [8] [9]. In the real world, time series are not 
infinitely long and could be hardly noisy. In that case Ed  and T are correlated 
and an alternative approach used in the literature is to determine the time win-
dow length ( )1W Ed Tt = −  which is the entire time spanned by the embedding 
vectors [7] [8] [9]. Once Wt  is determined, the time delay T should be chosen 
so that the serial correlation of the Wt  time subseries should be minimum [7] 
[8]. As the essence of serial correlation is to see how sequential observations in a 
time series affect each other, Brock, Dechert and Scheinkman have developed a 
new statistic named “BDS statistic” able to test if a given data set is indepen-
dently and identically distributed [12] [13]. The BDS statistic is based on the 
correlation integral and Brock has shown that the correlation integral behaves 
like the characteristic function of a time series through the fact that if the time 
series arises from several independent random variables, the correlation integral 
is the product of the correlation integrals of sub time series components. In that 
sense, the BDS statistic can be interpreted as the serial correlation of a nonlinear 
time series. State space reconstruction is necessary before developing forecasting 
methods and, as the quality of state space reconstruction affects significantly the 
accuracy in time series forecasting, the scope of this paper is threefold: i ) to re-
view test and compare, in terms of quality, three methods used for selecting state 
space reconstruction parameters (time delay, embedding dimension) from a 
nonlinear time series provided by the Rössler attractor equations set; ii) to apply 
these methods to small size time series and test their robustness to noise with the 
objective to use them for experimental data; iii) to qualify these methods by de-
fining a criterion able to measure the quality of the state space reconstruction. 

In this work, a pseudo experimental approach is considered. The equations 
describing the Rössler attractor are solved numerically. The numerical values 
obtained are assumed to be measurements. We start from a scalar time series 

( ){ }, 1,i iS x t t i t i Nδ= = =  of N observations of the Rössler x variable with the 
tδ  sampling rate that is the shortest time between two measurements. The me-

thod of delays is used to embed the time series S into a set of points of a Ed  
dimensional space ( ) ( ) ( )( )( ){ }, , , 1 , 1,i i i i Ey x t x t T x t d T i p= + + − =  where T 
is the delay time given by T n tδ= , Ed  the embedding dimension and  

( )1Ep N d n= − − , the number of embedded points. The reconstructed state 
space must be topologically equivalent to the original one, the selection of op-
timal values for T and Ed  are very important and affect the quality of the re-
construction. Through the large number of publications dealing with this subject, 
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there are two main approaches of selecting Ed  and T. The first approach con-
sists in selecting Ed  and T independently and is generally used in the case of 
sufficiently long noise free time series [7] [8] [9] [14] [15]. When time series are 
limited or contaminated by noise, the theorem of Takens is silent and the delay 
time T is observed to vary with the embedding dimension Ed . In this case, as an 
irrelevant partnership between T and Ed  could affect the equivalence between 
the reconstructed space and the original one, another approach, based on the 
delay time window, ( )1w Et d T= −  selection, is used for the state space recon-
struction [7] [8] [16] [17]. 

This article is structured around three sections, this work, can be considered 
as the preliminary step to the time series forecasting methods development, the 
first section is devoted to the calculation of the maximum Lyapunov exponent 
and the Lyapunov dimension from time series obtained by integrating numerically 
the Rössler differential equations set. The second section is focused on the state 
space reconstruction parameters selection. The main idea is to subdivide the 
original time series S into p sub-series, each of them representing an embedded 
point in a Ed  dimensional space. For an optimal choice of the state space re-
construction parameters, all the embedded points form a sufficiently representa-
tive trajectory of the attractor considered. 

Three methods able to select the embedding dimension Ed  and the time de-
lay T are discussed in this section. First Cao’s method [14] is applied on suffi-
ciently long noise free time series (≈32,000 values) and shows some drawbacks 
when applied to smaller size and/or noisy time series (≈4000 values). Aiming at 
improving these drawbacks, two other methods based on the time delay window 
selection are discussed: the C-C method developed by Kim et al. [7] and the 
C-C-1 method developed by Cai et al. [8]. These two methods are described and 
results obtained are compared and discussed. In the framework of the C-C-1 
method, a criterion that fix the number of subseries composing the initial time 
series S, is suggested. The sensitivity to noise of the different techniques ad-
dressed in this section are analyzed and results obtained are discussed. The third 
and last section is dedicated to the measure of the reconstruction quality. In the 
case of long free noise time series, as Takens embedding theorem ensures a to-
pological equivalence between the original state space and the reconstructed one, 
the quality of the reconstruction is measured through the conservation of inva-
riants such as the maximum Lyapunov exponent and the correlation dimension. 
In the case of limited noise free data set, we have used a technic based on a sta-
tistic approach similar to the Rul’kov et al. test [18], by calculating the quotient F 
of two ratios. One ratio is the nearest-neighbor distance on the original state 
space to the distance on the corresponding points on the reconstructed state 
space. The other ratio is the nearest-neighbor distance on the reconstructed state 
space to the distance between the corresponding points on the original state 
space. For a smooth mapping between the time series, the quotient of these two 
ratios should be close to unity [18] [19]. 

This paper also constitutes a sort of set-up in order to become familiar with 
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these different techniques before applying them to real experimental data.  

2. Calculation of Lyapunov Exponents and Lyapunov  
Dimension for the Rössler Attractor 

The dynamical system of interest in this first part consists of the following three 
coupled differential equations [4] [20] [21] [22] 

( )

( )

d d
d d ,
d d .

,x t y z
y t x  ay
z t b z x c

= − +

= +

= + −                       

(1) 

where a, b and c have constant values. These equations have a chaotic attractor 
which is displayed in Figure 1 which was obtained from a simple numerical in-
tegrator. 

The Rössler attractor is largely a product of the interaction between an at-
tracting direction and a repelling one. The calculated trajectory starts close to a 
fixed point, the linear terms of the two first equations create oscillations in the 
variables x and y. These oscillations are amplified, which results into a spiral-
ing-out motion. The motion in x and y is then coupled to the z variable ruled by 
the third equation, which contains the nonlinear term and which induces the 
reinjection back to the beginning of the spiraling-out motion. A very complex  

 

 
Figure 1. Rössler attractor representation from the equations set. a = 0.2, b = 0.4 and c = 
5.7. 
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dynamic arises. 
When chaos takes place, one can observe a great sensitivity of the motion to 

small changes in initial conditions. Two closely neighboring trajectories diverge 
exponentially. Their rate of divergence is constant, and a plateau is obtained 
when determining the Lyapunov exponent numerically. When a = 0.2 and b = 
0.4, chaos appears when c has a sufficiently high value. This is shown by calcu-
lating maximum Lyapunov exponents using Benettin’s method [3] [20] [21] [23] 
[24] for different trajectories considering different values of parameter c.  

Figure 2 shows that chaos takes place when c is between 5 and 5.2. 
Then, considering a = 0.2, b = 0.4 and c = 5.7, a positive maximum Lyapunov 

exponent for this trajectory is calculated by using Benettin’s method. Two tra-
jectories with two very close initial conditions were considered and they were 
renormalized for every fixed time interval Δτ. The following value was found: 

27.6 10 .σ −≈ ×   
The transition from simple to strange attractor proceeds via a sequence of pe-

riod-doubling bifurcations [20]. 
Then, considering the parameters defining the Rossler attractor shown in 

Figure 1 (a = 0.2, b = 0.4 and c = 5.7), the Lyapunov exponents spectrum is cal-
culated. The algorithm employed was proposed Wolf et al. [25]. The numerical 
results are shown in Figure 3. 

The values of the three Lyapunov exponents are 
2 -4

1 2 37.0 10 , 7.0 10 0, 5.4,λ λ λ−≈ × ≈ × ≈ ≈ −              (2) 

as expected 1λ σ≈ . On average, 1λ  is the expansion rate of the stretching 
process of the attractor, and 3λ  is the reduction rate of the folding process.  

The number of non-negative Lyapunov exponents, d = 2, allows us to identify 
the dimension of the attractor [26]. We are going to show that its fractal dimen-
sion is a little bit greater. 

The Lyapunov dimension Ld  is related to the Lyapunov spectrum by [5] [25] 
[26] [27] 

1

1

,

j

i
i

L
j

d j
λ

λ
=

+

= +
∑

                        (3) 

where j is defined by the conditions 
1

0
j

i
i
λ

=

>∑  and 
1

1
0

j

i
i
λ

+

=

<∑ . Thus 

2.01,Ld ≈                           (4) 

 

 
Figure 2. Influence of the c parameter on the maximum Lyapunov exponents for the tra-
jectory. (a): c = 5.2, 2

1 5.49 10σ −= × ; (b): c = 5, 1 0σ → . 
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Figure 3. (a) Lyapunov spectrum for the trajectory shown in Figure 1; (b) magnification of (a). 

 
which means that the attractor is close to a plane surface. The fractal dimension 
gives a lower bound on the number of variables needed to model the dynamics 
of the attractor. 

3. Time Delay Reconstruction of the State Space by Sampling  
a Coordinate of the Rössler Attractor 

3.1. Formulation of the Problem 

Let us move to a pseudo experimental approach. It is assumed that we only have 
a single sequence of measurements obtained at different times. We seek a hidden 
determinism in our experimental data. Here, the “experimental results” are giv-
en by a numerical integration of Equation (1). In this section, we just try the re-
construction method provided by the tool box CDA22 [1]. 

It is assumed that only the x-components of the ( ), ,x y zX  vector, which 
gives the state of the system, is measured or calculated. Then, ( ) ( )x t = G t  X , 
where G is a scalar function of the state vector. We define what is called delay 
coordinate vectors such as [3] [4] [6] [7] [8] 

( ) ( ) ( ) ( )( ), , 2 , , 1 ,i i i i i Ex t x t T x t T x t d T = + + + − y
        

(5) 

where Ed  is here a simple parameter and T is the time delay.  
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Packard et al. [4] [6] have shown that starting from the time series (5), one 
may reconstruct the trajectory of the attractor in a Ed -dimensional embedding 
space by means of vectors 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( ) ( )( )

1

2

, , 2 , , 1 ,

, , 2 , , 1 ,

1 , 1 , 1 2 , , 1 1 ,

E

E

p E

x t x t T x t T x t d T

x t x t T x t T x t d T

x t p x t p T x t p T x t p d T

τ τ τ τ

τ τ τ τ

 = + + + − 
 = + + + + + + + − 

 = + − + − + + − + + − + − 

y

y

y









 (6) 

with j tτ δ= × , where j is an integer and tδ  is the minimum sampling time. 
Time τ  is the sampling interval between the first components of successive 
vectors ( )1i i p≤ ≤y . Based on (6) and assuming the time window spanned by 
the p embedded points is included in the time window spanned by the N values of 
the initial time series, it holds that ( ) ( ) ( )1 1 1EN t p d Tδ τ− = − + − . If T n tδ=  
where n is an integer, it may be written ( ) ( ) ( )1 1 1EN t p d Tδ τ− = − + −  that is: 
( ) ( )1 1 1Ej p n d N− + − = − . Thereafter, we will set j = 1 and we shall have  

( )1 .Ep n d N+ − =                        (7) 

3.2. Considerations on the Minimum Embedding Dimension 

The space reconstruction requires to select values of the reconstructed space di-
mension and the time delay. The embedding theorem [6] [9] [10] [28] tells us 
that the following sufficient but not necessary condition must be verified 

2E Bd d> ,                          (8) 

where Bd  is the box-counting dimension of the attractor. Considering that 

L Bd d≥  [2], the condition (8) is satisfied when 

2 ,LEd d>                           (9) 

that is  

4,Ed >                           (10) 

To verify the relevance of this condition, the reconstruction was achieved 
considering several values of Ed  and using the CDA22 tool box [1]. Let x(t) be 
a one-dimensional data set evaluated at equal increments of the variable t. The 
values of x(t) were obtained by solving numerically Equation (1) using a fourth 
order Runge-Kutta scheme. These values of x play the role of experimental 
measurements. Using CDA22 tool box the correlation dimension Cd  of the 
Rössler attractor was calculated for 5Ed = . It is reminded here that T n tδ= ×  
where tδ  is the sampling rate, we chose 0.1tδ =  8n =  and found  

1.911 0.027Cd = ± . Then, Cd  was calculated for different values of Ed . First 
the same values of tδ  and n were considered. The results are shown in Figure 
4 Very different values of tδ  and n were also considered, we chose 0.05tδ =  
and 2n = . Figure 4 shows that the two curves merge. 

Figure 4 shows the curves Cd  versus Ed  obtained with two set of parame-
ters ( ),t nδ . The full line is obtained with 0.1tδ =  and 8n = , squares are ob- 
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Figure 4. The correlation dimension versus the embedding dimension. The full line was 
obtained for 0.1tδ =  and 8n = , the squares were obtained when 0.05tδ =  and 

2n = . 
 

tained with 0.05tδ =  and 2n = . When 5Ed ≥ , squares are very closed to the 
full line curve and the plateau seen in Cd  corroborates condition (10) which 
means that, for the long limited noise free data sequence considered here, Tak-
en’s theorem is satisfied. The correlation dimension Cd  becomes an invariant 
on the attractor when the embedding dimension used for the computation in-
creases. Then, the optimal embedding dimension is reached [11]. Still, Figure 4 
shows that 5Ed ≥  is a sufficient but not necessary condition, 3Ed ≥  would be 
quite suitable. The typical problem with this way to determine the embedding 
dimension is that it is very time-consuming for computation.  

Figure 4 also shows that the results obtained for Cd  are not, at least in this 
range of values, sensitive to n and consequently to the time delay T. Because the 
initial data set contains about 32,000 values and is noise-free, results obtained 
are in good agreement with Takens [6] [7] [9]. In this case, the existence of a 
diffeomorphism between the original attractor and the reconstructed image ex-
ists for almost any choice of time delay and a sufficiently high embedding di-
mension. 

It is known that B Cd d≥  [1], then, as L Bd d≥ , one must have L Cd d≥  [29] 
which in good agreement with our numerical results.  

3.3. Cao’s Method for Determining the Embedding Dimension 

The optimal embedding dimension has also been calculated by using Cao’s algo-
rithm which is much less time-consuming [9] [14]. According to the IIIa para-
graph notations and (7), Cao defines ( ), Ea i d  as a function of  

( )( )1 1, , ,
Ei i i i d nx x x+ + −=y   (with ( )1,2, , 1Ei p N d n= = − − ) the ith recon-

structed vector and Ed  the embedding dimension, ( ), Ea i d  is written as 

( )
( ) ( ) ( )

( ) ( ) ( )
,

,

1 1
, ,E

E

i E En i d
E

i E En i d

d d
a i d

d d

+ − +
=

−

y y

y y



              

(11) 

https://doi.org/10.4236/jmp.2017.89096


O. Delage, A. Bourdier 
 

 

DOI: 10.4236/jmp.2017.89096 1615 Journal of Modern Physics 
 

where ...  denotes the sup-norm, i.e., ( ) ( )
0 1
maxk l k jn l jnj m

m m x x+ +≤ ≤ −
− = −y y   

and ( )1i Ed +y  is the ith reconstructed vector in the 1Ed +  dimensional re-
constructed space. Subscript ( ), En i d  refers to the ( ), En i dy



 which is the nearest 
neighbor of ( )i Edy  in the Ed  dimensional reconstructed space. Integer 
( ), En i d  depends on i and Ed . If Ed  is qualified as an embedding dimension 

by the embedding theorem [1] [2] [3] [6] [27], then any two points which stay 
close in a Ed  dimensional reconstructed space will be still close in a 1Ed +  
dimensional reconstructed space. Such a pair of points are called true neighbors, 
otherwise, they are called false neighbors. To qualify two points to be false 
neighbors, ( ), Ea i d  must be larger than a threshold value which depends on 
the i state point chosen. To avoid this problem, the quantity ( )EE d  is defined 
as the mean value of all ( ), Ea i d ’s 

( ) ( )
1

1 , ,
EN d n

E E
iE

E d a i d
N nd

−

=

=
− ∑

                 
(12) 

with T = n tδ , so that ( )EE d  is only dependent on the embedding dimension 
and the time delay. To investigate the variation of E between Ed  and 1Ed + , 
we define ( )1 EE d  as ( ) ( ) ( )1 1E E EE d E d E d+= . If ( )1 EE d  stops changing 
when E EMd d> , then 1EMd +  is the minimum embedding dimension we are 
looking for. When meaningful predictions from chaotic time sequence cannot be 
made, data appears to come from a random system. Considering that ( )1 EE d  
provided by a random set of numbers will never attain a saturation value as 
𝑑𝑑𝐸𝐸increases, it is necessary to distinguish deterministic chaotic from random 
data sequences. In most cases, it is difficult to resolve whether ( )1 EE d  is slowly 
increasing or has stop changing if Ed  is sufficiently large. In fact, since availa-
ble observed data samples are limited in number, it may happen that ( )1 EE d  
stops changing at some 

0Ed  value although the time series is random. To solve 
this problem Cao [14] has suggested to consider the quantity ( )*

EE d  which is 
useful to make distinction between deterministic signals from stochastic ones. 
Let us consider the following quantity 

( ) ( )
*

,
1

1 ,
E

E E E

N d n

E i d n n i d d n
iE

E d x x
N d n

−

+ +
=

= −
− ∑



            
(13) 

where the meaning of ( ), En i d  is the same as above. As for ( )EE d , to study 
the ( )*

EE d  variations, an ( )2 EE d  quantity is defined as  
( ) ( ) ( )* *

2 1E E EE d E d E d+= . For random data, since the future values are in-
dependent of the past values, ( )2 EE d  will equal unity for any Ed . In the case 
of deterministic data ( )2 EE d  is certainly related to Ed  and cannot be a con-
stant for all Ed . In other words, there must exist some Ed  values such that 

( )2 1EE d ≠ . Cao recommends to calculate both ( )1 EE d  and ( )2 EE d  for de-
termining the minimum embedding dimension of a scalar time series. Figure 5 
shows results obtained with Cao’s method applied to an about 32,000-data se-
quence by using CDA22 tool box.  

Figure 5 shows that ( )2 EE d  is related to Ed  and is not a constant for all  

https://doi.org/10.4236/jmp.2017.89096


O. Delage, A. Bourdier 
 

 

DOI: 10.4236/jmp.2017.89096 1616 Journal of Modern Physics 
 

 
Figure 5. 1E  (solid red line) and 2E  (black long dashed line) graph values as a function of the embedding 
dimension Ed  from Rössler attractor time series data. (a) n = 15, (b) n = 1. 

 

Ed . This is in good agreement with the fact that the data used are deterministic. 
When n = 15, the minimum embedding dimension is 4Ed = . When n = 1, the 
same value is found for Ed . This means that, when enough points are consi-
dered and when no noise is considered, the minimum value for Ed  is almost 
independent of T. 

Then, Cao’s algorithm has been applied on a much smaller data sequence of 
about 4000 values, 1E  and 2E  were calculated. It was shown that ( )2 EE d  
can be different from zero in all the cases. It confirms the deterministic character 
of the data. It also shows that when n = 50 or when n = 10, the minimum em-
bedding dimension is close to 4Ed = . A saturation value ( )1 EE d  as Ed  in-
creases is more difficult to discern when n = 1. Still, we can conclude that for this 
relatively small number of data, the minimum embedding dimension is still al-
most independent of n. 

Cao’s method has been applied then to the 4000 values data-sequence with 
noise added. Figure 6 show results obtained when a white Gaussian noise with 
variance one is added to the 4000 values data-sequence. 

In Figure 6, when n = 50 and n = 10, ( )2 EE d  can be clearly different from 
unity, ( )1 EE d  reaches a constant value for about the same value of Ed : 

10Ed = . For n = 1, ( )2 EE d  remains close to unity, our data do not appear to 
be deterministic. 

Then, a white Gaussian noise with variance five was added. Figure 7 show 
that a high value of n is necessary to determine a minimum embedding dimen-
sion. The following values for 1E  and 2E  were found 

In this case ( )2 EE d  is clearly different from a constant only for n = 100. 
In summary, it was shown that for noise-free data of very long length, the 

reconstruction is valid for any time delay as far as the embedding dimension 
is high enough. When going to small number noisy data samples, the time 
delay used to determine the minimum embedding dimension cannot have any 
value. 
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Figure 6. 1E  (solid red line) and 2E  (black long dashed line) graph values as a function of the embedding dimension Ed  from 
time series data noisy with a white Gaussian noise with variance one. (a) n = 50, (b) n = 10, (c) n = 1. 
 

 
Figure 7. 1E , 2E  graph values from Rössler attractor time series noisy with a white Gaussian noise with variance five (a) n = 100 
(b) n = 10, (c) n = 1. 

3.4. Simultaneous Determination of the Embedding Dimension  
and Time Delay by Using the C-C Method 

The Cao’s method [14], used to determine the optimal embedding dimension 
𝑑𝑑𝐸𝐸 , has shown that for a sufficiently long noise free data set, the time delay T and 
the minimum embedding dimension are almost independent and the delay time 
T can be set arbitrarily. However, when white Gaussian noise is added, T varies 
with Ed  and an irrelevant partnership between T and Ed  will directly impact 
the equivalence between the original state space and the reconstructed one. 
Moreover, in the real world, measurements data set are finite and noisy, and in 
this case, a more useful quantity to estimate the embedding dimension is the de-
lay time window ( )1W Et d T= −  which is the entire time spanned by the iy  
vectors. Martinerie et al. [17] have shown that wt  is an essential factor for esti-
mating the correlation dimension. In their paper, they have demonstrated that 
first, wt  determines the correlation integral characteristics and second, the cor-
relation integral is very sensitive to the wt  values. H.S. Kim et al. [7] and 
Wei-Dong Cai et al. [8] have developed a method which uses the correlation 
integral and is based on a statistic similar to the BDS statistic that Brock et al. [12] 
[13] used for their development for distinguishing random time series from 
chaotic or nonlinear stochastic time series. By using the notations of Equations 
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((6) and (7)), the BDS statistic applied to the time series writes [7] [8] 

( ) ( ) ( ), , , , , , 1, , , ,Ed
E Ed N r n C d N r n C N r nS = −            (14) 

where ( ), , ,EC d N r n  is the correlation integral 

( ) ( ) ( )
1

2, , , ,
1E i j

i j p
C d N r n H r y y

p p ≤ < ≤

= − −
− ∑

          
(15) 

r is a search radius and H is the Heaviside function: H(a) = 0 if a < 0 and H(a)=1 
if a ≥0. N is still the size of the data set, n is the index lag, ( )1Ep N n d= − −  is 
the number of embedded points in the Ed  dimensional space and ...  still 
denotes the sup-norm. ( ), , ,EC d N r n  measures the fraction of pair of points 
whose sup-norm distance is not greater than r. Brock et al. have proved that if 
the stochastic process { }iy  is independent and identically distributed (iid) then, 
( ) ( ), 1,Ed

EC d r C r=  for all Ed  and r. The density of points in a hypersphere 
of radius r scales like Edr . It means that the correlation integral of the process 
{ }, 1,iy i p=  behaves like the one of an independent random variables product 
which is the product of the correlation integral of each random variable iy . This 
leads to interpret the statistic S as a dimensionless quantity which highlights de-
terminism. A significant nonzero value of S is evidence for determinism in the 
time series. The technique developed by Kim et al. called the C-C method consists 
in subdividing the time series ( ){ }, 1,i ix t x i N= =  into n disjoint time series 
{ }, 1,sy s n=  each one of N/n values. One has 

2
1

, , , , , 1,s s s n s n N n s
n

x x x x s n.+ +  − + 
 

  = = 
  

y 
             (16) 

The average of the statistical quantity given by Equation (14) is defined as 

( )1
1

1, , , , , , 1, , , ,E
n

d
E s E s

s

N NS d N r n C d r n C r n
n n n=

    = −        
∑

      
(17) 

when N →∞ , 1S  can be rewritten in the following way 

( ) ( ) ( )1
1

1, , , , 1, , .E
n

d
E s E s

s
S d r n C d r n C r n

n =

 = − ∑
           

(18) 

The locally optimal times may be either the zero crossing of ( )1 , ,ES d r n  for 
all r or the times at which ( )1 , ,ES d r n  shows the least variation with r, since 
this indicates a nearly uniform distribution of points. From several representa-
tive values jr , we define the quantity 

( ) ( ){ } ( ){ }1 1 1, max , , min , , ,E j E j j E jS d n S d r n S d r n= −∆
       

(19) 

which measures the variations of ( )1 , ,ES d r n  with r. 
For data set with finite sample sizes N, appropriate choices for Ed , r and n 

should be in agreement with the BDS statistic. For example, when applied to a 
data set with a sequence of about 4000 values, Ed  varies in the range [2, 7], n 
varies in the range [1, 200] and 2ˆr kσ=  varies in the range [ ]2,2σ σ  with 
k = 1, 2, 3, 4 and σ̂  is the standard deviation of the time series. We then define 
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the average of quantities given by Equations ((17) and (19)). 

( ) ( )
7 4

1 1
2 1

1 , , ,
24 E

E k
d k

S n S d r n
= =

= ∑∑
                 

(20) 

and 

( ) ( )
7

1 1
2

1 , .
6 E

E
d

S n S d n
=

= ∆∆ ∑
                   

(21) 

As locally optimal times are either zero crossing of ( )1S n  or times at which 
( )1S n∆  shows the least variation with r, we look for the first zero crossing of 

( )1S n  or the first local minimum of ( )1S n∆  to find the optimal times for data 
independence which will gives T. The optimal time is the time for which ( )1S n  
and ( )1S n∆  are both closest to zero. As the two quantities ( )1S n∆  and 

( )1S n  may not be minimum at the same time (see Figure 8), we may look at 
the minimum of the quantity [7] [8] 

( ) ( ) ( )1, 1 1 ,CORRS n S n S n= ∆ +
                  

(22) 

which gives the delay time window wt . T is in a sense the minimum value of wt , 
it is determined as the minimum of the curve ( )1,CORRS n  versus n running 
from 1 to 200. The C-C method has been programmed in R by using the pack-
ages “nonlinearTseries and tseriesChaos”. An organigram of the C-C method 
used in this work is presented in Appendix 1 and the results obtained on low 
size data sequence of about 4000 values are presented in Figure 8 & Figure 9. 

The first local minimum of ( )1S n∆  (Figure 8) occurs when n = 12 and 
represents the optimal delay time T. 

The minimum of ( )1,CORRS n  (Figure 9) occurs when n = 157 which is the 
optimal time embedding window wt . Then, the embedding dimension is given 
by ( )( )1 1 15wint Tt + + = , where the function int() represents the integer part. 

White Gaussian noises with different variances σ (σ = 1, σ = 5, σ = 10) has 
been added to the noise free original signal of 4000 data sequence and the C-C 
method has been applied to the time series ( )Bx x α σ= + N  where x is the  

 

 

Figure 8. Graphic representations of ( )1S n  (dashed black line) and ( )1S n∆  (solid 

black line). 
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Figure 9. ( )1,CORRS n . 

 
Table 1. T and wt  variations as a function of different white Gaussian noise variances 
and strength. 

α 
σ = 1 σ = 5 σ = 10 

dE T tw dE T tw dE T tw 

0.2 15 12 157 14 13 157 15 12 157 

0.3 15 12 157 14 13 157 14 12 156 

0.5 15 12 157 16 11 157 20 8 147 

0.7 15 12 157 20 8 147 39 4 150 

1.0 13 12 138 77 2 151 
 

2 1 

 
noise free original signal, ( )σN  is a white Gaussian noise with zero mean and 
a variance σ, α is the strength of the noise and represents the level of noise in 
percentage (20%, 30%, 50%, 70%, 100%). The C-C method is performed for each 
σ and α values and the variations of T and wt  compared to the reference values 
obtained from the original 4000 noise free data set, are shown in Table 1. The σ 
and α values ensuring the stability of the C-C method when applied to noisy data 
set are those for which 1Ed∆ ≤ . 

The parameter α is linked to the signal to noise ratio SNR which can be de-
fined as B BSNR x σ=  where Bx  is the mean value of the noisy data se-
quence Bx  and Bσ  is the standard deviation of the noisy part of Bx  that is 

( )α σN . As the standard deviation of ( )α σN  may be written α σ  with  
[ ]0.1,1α ∈  and 1,5,10σ = , one has: 

,BxSNR
α σ

=
                        

(23) 

then, the C-C method should be stable against the noise for values of α such as 
1SNR ≥ . 

In Table 1, we observe that for σ = 1, the C-C method is stable against the 
noise when 70%α ≤ . For σ = 5, it is stable when 50%α ≤ , and for σ = 10, it is 
stable when 30%α ≤ . 

In summary, the C-C method is a relatively simple method easy to implement 
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that can be used for relatively small data set to determine both the time delay T 
and the time delay window wt . This method is robust against low and interme-
diate noise level. 

3.5. An Optimization of the C-C Method 

In their paper, W.D Cai et al. [8] pointed out some problems that limit to the 
C-C method. The first one is that there are local minimal points whose values 
are very close to the minimum of ( )1,CORRS n ,  and they disturb the ( )1,CORRS n  
minimum estimation (see Figure 9). The second one is that ( )1S n∆  shows 
high frequencies oscillations, increasing with n, that can affect the estimation of 
the first local minimum of ( )1S n∆  (see Figure 8). Based on these remarks, W.D. 
Cai et al. have developed in their paper [8] a new method called C-C-1 different 
from the C-C method calculating ( ), , ,ES d N r n  with another average method. 

Starting from the N values initial data set and according to (7), the number of 
the embedded points calculated from the delay time T in the Ed  dimensional 
reconstructed space is ( )1Ep N d n= − − . A positive integer q independent of 
the delay time T is selected as a constant, to subdivide the embedded points se-
ries { }, 1,i i p=y  into q subseries ( ){ }, 1,i i q=Y , each with ( )int p q  em-
bedded points where the “int” function means integer part. 

( )

( )

( )

1 1
1) 1

2 2
1 2

1

1 , , , ,

2 , , , ,

, , , ,

q p q
q

q p q
q

q q q p q q
q

q

+  
− + 

 

+  
− + 

 

+  
− + 

 

  =  
  
  =  
  

  =  
  

Y y y y

Y y y y

Y y y y









                 

(24) 

as each component iY  is composed of Ed  components, Equation (24) can be 
rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1
1 1

2 2 2 2 2
1 2

1

1 1 , 2 , , , 1 , , , , ,

2 1 , 2 , , , 1 , , , , ,

1 , 2 , , , 1 , , , , .

E q q E Ep q
q

E q q E Ep q
q

q q q E q q q q E Ep q q
q

x x x d x x d x d

x x x d x x d x d

q x x x d x x d x d

+ +  
− + 

 

+ +  
− + 

 

+ +  
− + 

 

  =  
  
  =  
  

  =  
  

Y

Y

Y

  

  



  

  (25) 

Kim et al. have shown in their paper [7] that, when using the BDS statistic on 
time series, the sample data size N should be appropriate relatively to the values 
of Ed , r and n. They have shown that for finite time series of size N ≥ 500 the 
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statistic ( ), , ,Ed N r nS  represents the true correlation of the time series. The 
parameter q can be adjusted so that the size of the time subseries ( ){ }, 1,Y i i q=  
will not be too short. 

The average of the statistical quantity given by Equation (14) is defined as fol-
lows: 

( ) ( ) ( )2
1 1

1 1, , , , , , 1, , , .
Edq q

E s E s
s s

d N r n C d N r n C N r n
q q

S
= =

 
= −  

 
∑ ∑

     
(26) 

The definitions of 2 2 2,, , CORRS S S∆  are given formally by Equations (20)-(22). 
The first local minimum of 2S∆  is the optimal delay time T.  

If we define the mean orbital period P of a chaotic system as the mean period 
generated by the oscillations of the chaotic attractor in the phase space orbits, an 
optimal value for wt  would coincide with the first period of the N values initial 
time series S. Cai has shown in his paper that with the new statistical quantity 
average he defines in (26), the peak values of 2,CORRS  corresponds to the orbital 
period P values of S and all the points that bring this values are the minima of 

1,CORRS . 
Therefore, a new quantity CORRS  is defined by 

( ) ( ) ( )1, 2, .CORR CORR CORRS n S n S n= −                 (27) 

By looking for the minimum of CORRS , we estimate the optimal time window 

wt  corresponding both to the minima of 1,CORRS  and to the first period P of the 
initial N values time series S. 

The C-C-1 method has been programmed in R language by using the same 
packages as with the C-C method. An organigram of the C-C-1 method is pre-
sented in Appendix 2 and results obtained the 4000-values data sequence with q 
= 19 are shown in Figure 10. 

High frequencies oscillations occurring when applying the C-C method (red 
dashed line) have disappeared in the C-C-1 method (black solid line) (see Figure 
10). In Figure 10, the 2S∆  first local minimum occurs when n = 10 while it  

 

 

Figure 10. ( )2 nS∆  versus n obtained by using the C-C-1 method and q = 19 (black sol-

id line), ( )1 nS∆  versus n obtained through the C-C method (red dashed line). 
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Figure 11. 1,CORRS  (red dashed line) obtained with the C-C method, 2,CORRS  (black 

dashed line) and CORRS  (black solid line) obtained with the C-C-1 method. 
 

was n = 12 for the C-C method. n = 10 represents the optimal delay time T. 
Figure 10 shows that the estimate of the optimal delay time T in the C-C-1 

method (n = 10) is quite the same as with the C-C method (n = 12). The first lo-
cal minimum of ( )CORRS n  coincide with the first period P of the chaotic time 
series S, and gives the optimal delay time window wt . The graph of CORRS  in 
Figure 11 (black solid line) enables to distinguish clearly the CORRS  first local 
minimum from the other local minima. The estimate of the optimal delay time 
window wt  occurs for n = 33 when 1,CORRS  is minimum, or with the first peak 
value of 2,CORRS  [7] and is different from the optimal delay time window esti-
mated in the C-C method. The optimal embedding dimension Ed  is given by 

( )1 1 5E wd in Ttt= + + =  and is closer to the estimation given by the Cao’s me-
thod (paragraph III c) and agrees with the results presented in paragraph IIIb. 

An optimization of the C-C-1 method should be to define a criterion for the 
optimal selection of the q parameter value. Based on the results obtained from 
the C-C method, a criterion is suggested here to select optimally the q parameter 
value. We define first the quantity 

( ) ( ) ( )1, 1 1, , , ,CORR E E ES d n S d n S d n′ ′= ∆ +
             

(28) 

where 1S∆  is given by Equation (19) and ( ) ( )
4

1
1

1 , , ,E E k
k

S d n S d r n
=

′ = ∑ . The op- 

timal choice of the q parameter value should coincide with the first value of n at 
which ( )1, ,CORR ES d n′  shows the least variation with Ed . This requires to define 
the quantity  

( ) ( ){ } ( ){ }1 1max , min ,
E Ed E d EQ n S d n S d n′= ′ −            

(29) 

Figure 12 shows the evolution of Q(n) as a function of n. 
As the value of the q parameter should be chosen so that the time subseries 
( ){ }, 1,i i q=Y  will not be too short. The optimal q value may be chosen as the 

first value of n for which 1,CORRS ′  shows a minimum variation with Ed , that is q 
= 19. An organigram for obtaining the graph of the variable Q as a function of  
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Figure 12. Graphic representation of Q as a function of n. 

 
Table 2. T and wt  variations as a function of different white Gaussian noise variances 
and strengths. 

α 
σ = 1 σ = 5 σ = 10 

dE T tw dE T tw dE T tw 

0.2 5 10 33 5 10 33 5 9 31 

0.3 5 10 33 5 9 31 5 8 26 

0.5 5 9 29 5 8 25 5 5 17 

0.7 5 9 31 5 5 19 18 9 150 

1.0 5 8 26 10 18 151 26 6 149 

 
n is presented in Appendix 3. 

The C-C-1 method has been applied to the time series ( )Bx x α σ= + N  
where x  is the noise free original signal obtained from the about 4000 values 
data set, ( )σN  is a white Gaussian noise with zero mean and a variance σ (σ = 
1, 5, 10), α is the strength of the noise and represents the level of noise in per-
centage (20%, 30%, 50%, 70%, 100%). T and wt  variations with the different 
values of σ and α are shown in Table 2. 

We observe that the C-C-1 method gives stable results for σ = 1, for σ = 5 
since 70%α ≤ , and for σ = 10 since 50%α ≤ . 

In conclusion, the C-C-1 method is an improvement of the C-C method. The 
original time series is subdivided by setting a parameter q which is independent 
of the time delay T. Tests performed on this method show that it gives more re-
liable and stable estimates of the optimal delay time T and the optimal time de-
lay window wt . Tests show also the robustness of this method in presence of 
noise as the embedding dimension Ed  remains equal when noise free data set 
is degraded with white Gaussian noises with variances respectively equal to 1, 5, 
10. 

4. Reconstruction Qualification 

How can we measure the quality of a reconstruction? Time-delay embedding 
provides a diffeomorphic representation of the original state space. This means 
that the mapping between the original and the reconstructed state space is a 
smooth one. As the optimality of the reconstruction is based on minimizing the 
distortion of the original attractor when applying the reconstruction map [30], 
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an appropriate measure of the quality of a reconstruction would be to measure 
the smoothness of the transformation between the original and the recon-
structed space [18]. Once such a transformation is achieved, a good evaluation of 
invariants such as the Lyapunov exponent and the fractal dimensions of the at-
tractors is required. 

In the case of a large size of noise-free data (about 32,000 values), Takens 
time-delay embedding ensures a topological equivalence between the original 
and reconstructed space and a way to assess this equivalence is to check whether 
the fractal dimensions of the attractors are preserved [9] [18] [31]. The maxi-
mum Lyapunov exponent was calculated using the CDA22 tool box, we found 

2 37.3 10 3 10λ − −≈ × ± ×  for 1tδ = , 2n =  and 5Ed = . The value found when 
using Benettin’s method in paragraph II is in the range defined by this error bar. 
Considering the same parameters, the correlation dimension, Cd , was also cal-
culated with CDA22. We found 2. 0.013Cd = ±  which is very close to the Lya-
punov dimension, Ld , calculated directly by integrating Equation (1). 

Moreover, considering for 0.1tδ = , 8n =  and 5Ed = , the correlation di-
mension calculated with CDA22, Cd , was found again to be very close to the 
Lyapunov dimension, Ld . In this case the Lyapunov exponent was not calcu-
lated with enough accuracy because the number of data which can be used with 
CDA22 is limited. In each case, at least one invariant is conserved. Then, one can 
conclude that the reconstruction was achieved satisfactorily [18] [32]. 

In the case of lower size of noise free data (about 4000 values), Takens time 
delay embedding does not ensure the optimality of the reconstruction and re-
quires to measure the smoothness of the mapping with the embedding parame-
ters values determined by using the C-C-1 method ( 5, 10Ed n= = ). We have 
calculated the factor F based o the statistic Rul’kov test as explained in the in-
troduction [18] [19]. Let be iX  the ith point in the original three dimensional 
state space ( ), ,i i i ix y z=X  and 

i
VX , a neighborhood of iX  with a radius r 

{ }such that
i i i iV r′ ′= − ≤X X X X . Let be ( )i if=y X  the mapping of iX  in 

the five-dimensional reconstructed space. The 𝑦𝑦𝑖𝑖  components in transformed 
coordinates may be written as [18] [33] 

,1

,2

,3

,4

,5

.

i

i i

ii i

i i

i

x
x x
x f y
x z
x

 
       = =       
  

y

                      

(30) 

Let be 
iyV , a neighborhood of iy  with the same radius r as for 

i
VX . Let be 

1f −  the inverse mapping from the five-dimensional reconstructed space on the 
original three-dimensional state space. To establish that the mapping f could be 
able to produce a diffeomorphic representation of the original state space, it can 
be shown that neighbors of iX  in 

i
VX  may be kept by the 1f f− ∗  transfor-

mation. Let iNOX  be the nearest neighbor of iX  such as ( )iNO iNOf=y X , the 
corresponding mapping point in the reconstructed space would be a neighbor of 
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iy  in 
iyV . Let iNRy  be the nearest neighbor of iy  such as ( )1

iNR iNRf −=X y , 
the corresponding point in the original space would be a neighbor of iX  in 

i
VX . The factor F used to measure the mapping smoothness is given by [18] [19] 

1

1 ,
p

i iNO i iNR

i i iNO i iNR

F
p =

− −
=

− −∑
y y X X

X X y y                 
(31) 

with ( )1Ep N d T= − −  is the number of embedded points, Ed  is the embed-
ding dimension and T the time delay. The factor F should be closed to unity so 
that it would be able to characterize an ideal diffeomorphic mapping. Thus, the 
closer the F value is to unity, the better is the reconstruction. The F factor has 
been calculated for the lower size noise free data set studied in paragraphs IIId 
and IIIe by using the R script presented in Appendix 4. The embedding para-
meters found for this data set by using the C-C-1 method were 5, 10Ed T= =  
and the estimated value of the F factor is 0.958. The correlation dimension Cd  
has been calculated for 5, 10Ed T= =  and we found 1.87785Cd = . The max-
imum Lyapunov exponent has been calculated for the same embedding parame-
ters values and we found 0.062λ = . Figure 13(a) show a trajectory in the (x, y, 
z) three-dimensional space obtained by integrating numerically Equation (1). 
Figure 13(b) shows a trajectory in a three-dimensional space obtained by con-
sidering three delay coordinates in the reconstruction space. Figure 13(a), Fig-
ure 13(b) show similarities. 

5. Conclusions 

This paper provides an overview of methods for embedding parameters optimal 
selection applied to the Rössler strange attractor reconstruction through chaotic 
time series. Two main approaches are used whether times series are sufficiently 
long free noise data set [5] [6] [7] [8] [9] or finite and noisy data set [7] [8] [33]. 
In the first case the embedding parameters Ed  and T can be determined inde-
pendently and the theorem of Takens allows recreating the underlying dynamics. 
When data set are finite and/or noisy, the theorem of Takens is silent and para-
meters Ed  and T would appear correlated and as an irrelevant partnership be-
tween them could affect the quality of the reconstruction, the delay time window 

( )1w Et d T= −  should be a more useful parameter to determine. Along to these 
two approaches, three methods have been presented. Coherence between the 
different results is discussed and robustness of all these three methods is tested. 
Results obtained with the Cao’s method [14] show that for noise-free data of 
very long length, the reconstruction is valid for any time delay as far as the em-
bedding dimension is high enough. When going to small number noisy data 
samples, the time delay used to determine the minimum embedding dimension 
cannot have any value.  

The C-C method developed by Kim et al. [7] has been applied to finite data 
sequence of about 4000 values and the robustness of this method has been stu- 
died when the original data set is degraded white Gaussian noise with different  
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Figure 13. Similarity between the initial state space (a) and the reconstructed one (b). 

 
variance σ and different strength α. Results are summarized in Table 1 and dis-
cussed. The C-C-1 method suggested by Cai et al. [8] improve some drawbacks 
of the C-C method and has been tested on the same time series of about 4000 
values and show Ed , T and wt  estimates in line with Cao’s method results. 
Results on the C-C-1 method robustness against noise are summarized in Table 
2, and shows that the C-C-1 method is an improvement of the C-C method. A 
criterion for determining the C-C-1 method q parameter is suggested on para-
graph IIId and improves the implementation of the C-C-1 method. A technic 
based on the statistic Rul’kov test is proposed in paragraph IV to measure the 
state space reconstruction quality [18] [19] [33]. 
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Appendix 1 
The C-C method organigram 

 

Appendix 2 
The C-C-1 method organigram 
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Appendix 3 
Organigram for obtaining Q[n] 

 

Appendix 4 
Smoothness mapping F factor calculation R script 

Input data: Initial time series S: ts4xnew, T (time delay) = 10, m (embedding 
dimension) = 5 

Output data:F: F factor 
( ) ( ) ( )0 0 00 , 0 , 0X x t Y y t Z z t= = =  are the coordinates of the initial point of 

the trajectory obtained by solving numerically Equation (1) with a time step del-
tat 

library(stats) 
library(scatterplot3d) 
library(nonlinearTseries) 
library(tseriesChaos) 
X0=2.4099243 
X1=2.2247949 
Y0=4.0068145 
Y1=4.0693054 
a=0.2 
b=0.4 
c=5.7 
deltat=(Y1-Y0)/(X0+(a*Y0)) 
Z0=Y0+((X1-X0)/deltat) 
ro-
sor=rossler(a=0.2,b=0.4,w=5.7,start=c(X0,Y0,Z0),time=seq(1,79.82,by=deltat)) 
N=length(rosor$x) 
m=5 
T=10 
NP=N-((m-1)*T) 
rosrec2=buildTakens(ts4xnew,m,T) 
MATOR<-matrix(data=0.0,nrow=NP,ncol=3) 
Vecsum<-vector(mode="numeric",length = NP) 
for(irow in 1:NP){ 

https://doi.org/10.4236/jmp.2017.89096


O. Delage, A. Bourdier 
 

 

DOI: 10.4236/jmp.2017.89096 1632 Journal of Modern Physics 
 

 MATOR[irow,1]=rosor$x[irow] 
 MATOR[irow,2]=rosor$y[irow] 
 MATOR[irow,3]=rosor$z[irow] 
} 
for(i in 1:NP){ 
 XI=c(MATOR[i,1],MATOR[i,2],MATOR[i,3]) 
 YI=c(rosrec2[i,1],rosrec2[i,2],rosrec2[i,3],rosrec2[i,4],rosrec2[i,5]) 
 nno=neighbourSearch(MATOR,i,0.7) 
 nnr=neighbourSearch(rosrec2,i,0.7) 
 VO<-nno[[2]] 
 VR=nnr[[2]] 
 Vinto=intersect(VO,VR) 
 INNO=Vinto[1] 
 XINNO= c(MATOR[INNO,1],MATOR[INNO,2],MATOR[INNO,3]) 
 YINNO= 
c(rosrec2[INNO,1],rosrec2[INNO,2],rosrec2[INNO,3],rosrec2[INNO,4],rosrec2
[INNO,5]) 
 vecxinno=XI-XINNO 
 deno=max(vecxinno) 
 vecyinno=YI-YINNO 
 numo=max(vecyinno) 
 var1=numo/deno 
 Vintr=intersect(VR,VO) 
 INNR=Vintr[1] 
 XINNR= c(MATOR[INNR,1],MATOR[INNR,2],MATOR[INNR,3]) 
 
YINNR=c(rosrec2[INNR,1],rosrec2[INNR,2],rosrec2[INNR,3],rosrec2[INNR,4]
,rosrec2[INNR,5]) 
 vecyinnr=YI-YINNR 
 vecxinnr=XI-XINNR 
 denr=max(vecyinnr) 
 numr=max(vecxinnr) 
 var2=numr/denr 
 var=abs(var1*var2) 
 Vecsum[i]=var 
} 
result=sum(Vecsum)/NP 
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