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Abstract 
A more efficient method of locating the optimum of a second order response 
function was of interest in this work. In order to do this, the principles of op-
timal designs of experiment is invoked and used for this purpose. At the end, 
it was discovered that the noticeable pitfall in response surface methodology 
(RSM) was circumvented by this method as the step length was obtained by 
taking the derivative of the response function rather than doing so by intui-
tion or trial and error as is the case in RSM. A numerical illustration shows 
that this method is suitable for obtaining the desired optimizer in just one 
move which compares favourably with other known methods such as New-
ton-Raphson method which requires more than one iteration to reach the op-
timizer. 
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1. Introduction 

The problem of locating the optimum of a second order response function has 
already been addressed by a method known as response surface methodology 
(RSM). RSM is simply a collection of mathematical and statistical techniques 
useful for analyzing problems where several independent variables influence a 
dependent variable or response. The main objective here is to determine the op-
timum operating conditions for the system or to determine a region of the factor 
space in which operating requirements are satisfied [1]. See also [2] [3] [4] [5] 
and [6]. For instance, the interest of a chemical engineer lies in the optimization 
of his process yield which is influenced by two variables, reaction time, x1 and 
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reaction temperature, x2. The observed response can be represented as a function 
of the two independent variables as  

( )1 2,y f x x= +                           (1) 

where   is the random error term while the expected response function is  

( ) ( )1 2,E y f x xη = =                        (2) 

When the mathematical form of Equation (2) is not known, the expected re-
sponse function can be approximated within the experimental region by a first 
order or a second order response function [7]. 

According to [1], the initial estimate of the optimum operating conditions for 
the system is frequently far from the actual optimum. When this happens, the 
objective of the experimenter is to move rapidly to the general vicinity of the op-
timum and the actual step size or step length is determined by the experimenter 
based on experience. The determination of the step length that could guarantee 
rapid movement to the vicinity of the optimum by experience or trial and error 
is a pitfall. In order to advance the existing RSM procedure, [8] proposed a mod-
ification which utilized the fusion of the Newton-Raphson and Mean-centre al-
gorithms for obtaining the optimum and the exploration of near optimal settings 
within the optimal region. The problem with this modification is that it uses 
over 90% of the steps of the previous method and then introduces several other 
steps, thereby increasing computer time and computer storage space, only to 
obtain the selection of near-optimal factors settings which is iterative in nature. 
In order to circumvent this pitfall, this article seeks to solve this problem by 
making use of the principles of optimal designs of experiment. To design an ex-
periment optimally, we mean a selection of N support points within the experi-
mental region so that the aim of the experimenter could be realized. Unlike RSM 
where the step length is obtained by trial and error, [9] had already modified an 
algorithm by [10] to solve an unconstrained optimization problems using the 
principle of optimal designs of experiment where the step length is obtained by 
taking the derivative of the response function. As by [9], a well-defined method 
to handle interactive effects in the case of quadratic surfaces has been provided. 
Since this new technique is a line search algorithm, it relies on a well-defined 
method of determining the direction of search as given by [11]. The algorithmic 
procedure which is given in the next section requires that the optimal support 
points that form the initial design matrix obtained from the entire experimental 
region be partitioned into r groups, 2,3, ,r k=  . However, [12] has shown that 
with r = 2, optimal solutions are obtained. This method of locating the optimum 
of a second order response function is an exact solution method as against itera-
tive solution method used in RSM or any other traditional method. 

2. The Algorithm 

The sequential steps involved in this algorithm are given below: 
Initialization: Let the second order response function, ( )f x  be defined as 
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( ) 2 2
0 1 1 2 2 1 1 2 1 2 3 2f x a a x a x b x b x x b x= + + + + +  

Select N support points such that 
3 4 or 6 8r N r N≤ ≤ ≤ ≤  

where r = 2 is the number of partitioned groups and by choosing N arbitrarily, 
make an initial design matrix  

11 12

21 22

1 2

1
1

1 N N

x x
x x

X

x x

 
 
 =
 
 
 

  

 

Step 1: Compute the optimal starting point,  
* * T *
1 1 0,N

m m mmx u x u
=

= >∑  

*
1 1N

mm u
=

=∑  

1
*

1 , 1 , ,, 2m
m

m

a
u m

a
N

−

− ==
∑


 

T 1,2, , ,m m m m Na x x ==   

Step 2: Partition X into r = 2 groups and calculate 
1) T , 1, 2i i iM iX X ==  
2) 1

iM −   
Step 3: Calculate the following: 
1) The matrices of the interaction effect of the variables, X1I and X2I  
2) Interaction vector of the response parameter, 

1

2

3

b
g b

b

 
 =  
  

 

3) Interaction vectors for the groups are 
1 T

i i i iII M X X g−=  

4) Matrices of mean square error for the groups are 
1 T

i i i iM M I I−= +  

5) The Hessian matrices, Hi and normalized Hessian matrices, *
iH  

6) The average information matrix, ( )NM ξ   
Step 4: Obtain the response vector, z and the direction vector, d. 
Normalize d to have d*. 
Step 5: Make a move to the point 

* * *
2 1 1  ρ= −x x d  

for a minimization problem or 
* * *
2 1 1 ρ= +x x d  

for a maximization problem where 1ρ  is the step length obtained from 
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( )*
2

1

d
0

d

f

ρ
=

x
  

Step 6: Termination criteria. Is ( ) ( )* *
2 1  f f ε− <x x  where ε = 0.0001?  

1) Yes. Stop and set *
2 min =x x  or maxx  as the case may be. 

2) No. Replace *
1x  by *

2x  and return to Step 5. If 2 0ρ ≅ , then implement 
Step 6(1). 

3. Numerical Illustration 

In this section, we give a numerical illustration of the optimal designs technique 
for locating the optimum of a second order response function. 

( ) ( ) ( )2 2
1 2min  1 2f x x x= − + −  by optimal designs technique.  

Solution  
Initialization: Given the response function, ( ) ( ) ( )2 2

1 21 2f x x x= − + − , select 
N support points such that 

3 4 or 6 8r N r N≤ ≤ ≤ ≤  

where r = 2 is the number of partitioned groups and by choosing N arbitrarily, 
make an initial design matrix  

1 2 1.5

1 1 1

1 0.5 0.5

 0.5 0

1 0 0

1

1 2

.5

1

X

− 
 

− 
 − =  
 
 −

−
 
 

 

Step 1: Compute the optimal starting point,  
6* * T *

1 1  , 0m m mm u x u
=

= >∑x  

6 *
1 1mm u
=

=∑  

1
*

1 1, 2, , , 6m
m
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a

−

− ==
∑

  

T , 1, 2, ,6m m m ma x x ==   

[ ]T 1
1 1 1 1

1
1 2 1.5 2 7.25, 0.1379

1.5
a x x a−

 
 = = − − = = 
  

 

[ ]T 1
2 2 2 2

1
1 1 1 1 3, 0.3333

1
a x x a−

 
 = = − − = = 
  

 

[ ]T 1
3 3 3 3

1
1 0.5 0.5 0.5 1.5, 0.6667

0.5
a x x a−

 
 = = − − = = 
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[ ]T 1
4 4 4 4

1
1 0 0 0 1, 1.0000

0
a x x a−

 
 = = = = 
  

 

[ ]T 1
5 5 5 5

1
 1 0.5 0.5 0.5 1.5, 0.6667

0.5
a x x a−

 
 = = − = = 
 − 

 

[ ]T 1
6 6 6 6

1
 1 2 1 2 6, 0.1667

1
a x x a−

 
 = = − = = 
 − 

 

6 1
1 2.9713mm a−
=

=∑  

Since 
1

*
1 1, 2, , , 6m

m
m

a
mu

a

−

− ==
∑


 

then  

* * *
1 2 3

0.1379 0.3333 0.66670.0464, 0.1122, 0.2244,
2.9713 2.9713 2.9713

u u u= = = = = =  

* * *
4 5 6

1.0000 0.6667 0.16670.3366, 0.2244, 0.0561
2.9713 2.9713 2.9713

u u u= = = = = =   

Hence, the optimal starting point is 

6 * T
1 1

1 1 1

0.0464 2 0.1122 1 0.2244 0.5

1.5 1 0.5

1 1 1 1.0001

 0.3366 0 0.2244 0.5 0.0561 2 0.0928

0 0.5 1 0.1257

m mm u x
=

     
     

= = − + − + −     
     
     

       
       

+ + + = −       
       − −       

∑*x

 

That is, 

*
1

0.0928
0.1257
− 

=  
 

x  

Step 2: Partitioning X into 2 groups of equal number of support points, we 
obtain the design matrices, 

1

1 2 1.5
1 1 1
1 0.5 0.5

X
− 

 = − 
 − 

 and 2

1 0 0
1 0.5 0.5
1 2 1

X
 
 = − 
 − 

  

The respective information matrices are  

T
1 1 1

3 3.5 3
 3.5 5.25 4.25

3 4.25 3.5
M X X

− 
 = = − − 
 − 

 and  

https://doi.org/10.4236/ajor.2017.75018


I. Etukudo 
 

 

DOI: 10.4236/ajor.2017.75018 268 American Journal of Operations Research 
 

T
2 2 2

3 2.5 1.5
 2.5 4.25 2.25

1.5 2.25 1.25
M X X

− 
 = = − 
 − − 

 

and their inverses are  

1
1

5 8 14
8 24 36

14 36 56
M −

− − 
 = − 
 − 

 and 1
2

1 1 3
1 6 12
3 12 26

M −

 
 =  
  

 

Step 3: Calculate the following: 
1) The matrices of the interaction effect of the variables for the groups as 

2 2
11 11 12 12
2 2

1 21 21 22 22
2 2
31 31 32 32

4 3 2.25
1 1 1

0.25 0.25 0.25
I

x x x x
X x x x x

x x x x

  − 
   = = −   
   −  

 

2 2
41 41 42 42
2 2

2 51 51 52 52
2 2
61 61 62 62

0 0 0
0.25 0.25 0.25

4 2 1
I

x x x x
X x x x x

x x x x

   
   = = −   
   −  

 

2) Interaction vector of the response parameter, 

1

2

3

1
0
1

b
g b

b

   
   = =   
     

 

3) Interaction vectors for the groups are 

1 T
1 1 1 1

1
5.5
2.5

II M X X g−

− 
 = = − 
 − 

 

1 T
2 2 2 2

0
4
3

II M X X g−

 
 = =  
  

 

4) Matrices of mean square error for the groups are 

1 T
1 1 1 1

6 2.5 11.5
 2.5 54.25 49.75

11.5 49.75 62.25
M M I I−

− − 
 = + = − 
 − 

 

1 T
2 2 2 2

1 1 3
 1 22 24

3 24 35
M M I I−

 
 = + =  
  

 

5) Matrices of coefficient of convex combinations of the matrices of mean 
square error are 

{ }1
6 54.25 62.25, , 0.8571,0.7115,0.6401

6 1 54.25 22 62.25 35
H diag diag = = 

+ + + 
  

{ }2 1 0.1429,0.2885,0.3599H I H diag= − =  
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and by normalizing Hi such that * *T
i iH H IΣ = , we have 

{ }

* 1311 12
1 2 2 2

1 2 3

2 2 2 2 2 2

, ,

0.8571 0.7115 0.6401, ,

0.9864,  

0.8571 0.1429 0.7115 0.288

0.9267,  

5 0.6401 0.359

0.8717

9

i i i

hh hH diag
h h h

diag

diag

  =  
Σ Σ Σ  

  =  
 + + + 

=

 

{ }

*
2 2 2 2 2 2 2

0.1429 0.2885 0.3599, ,
0.8571 0.1429 0.7115 0.2885 0.6401 0

 0.1645,0.3758,0.
.3599

4901

H diag

diag

  =  
 + + + 

=

 

6) The average information matrix is 

( ) * *T

3.0001 3.0448 2.4586
3.0448 5.1088 3.8476

2.4586 3.8476 2.9598
N i i iM H M Hξ

− 
 = Σ = − − 
 − 

 

Step 4: Obtain the response vector 

0

1

2

z
z
z

 
 =  
  

z  

where  

( )0 3.0448,2.4586 16.5707z f= − =  

( )1 5.1088, 3.8476 11.0346z f= − =  

( )2 3.8476,2.9598 24.4204z f= − =  

and hence, the direction vector 

( )
0

1
1

2

86.2355
 521.3935

757.6757
N

d

d M
d

ξ−

  − 
   = = =   
     

d z  

and by normalizing d such that T 1∗ ∗ =d d , we have 

2 2
1*

2
2 2

521.3935
0.5669521.3935 757.6757  

757.6757 0.8238

521.3935 757.6757

d
d

 
    + = = =         

+ 

d  

Step 5: Obtain the step length, 1ρ  from 

[ ]

* * *
2 1 1

1

1 1

 
0.0928 0.5669

  
0.1257 0.8238

0.0928 0.5 ,0.1257 0.8239 866 .

ρ

ρ

ρ ρ

= −

−   
−   

   
=

=

−− −

x x d

 

That is, 
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( ) [ ]*
2 1 1

2
1 1

0.0928 0.5669 ,0.1257 0.8238

4.7072 4.3271

f f ρ ρ

ρ ρ

= − − −

= + +

x
 

and 

( )*
2

1
1

d
4.3271 2 0

d

f
ρ

ρ
= + =

x
 

Hence, 

1 2.1636ρ = −  

and by making a move to the next point, we have 

*
2

0.0928 0.5669 1.1337
 2.1636

0.1257 0.8238 1.9081
−     

= + =     
     

x  

Step 6: Since ( ) ( )* *
2 1 0.0263 4.7072 4.6809f f− = − =x x , we make another 

move and replace *
1x  by *

2x .  
The new step length, 2ρ  is obtained as follows:  

[ ]

* * *
3 2 2

2

2 2

1.1337 0.5669
1.9081 0.8238

1.1337 0.5669 ,1.9081 0.8238 .

ρ

ρ

ρ ρ

= −

   
= −   
   

= − −

x x d

 

That is, 

( ) [ ]*
3 2 2

2
2 2

1.1337 0.5669 ,1.9081 0.8238

0.0263 0.0002

f f ρ ρ

ρ ρ

= − −

= − +

x
 

( )*
3

2
2

d
2 0.0002 0

d

f
ρ

ρ
= − =

x
 

which gives 

2 0ρ ≈  

Since the new step length, 2ρ  is zero, then an optimizer had been located at 
the first move and hence 

*
2

1.1337
1.9081
 

=  
 

x  and ( )*
2 0.0263f =x  

4. Conclusion 

By using optimal designs technique, we have been able to locate the optimum of 
a second order response function in just one move. This method circumvented 
the noticeable pitfall in RSM by taking the derivative of the response function to 
obtain the step length rather than doing so by intuition or trial and error as is  

the case in RSM. A numerical illustration which gives *
2

1.1337
1.9081
 

=  
 

x  and  

( )*
2 0.0263f =x  in just one move compares favourably with other known me-
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thods such as Newton-Raphson method which requires more than one iteration 
to reach the optimizer. 
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