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Abstract 
 
This paper is concerned with the application of weighted least square method in change point analysis. Test-
ing shift in the mean normal observations with time varying variances as well as of a GARCH time series are 
considered. For both cases, the weighted estimators are given and their asymptotic behaviors are studied. It is 
also described that how the resampling methods like Monte Carlo and bootstrap may be applied to compute 
the finite sample behavior of estimators. 
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1. Introduction 
 
Change point analysis has been received considerable 
attentions in statistical literatures. This topic is studied 
from the frequentist and Bayesian point of view, by pa-
rametric and nonparametric approaches, with univariate 
and multivariate observations and in independent and 
correlated data. Three important references are Csorgo 
and Horvath [1], Chen and Gupta [2] and Khodadadi and 
Asgharian [3]. Bai [4] tested shift in mean of a linear 
process using the ordinary LS (OLS) approach. In many 
practical situations, however, it is advised to apply the 
weighted LS (WLS). In the current paper, we consider 
the WLS method for change point detection. The ap-
proach of derivation test statistics is similar to Bai [4], 
however, it is described briefly, as follows. 

Suppose that 1, , nx x  is a sequence of observations 
such that  
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One can see that  is the maximizer (argmax) of  
given by  
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rejects the null hypothesis of no change point 0 1 2:H    
versus 1 1 2: .H    In practice, i’s may be determi-
nistic or random. They can be known or they may be 
function of unknown parameters (see the Example 2, as 
follows). In these cases, they are replaced by their esti-
mations ’s and consequently, ’s are changed to 
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ˆ kp ’s. 
Under the null hypothesis, the plot of k  against the 

number of observation k oscillates around zero. It re-
mains between two specified boundaries (horizontal lines) 
with high probability. When there is a change in mean, 
the plot of 

v

kv  creates a peak out of a boundary (see the 
following examples). Two horizontal lines (in examples) 
are obtained by the simulating null distribution using the 
Monte Carlo method. We can detect the change if T ex-
ceeds the boundary value at 0 . This suggests that the 
change point estimator is given by  

k

1 1
ˆ arg max .n k nk v   k

t

 

Remark 1. This problem also appears in continuous 
time processes cases. Suppose that t  denote the time 

 (in continuous case) price of a specified stock. Let 
 The Black Scholes formula implies that  
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where t  is a Brownian motion over W  0,t T . Here, 
we assume that t  follows a GARCH(1,1) process and 
the mean process t  has a change point in . Suppose 
that the process  is observed at  equidistant 
discrete times 0 , with nt
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tion of above SDE is  
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      with i  is a GARCH (1,1) 
defined in above. 

Example 1. Shift in mean, time varying variances. 
Change point detection in the mean of normal observa-
tions is studied well, see Khodadadi and Asgharian [3]. 
An crucial assumption in this problem is fixing the vari-
ances after and before change point. Change point detec-
tion in variance of normal observations is another inde-
pendent inferential problem. Change point detection in 
mean and variance at the same time is also studied. In 
this example, we consider the change point detection in 
mean when   2var ,i i    Here, 1, 2, , .i n  2= 1iw i   
and 2k    2 .
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1 1k i ii i

p
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  The plots of kv  under  

0H  (Figure 1, page 6) and under 1H  (Figure 2, page 
6) are given as follows. Here, n = 100, 0  130,k  0,   

2 2   and 2 .i i n   The two horizontal lines are 
 obtained by a Monte Carlo with  repe-

titions. 
3.1 3000R 

Remark 2. In above example, let  Then 
our procedure reduces to test statistic proposed by Bai  
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Figure 1. Time-varying-variance: H0. 
 

0 20 40 60 80 100

-3
0

-2
5

-2
0

-1
5

-1
0

-5

 

Figure 2. Time-varying-variance: H1. 
 

[4]. By the way, we let  The two   1, , ~ 0,1 .
iid

nw w U
horizontal action lines are . The plot of  un-
der 

2.575 kv

1H  (Figure 3, page 6) when  1100,n 0   and 

2 2   shows that our method works well again. 
Example 2. Shift in mean, GARCH process. Lee et 

al. [5] studied change point analysis in regression models 
with ARCH errors. They used the maximum of CUSUM 
of square, based on estimated residuals, as test statistic. 
Here, we use the WLS method to change point detection 
in mean of GARCH process. Assume that i ’s come 
from a GARCH  process, that is i i i( , )p q ,h   where 

,i  1, 2,i    are iid random variables with zero mean 
and unit variance. The conditional variance ’s are 
given by  

ih

   0 ,i ih B B      ih  

where   1
q

qB B B      and  
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  1
p

pB B B      with 1  If we want to 
apply the above mentioned method here, we should let 

.i iBx x 

= 1 .i iw h  To see this, note that it is enough to minimize  
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with respect to unknown parameters. Therefore, = 1i iw h . 
In practice, ’s are unknown and they are replaced by 
their estimations  The two horizontal action lines 
are . The plot of  under 1

2
ih

2ˆ .ih
2.876 kv H  (Figure 4, page 

6) when  0  11 000, kn 300, 1   and 2 3    
shows that our method works well again. The error 
process i  is GARCH(1,1) when 0 0.01  , 1 0.05   
and 1 0.9.   Since 1 1 < 1   the GARCH series is 
stationary. In the next section, we study the application 
of bootstrap method in our problem. 
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Figure 3. Constant variance: H1. 
 

0 200 400 600 800 1000

-2
0

-1
5

-1
0

-5
0

 

Figure 4. GARCH series: H1. 

2. Bootstrap Method 
 
The WLS estimators appear, again, in bootstrap infer-
ence case. Bootstrap methods are strong practical solu-
tions to the complicated problems. Chatterjee and Bose 
[6] proposed generalized bootstrap for estimating equa-
tions by imposing random weights (say multinomial 
weights for paired bootstrap) to the system of estimating 
equations. As stated by Chatterjee and Bose [6], this is 
equivalent to include the random weights to the original 
LS (or WLS) objective function. However, Chatterjee 
and Bose [6] didn’t consider the change point version of 
their work. To extend work of Chatterjee and Bose [6] to 
the change point analysis, note that the bootstrapped 
WLS estimators of ,1  2  and 0  are the minimiz-
ers of
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The bootstrap estimator of change point ( ˆ
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In above formulas, random vectors  

 1 0 0
, ,k k kU u u 

0
 and  specify  

the type of bootstrap method. For example for classical 
paired bootstrap has U multinomial distribution with 

parameters 

 1,0 0 0
, ,k k nkU u u  

 

 0 0 0,1 , ,1k k k  and U  is distributed as 

multinomial with parameters 



 0 0 0,1 , ,1k k k   , at 

which 0 0 .k n k    Under the null hypothesis, since 

0 ,k n  it is enough to let  has multino-

mial distribution with parameters 

 ,U U U  
 ,1 , ,1n n n . As it 

is stated by Chatterjee and Bose [6], the other bootstrap 
methods in the literatures like the Bayesian bootstrap, the 
deleted d-jackknives, and the bootstrap clone are also 
special cases of the above bootstrap formulation. By 
running the bootstrap method to data, and computing the 
above formula, one can derive the bootstrap quantile of 
weighted test statistic. Also, one can remove the bias of 
test statistic and construct confidence intervals based on 

Copyright © 2011 SciRes.                                                                                  AM 



R. HABIBI 
 

Copyright © 2011 SciRes.                                                                                  AM 

1312 

bootstrap, we have done these calculations and it has 
been seen that the results are very good. Interested reader 
can refer to Habibi [7]. 
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