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Abstract 
Silica films containing gold nanoparticles were grown by magnetron radio 
frequency (rf) sputtering technique under various deposition conditions. The 
structural and optical properties of the composite films deposited at 400˚C 
substrate temperature were compared with those deposited at room tempera-
ture. Effect of substrate temperature of AuNPs on micro structural properties 
of the Au/SiO2 nanocomposite films, such as size, dislocation density (δ), 
strain (ε) and lattice distortion (LD) have been investigated. The face-centered 
cubic crystalline structure of Au nanoparticles inclusion in the amorphous si-
lica dielectric matrix was confirmed using X-ray diffraction. The average grain 
size of AuNPs has been found in the range of 0.56 - 0.60 nm and 1.15 - 1.23 
nm at 3 × 10−3 mbar and 2 × 10−3 mbar argon pressure respectively. The δ, ε, 
LD values change inversely with the increasing of the substrate temperatures. 
These composites exhibit the optical features of a semiconductor with direct 
band gap. The band gap energy of 3.85 eV and 4.1 eV achieved for gold na-
noparticles when the substrate temperatures increases from 25˚C to 400˚C. A 
peak wavelength of the surface plasmon resonance band absorption (SPR) 
characteristic of gold nanoparticle was found around 500 nm for the sample 
deposited at 2 × 10−3 mbar and at 400˚C substrate temperature. 
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1. Introduction 

Metal nanoparticles embedded in dielectric matrices in the form of nanocompo-
site films have gained significant research interest due to their multifunctional 
properties appropriate for various applications ranging from solar cells to tar-
geted drug delivery [1] [2] [3] [4]. The plasmonic properties of the nanocompo-
site films mainly depend upon the type of nanoparticles (Au or Ag), their mor-
phology and the dielectric constant of the embedding matrix [5] [6] [7] [8] [9]. 
One of the most important aspects at the nanoscale is that the noble metals like 
silver and gold exhibit strong absorption band in visible range. The origin of this 
absorption is attributed to their collective oscillation of conduction band elec-
tron in response to the electrical field of the electromagnetic radiation of light 
[10] [11]. Silicon dioxide (SiO2), one of the most abundant materials on earth, 
has broadly been used in various fields such as passivation layers of electronic 
devices, protection layers of magnetic or optical discs and anti-reflective coatings 
because of their excellent chemical stability and optical transmittance with low 
refractive index [12] [13]. Several dielectric matrices, such as SiO2 have been uti-
lized to fabricate different multifunctional nanocomposites for different applica-
tions [14] [15]. Generally, the main motivation behind the use of an insulating 
matrix is to maintain the necessary separation between metal nanoparticles, the-
reby preventing an agglomeration of the metallic nanoparticles. Nanocomposite 
films consisting of metal particles such as gold embedded in a silica matrix have 
recently been the subject of many studies [16]-[28]. A large number of methods 
have been used to obtain AuNPs embedded in SiO2 films, such ion implantation 
[29] [30], sol-gel [31], plasma enhanced chemical vapor deposition (PECVD) 
[32], hybrid techniques combining pulsed-DC sputtering and PECVD, which is 
used for simultaneous Au sputtering and SiO2 deposition [18] [19], and RF 
magnetron sputtering [33]-[38]. The flexibility and easy fabrication of diverse 
composite films are the advantages of sputtering method. The important factors 
to influence the formation of AuNPs are the working distance between the target 
and the substrate, rf-power, sputtering time, the substrate temperature, applied 
voltage, and working pressure. The purpose of this work is to investigate the in-
fluence of substrate temperature on the structural and optical properties of 
gold/silica composite films grown by RF-magnetron sputtering technique. The 
as-deposited films were characterized by X-ray diffraction and optical absorp-
tion spectroscopy. 

2. Experimental Methods 

The samples, consisting of gold/silica composite thin films, were prepared by 
conventional radio-frequency magnetron sputtering method using an Alcatel 
SCM 650 apparatus. The target consisted of pure (99.99%) metal Au chips on 
top of a 50 mm diameter silica disc placed 60 mm away from the substrates, is 
shown Figure 1. 

Sputter deposition, in a radio frequency (13.56 MHz) machine, has been car- 
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Figure 1. Schematic top view of the target for sputtering of the 
Au chips and a SiO2 disc. 

 
ried out after the chamber reached a base pressure of 61 10−×  mbar. Deposition 
was carried out at two argon pressures 3 32 10 - 3 10 mbar− −× ×  and two sub-
strate temperatures 25˚C - 400˚C. The relevant growth conditions of the films 
are shown in Table 1. Under these conditions, four sets of samples are prepared 
and they are denoted ( )3

1 3 10 mbar,25 CA −×   ( )3
2 3 10 mbar,400 CA −× 

 ( )3
3 2 10 mbar,25 CA −×   ( )3

4 2 10 mbar,400 CA −×  . 
X-ray experiments were performed in a Philips PW 1710 spectrometer using 

CuKα  radiation ( )0.15406 nmλ =  and a Bragg-Brentano geometry. The dif-
fraction patterns were collected over the range 10 2 80θ< <   at room temper-
ature. The identification of Au crystalline phases was done using the JCPDS da-
tabase cards (n_04-0784). Optical absorption spectra, of Au/SiO2 composite 
films, were registered by a Shimadzu UV 30101 PC spectrometer, in near ultra- 
violet-visible-near infra-red range (NIV-VIS-NIR) from 200 to 2000 nm. 

3. Results and Discussion 
3.1. Structural Analysis 

Figure 2(a) and Figure 2(b) presents the XRD patterns of the samples deposited 
at two working argon pressure 3 32 10 ,3 10− −× ×  mbar and at two substrate tem-
peratures 25˚C, 400˚C. X-ray diffractogram of gold thin film with a cubic struc-
ture, presented as a reference, is also reported in Figure 2. From Figure 2(a), it 
is evident that there are no Bragg reflections that are clearly visible in the spec-
tra, due to the small AuNPs. Also, it well known that the peak centered on
2 26θ =  , in the spectra of all the samples, is attributed to the amorphous silica. 
It can be expected that the measured spectra of the composite films results from 
the superposition of two diffractograms, assigned to small gold particles and the 
amorphous silica matrix. The XRD spectra of the series 1A  and 2A  have the 
same appearance. The effect of substrate temperature on these two series may be 
neglected. On the other hand, for the series 3A  and 4A , the intensity and the 
full width at half maximum of the diffraction peak corresponding to Au(111) 
orientation decrease with increase in deposition temperature. This may be due 
to the improvement in the crystallinity of the AuNPs at higher deposition tem-
peratures and increases the mobility of added atoms which facilitate the grain 
growth [39]. 
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Figure 2. XRD patterns of gold thin films and Au/SiO2 composite deposited with two 
Argon pressures, two substrate temperatures. 
 
Table 1. Films growth conditions. 

Working argon pressure (mbar) 3 32 10 - 3 10− −× ×  

Initial pressure(mbar) 61 10−×  

Au target (%) 2.6 

Bias (V) −50 

Power (W) 50 

Substrate Temperature 25˚C - 400˚C 

 
As shown in Figure 2, it is difficult to determine crystalline phases and size. 

However, using a commercial software program available on our computer, the 
XRD patterns were deconvoluted, assuming pseudo-Voigt functions in order to 
obtain the peak position intensity and the preferential growth of the and full 
width at half maximum (FWHM). Note that the purpose of the deconvolution is 
to fit the measured XRD spectrum in well-defined peaks to which a physical 
meaning can be attributed. For more details see the works [40] [41] [42]. Figure 
3 presents the curve fitting of the XRD spectrum of 3A  serie. Outside the peak 
assigned to amorphous silica film, the diffraction peaks resulting from the fitting 
are attributed to the crystal planes of Au(111), Au(200) and Au(220). The peak 
positions are in agreement with the well known data: JCPDS-04-04784 characte-
ristic of the FCC cubic structure, indicating that the small gold particles should 
adopt a fcc-like structure. Table 2 summarizes the fitting parameters determined 
from the Au(111) orientation plane for all the samples. 

The average crystallite size (D) can be estimated from the Debye–Scherrer 
Equation [43]. 

cosD kλ β θ=                         (1) 

Where, k  is the Scherrer constant and is equal to 0.9, θ  is the Bragg’s an-
gle, λ  is the wavelength of the CuKα radiation line and β  is the full width 
at half maximum (FWHM) of peak in radian. The average crystallite size was 
calculated and it was found in the range between 0.56 nm and 0.6 nm  
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Figure 3. XRD diffraction patterns of 3A  serie and their 
curve fitting. 

 
Table 2. Results of the curves fitting of the experimental diffractograms of the four series. 

Argon pressure 
PAr (mbar) 

Sample Number 
Substrate Temperature 

TS (˚C) 
Bragg’s angle 
2θ (degree) 

Particle size 
D(nm) 

3 × 10−3 
A1 25 39.82 0.56 

A2 400 39.73 0.60 

2 × 10−3 
A3 25 38.65 1.15 

A4 400 39.55 1.23 

 
and 1.15 - 1.23 nm at 33 10 mbar−×  and 32 10 mbar−×  argon pressure respec-
tively corresponding to prominent (111) peak. The variation of nanoparticle size 
with respect to substrate temperature is presented in Table 2. It is observed that 
the grain size increases with an increase of substrate temperature. Also, the larg-
er grain sizes were obtained with lower argon pressure deposition. 

From XRD results, the various structural parameters like dislocation density
( )δ , strain ( )ε  and lattice distortion ( )LD , which are commonly used to de-
scribe the structural analysis, were calculated using the following equations and 
evaluated data are presented in Table 3 [44]. 

21 Dδ =                          (2) 

cos 4ε β θ=                         (3) 

4 tanLD β θ=                         (4) 

where, D is crystalline size, β is full-width at half maximum in radians, θ is the 
Bragg’s angle. 

Table 3 demonstrates that the strain and dislocation density of the material of 
the film decrease with an increase of substrate temperature. This may due to the 
increase in grain size [45]. Further, the decrease in strain indicates a decrease of 
lattice constant with an increase of substrate temperature [46]. 
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3.2. Optical Studies 

Figure 4 presents the measured optical transmission spectra of all the samples. It 
is observed that the transmittance increases in the visible range and small in-
creasing of the transmittance maxima for wavelength larger than 1200 nm, when 
the substrate temperature changes from 25˚C to 400˚C for 3A  and 4A  series. 
No significant change was observed in the case of 1A  and 2A  series. This ob-
servation is confirmed by the obtained from XRD measurements. Moreover, the 
transmittance curves denote a pronounced blue-shift of the absorption edge with 
the enhancement of substrate temperature. The Blue-shift in the absorption edge 
is ascribed to an enlargement of the optical band gap suggesting a strong effect 
of the size AuNPs on the electronic properties. Therefore, the position of the 
absorption edge can be controlled in both the near UV and whole visible band. 
Moreover, from the optical transmittance measurements we may calculate the 
absorption coefficient, α, of the films using the formula: 

( )ln 100 T
d

α =                          (5) 

where T , is the transmittance and d , is the film thickness. 
From the absorbance curves presented in Figure 5, we note the absence of the 

typical SPR extinction peaks, in the A1, A2 and A3 series. This is an indication 
that the AuNPs should be incorporated in silica films with size lower than 2 nm. 
For the A4 series, Surface plasmon resonance broad absorption peak is observed 

 
Table 3. Micro structural parameters of the series A1, A2, A3 and A4. 

Sample 
Number 

Dislocation density (lines/m2) 

( ) 1610δ ×  
Strain 

( ) 210ε −×  
Lattice distortion 

( ) 210LD −×  

A1 318.88 6.44 1.92 

A2 277.78 6.01 1.27 

A3 75.61 3.14 1.12 

A4 66.10 2.94 1.00 

 

 
Figure 4. Transmittance spectra of Au/SiO2 nanocmposite films sputtered at two 
substrate tempertures and argon pressues: (a) at 33 10 mbar−× ; (b) at 32 10 mbar−× . 
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in the absorption spectra around 500 nm. These results suggest that Au/SiO2 
samples have a semi-conductor character. 

According to the Tauc relation, the absorption coefficient α for direct band 
gap material is given by [47], 

( ) ( )2
gh A h Eα ν ν= −                   (6) 

where A is a constant, gE  is the optical gap expressed in eV and hν  is the 
photon energy in eV . Figure 6 shows the plot of ( )2hα ν  vs. the photon 
energy ( hν ) of the Au/SiO2 nanocomposite thin films with different substrate 
temperature and argon pressures. The ( gE ) deduce values of A1 and A2 series 
varied from 3.9 eV to 4.07 eV, while the ( gE ) values of A3 and A4 varied from 
3.85 eV from 4.1 eV when the substrate temperature increases from 25˚C to 
400˚C. 

The obtained nanocomposite materials have lower absorbance and higher 
transmittance in the visible region can be used as a suitable antireflection layer 
in solar cells working mainly in the visible region [48]. 

4. Conclusion 

Au/SiO2 nanocomposite films have been prepared by RF-sputtering technique. 
 

 
(a)                                        (b) 

Figure 5. Optical absorption spectra of Au/SiO2 nanocomposite films sputtered at two 
substrate temperatures and argon pressures: (a) at 33 10 mbar−× ; (b) at 32 10 mbar−× . 

 

 

Figure 6. Plot of ( )2αhν  versus photon energy hν for Au/SiO2 deposited at two sub-

strate temperatures and argon pressures: (a) at 33 10 mbar−× ; (b) at 32 10 mbar−× . 
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The effect of argon pressure and substrate temperature on the structural and 
optical properties of the composite films was investigated. XRD analysis shows 
that the size of the Au NPs increases, the strain, lattice distortion and dislocation 
density decrease with the increasing the substrate temperature. The transmit-
tance measurements were taken at room temperature in the wavelength range 
200 - 2000 nm. The absorption coefficient and optical gap energy were deduced 
from the transmittance measurements. The increasing of the substrate tempera-
ture increases the optical gap energy. The best transparency of composite thin 
films is obtained at low argon pressure and at higher substrate temperature. 
These results can give a design guide how to control the properties of composite 
films by metal nanoparticles. 
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