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Abstract 
This paper considers a portfolio optimization problem with delay. The finance 
market is consisted of one risk-free asset and one risk asset which price pro- 
cess is modeled by Cox-Ingersoll-Ross stochastic volatility model. In addition, 
considering the history information related to investment performance, the 
dynamic of wealth is modeled by stochastic delay differential equation. The 
investor’s objective is to maximize her expected utility for a linear combina-
tion of the terminal wealth and the average performance. By applying sto-
chastic dynamic programming approach, we provide the corresponding 
Hamilton-Jacobin-Bellman equation and verification theorem, and the closed- 
form expressions of optimal strategy and optimal value function for CRRA 
utility are derived. Finally, a numerical example is provided to show our re-
sults. 
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1. Introduction 

In this paper, we consider a portfolio optimization problem with delay, in which 
the Cox-Ingersoll-Ross (CIR) stochastic volatility model is adopted to describe a 
non-constant volatility of the risky asset. The phenomenon of frowns and smiles 
for the volatility of stock price cannot be explained within constant volatility 
models, stochastic volatility (SV) is recognized recently as an important feature 
for asset price models. There is much literature embedding SV in assets’ returns. 
For example, Hull and White [1] assume that the volatility follows log-normal 
process; Scott [2] and Stein & Stein [3] assume that the volatility follows 
Omstein-Uhlenbeck (OU) process; Heston [4] and Ball & Roma [5] introduce 
CIR process to describe stochastic volatility. Furthermore, many scholars study 
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the optimal investment and/or consumption problems under the SV models. For 
instance, Chacko and Viceira [6], Fleming and Hernndez-Hernndez [7], Liu [8] 
and Zariphopoulou [9] consider an optimal investment and consumption pro- 
blems under SV models, and they derive explicitly the optimal strategies and 
optimal value functions in some situations by applying Hamilton-Jacobin- 
Bellman (HJB) technique; Kraft [10], Taksar and Zeng [11] investigate a port- 
folio optimization problem under SV models. Moreover, Ferland and Watier [12] 
consider a mean-variance portfolio optimization problem with the CIR interest 
rate in a continuous-time framework, and they derive the mean-variance effi- 
cient portfolio by solving backward stochastic differential equations. Li & Wu 
[13] and Noh & Kim [14] consider portfolio optimization problems with an SV 
asset price process and a stochastic interest rate to maximize the expected utility 
of the terminal wealth. Li et al. [15] consider the optimal investment and rein- 
surance problem under Heston’s SV model. In addition, [16], [17] and [18] 
consider the uncertain portfolio selection. 

However, in the literature above-mentioned, the past history information of 
risky asset price is not considered. That is, the price process of risky asset is 
supposed to follow a geometric Brownian motion with constant drift and cons- 
tant/stochastic volatility, the future movement of risky asset price is only based 
on the current information and is independent of the past historic information. 
However, there is growing evidence to demonstrate that the past price of risky 
asset influence its future price (See Akgiray [19], Dibeh [20], and Sheinkman & 
LeBaron [21]). In other word, investors tend to make their investment decision 
based on the historic performance of risky asset or their portfolios in the real 
finance world. Specifically, if a stock price increases a lot recently, then there 
may be more investors would like to invest more money in this stock, which will 
push the stock price even higher. On the contrary, if the stock price decreases 
greatly, more investors tend to sell the stock and invest in other assets, which 
will drive the price to go down further. The dependence of asset price on the past 
states is called delay mathematically and a stochastic differential delay equation 
(SDDE) gives a mathematical formulation for such phenomena. Elsanousi and 
Larssen [22] investigate a class of optimal consumption problems where the 
wealth is given by a stochastic differential delay equation with a parameter, and 
they obtain the closed-form expressions for the optimal strategies and the value 
functions in two cases of deterministic parameters and random parameters. 
Chang et al. [23] study an investment and consumption problem of Merton’s 
type modeled by a stochastic system with delay, and they derive the closed-form 
expressions for the optimal strategies and the value functions in some situations 
by adopting stochastic control theory. Moreover, Mao [24] studies delay geo- 
metric Brownian motion in financial option valuation. Lee et al. [25] study a 
delayed geometric Brownian model with a stochastic volatility by the martingale 
method, they extend the geometric Brownian model by adding a stochastic 
volatility term, which is driven by a hidden process of fast mean reverting dif- 
fusion, to the delayed Black-Scholes model. A & Li [26] consider the optimal 
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excess-loss-of reinsurance and investment problem with delay under the Hes- 
ton’s SV model. Shen [27] study the mean-variance portfolio selection in a 
random environment with unbounded coefficients. 

To our best knowledge, there is little work in the literature on portfolio 
optimization problem when some delay factors (e.g. (2.3)-(2.4) in this paper) are 
added to the CIR stochastic volatility model. In this paper, we consider a new 
revised portfolio optimization problem in which we formulate the wealth 
dynamic as a stochastic differential delay equation with volatility driven by CIR 
model. By applying the stochastic dynamic programming approach, the corres- 
ponding HJB equation and a verification theorem are provided. The closed-form 
expressions for optimal strategy and optimal value function for CRRA utility 
model are derived. 

The rest of this paper is organized as follows. In Section 2, the model and 
assumptions are described. In Section 3, the rigorous mathematical formulation 
of our problem is presented. HJB equation is given, and the verification theorem 
is proved. The closed-form expressions of optimal strategy and optimal value 
function for CRRA utility model are derived. In Section 4, some numerical 
experiment is presented to show our results. Section 5 concludes this paper and 
states some prospects. 

2. Problem Formulation 

Let ( ), ,Ω F  be a probability space equipped with a filtration ( )0t t T≤ ≤
= F  

satisfying the usual conditions, i.e., ( )0t t T≤ ≤
F  is right-continuous and  -com- 

plete, where T is a positive finite constant representing the time horizon. And all 
stochastic processes introduced below are supposed to be well-defined and 
adapted processes in the filtered complete probability space ( ), , ,Ω  F . In 
addition, there are no transaction costs or taxes in the financial market and 
trading takes place continuously. 

Consider a financial market consisting of one risk-free asset and one risky 
asset. The risk-free asset, e.g., a bank account or a bond, can achieve a constant 
interest rate r. The price of risky asset tS  is described by following stochastic 
volatility model, i.e.,  

( )d
d d ,St

t t t
t

S r V t V B
S

η = + +                 (2.1) 

where η  are real constants, { }, 0S
tB t ≥  is a one-dimension standard Brow- 

nian motion; tV  is the time varying instantaneous standard deviation of the 
return on the risk asset. We assume that the instantaneous variance tV  follows 
the CIR process:  

( ) ( )2d d d 1 d ,S V
t t t t tV V t V B Bκ θ σ ρ ρ= − + + −        (2.2) 

where { }, 0V
tB t ≥  is a one-dimension Brownian motion defined on the filtered 

probability space ( ), , ,Ω  F . Parameter 0θ >  describes the long-term mean 
of the variance, ( )0,1κ ∈  is the reversion parameter of the instantaneous va- 
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riance process, i.e., κ  describes the degree of mean reversion, and ρ  is the 
correlation coefficient between Brownian motions S

tB  and V
tB , which is 

assumed to be negative to capture the asymmetric effect.  

2.1. Investment Strategy and Wealth Processes 

Starting from an initial wealth 0x , an investor invests her wealth in the financial 
market. Suppose that the investor invests tL  and tK  dollar in the risk-free 
asset and the risky asset at time t, respectively. Then t t tX L K= +  denotes the 
total wealth at time t. In addition, the investor is free to transfer money from the 
risk-free asset account to the risky asset account and conversely. Let tI  be the 
total dollar amount transferred from one asset to the other asset up to time 
( )0t t ≥ , that is, 0tI ≥  means to transfer tI  dollar from the risk-free asset 

account to the risky asset account, 0tI <  means to transfer tI−  dollar from 
the risky asset account to the risk-free asset account. In addition, define two 
delay variables by  

( )0
e d ,s

tY X t s sλ
δ−

= +∫                   (2.3) 

( ) [ ], 0, ,tZ X t t Tδ= − ∀ ∈                (2.4) 

where 0λ ≥  is a constant, 0δ >  is a delay parameter. From a view of 
economic point, delay variable tY  and tZ  reflect the average and pointwise 
performance information of the wealth process in the past period [ ],t tδ− , 
respectively. With slight abuse of notation, we do not distinguish tX  and 

( )X t . The same is true for other variables. 

tL  changes with the risk-free interest rate r, the dynamic of tL  is described 
by  

( )d d .t t tL rL I t= −                       (2.5) 

Generally, tK  changes with risky asset’s price. In addition, the historic 
performance affects the investor’s investment decision, further, tK  is affected 
by the historic performance, so we formulate the dynamic of tK  as following 
stochastic differential equation:  

( )d d d ,S
t t t t t t t t tK K r Y Z V I t V K Bν µ η = + + + + +          (2.6) 

where , ,ν µ η  are real constants, { }, 0S
tB t ≥  is a one-dimension standard 

Brownian motion, tY  and tZ  are given by (2.3) and (2.4). tV  satisfies (2.2). 
During the investment time horizon [ ]0,T , the investor continuously invests 

her wealth in the risk-free asset and the risky asset. Let tπ  be the proportion of 
the investor’s wealth invested in the risky asset at time t. The remaining propor- 
tion 1 tπ−  is invested in the risk-free asset. Then t t tK Xπ=  and  

( )1t t t t tL X K Xπ= − = − . The process { } [ ]0,t t T
π π

∈
=  is called an investment 

strategy. We assume that short-selling and borrowing are prohibited, i.e., 
0 1tπ≤ ≤ , and the investment strategies satisfy the self-financial condition, that 
is, d d dt t tX K L= + . Then the dynamic of the wealth { }, 0tX t ≥  under the in- 
vestment strategy { } [ )0,t t T

π
∈

 is given by the following stochastic differential 
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delay equation (SDDE):  

( )( ) [ ]d d d , 0, .S
t t t t t t t t tX X Y Z V r t V B t Tπ ν µ η π = + + + + ∀ ∈      (2.7) 

where tY  and tZ  are given by (2.3)-(2.4) and tV  satisfies (2.2), respectively. 
We further assume that 0 0tX x= > , [ ],0t δ∈ − , which can be interpreted that 
the investor is endowed with the initial wealth 0x  at time δ−  and do not start 
investment until time 0. Then the initial value of the delay variable tY  is  

( )0
0 0

1 e
: .

x
y Y

λδ

λ

−−
= =  

Definition 2.1. (ADMISSIBLE STRATEGY) For any fixed [ ]0,t T∈ , a stra- 
tegy tπ  is said to be admissible if it satisfies the following conditions: 

i) tπ  is t -measurable for any [ ]0,t T∈ , 
ii) For any [ ]0,t T∈ , ,t t t tX k X Yπ µ≤ +  here 0k ≥  is a constant.  
Let Π  denote the set of all admissible strategies. 

2.2. Portfolio Optimization Problem 

In this subsection, we formulate the portfolio optimization problem with delay. 
Definition 2.2. A utility function [ ) [ ) { }: 0, 0,U R∞ × ∞ → ∞  is a two varia- 

bles function i.e. ( ) ( ) 2, , ,u U x y x y= ∈ . u  is strictly increasing, strictly con- 
cave, twice continuously differentiable with respect to the first variable x , and 
satisfies ( )lim , 0x xu x y→∞ =  and ( )0lim ,x xu x y→ = ∞ .  

We consider an optimization problem of the investor who starts with an 
initial wealth 0x  and initial historic information of 0y  and 0z . The investor 
wants to select a investment strategy π ∈Π  so as to maximize the expected 
utility ( ),T TU X Y   . Here, we consider an expected utility of a combination of 
the terminal wealth TX  and the average performance information of the 
wealth process in the past period [ ],T tδ− , i.e., TY . That is, ( ),T TU X Y  is the 
terminal utility function which depends on both the terminal wealth TX  and 
delay variable TY  such that  

( ), , , , ,t x y v
T TU X Y < ∞    

for all ,x y  and v , where [ ] [ ], , , | , ,t x y v
t t tX x Y y V v⋅ = ⋅ = = =  . 

In mathematical terms, the portfolio optimization problem on a finite time 
horizon [ ]0,T  can be modeled as the following optimization problem.  

Problem 2.3. (Portfolio optimization problem with delay)  

( )sup ,T TU X Y
π∈Π

                           (2.8) 

( )( ). . d d d ,S
t t t t t t t t ts t X X Y Z V r t V Zπ ν µ η π = + + + +         (2.9) 

( ) ( )2d d d 1 d .S V
t t t t tV V t V Z Zκ θ σ ρ ρ= − + + −           (2.10) 

For convenience, we first provide a notation. Let 3
0A R⊂  be an open set and 

[ ] 00,A T A= × . Denote 
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( ) ( ) ( ) ( ) [ ]{
( ) ( ) }

1,2,1,2

0

, , , | , , , and , , , are once continuously differentiable on 0,

and , , , and , , , , are twice continuously differentiable on .

C A t x y z t z T

x t y A

φ φ φ

φ φ

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
 

First, we show an important Itô’s formula. Let ( )1,2,1,2 4f C∈   and define  
( ) ( ), , , ,G t f t x y v=  

where  

( ) ( ) ( )
( ) ( ) ( )

0
, e d ,

, , .

s
t t

t t

x x X y y X X t s s

z z X X t v V t

λ
δ

δ π π
−

= = = +

= = − = =

∫  

Lemma 2.4. (Itô’s formula)  

( ) ( )2d d d d 1 d

e d ,

S S V
x t v t t

y

G t f t f x v B f v B B

f x z y t

π

λδ

π σ ρ ρ

λ−

= + + + −

 + − − 

L
     (2.11) 

where  

( )
( ) ( )

2 2 2

, , ,

1 1 .
2 2

t x v

xx Vx vv

f f t x y v

f x y z v r f v f

x vf xvf vf

π π

π ν µ η κ θ

π πσρ σ

=

= + + + + + −  

+ + +

L L

        (2.12) 

Proof. For each [ ]0,t T∈ , using the Leibnitz formula, by (2.3)-(2.4) we have  

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0d d e d
d d

d e d
d

e e d

e .

s
t

t u t

t

t u t

t

t t t

y X X t s s
t t

X u u u t s
t

t X t h X u u

x z X y X

λ
δ

λ

δ

λλδ
δ

λδ

ζ λ

ζ λ

−

−

−

−−

−

−

 = +  

 = = +  

= − − −

= − −

∫

∫

∫

 

Since ( ) ( ), , ,G t f t x y v= , by the classical Itô’s formula we can obtain  

( ) ( ) ( )

( )
( )

2 2

2

2

2

1d
2

1 d d
2

d 1 d e d

d d d 1 d

e d .

t x v xx

S
vx vv x t

S V
v t t y

S S V
x t v t t

y

G t f x y z v r f v f x vf

xvf vf t f x v B

f v B B f x z y t

f t f x v B f v B B

f x z y t

λδ

π

λδ

π ν µ η κ θ π

πσρ σ π

σ ρ ρ λ

π σ ρ ρ

λ

−

−

= + + + + + − +   
+ + +


 + + − + − − 

≡ + + + −

 + − − 

L

 

where fπL  is the form of (2.12).  
Remark 2.5. Lemma 2.4 yields the following useful formula for dy :  

( )d e d .y x z y tλδ λ−= − −                  (2.13) 

3. Optimal Investment Strategy  

In this section, the HJB equation and a verification of Problem 2.3 are showed. 
Moreover, the closed-form expression of optimal investment strategy and value 
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function are derived for CRRA utility function. By applying the dynamic pro- 
gramming approach, the portfolio optimization problem is equivalent to the 
problem of finding a solution to the HJB equation. 

3.1. HJB Equation and Verification Theorem 

For an admissible strategy π , define the value function  

( ) ( ), , , , | , , .T T t t tJ t x y v U X Y X x Y y V v= = = =            (3.1) 

Then the optimal value function is  

( ) ( ), , , sup , , , ,J t x y v J t x y vπ

π∈Π
=                 (3.2) 

with boundary condition ( ) ( ), , , ,J T x y v U x yπ = . 
Using the Itô’s formula in Lemma 2.4, we can show the following HJB equa- 

tion. Assume that ( ) [ ]( )1,2,1,2, , , 0,J t x y v C T∈ × × ×   , then the value func- 
tion ( ), , ,J t x y v  solves the following HJB equation  

( ) ( ){ }sup , , , e 0yJ t x y v J x z yλδ
π

π
λ−

∈Π
+ − − =L           (3.3) 

with boundary condition  

( ) ( ), , , , ,J T x y v U x y=                    (3.4) 

where  

( ) ( ) ( )
2 2 2

, , ,

1 1 .
2 2

t x v

xx vx vv

J t x y v J x y z v r J v J

x vJ xvJ vJ

π π ν µ η κ θ

π πσρ σ

= + + + + + −  

+ + +

L
    (3.5) 

Though we have known that the value function ( ), , ,J t x y v  is the solution of 
the HJB equation, we need to prove a verification theorem to ensure that a 
solution to the HJB equation is actually equal to the value function. 

Theorem 3.1. (Verification Theorem) Let tX  be a strong solution of (2.7), 

tY  and tZ  are given by (2.3) and (2.4), and  
( ) [ ]( )1,2,1,2, , , 0,J t x y v C T∈ × × ×    is a solution of HJB Equation (3.3) with 

boundary condition (3.4) such that  

( ){ } ( ){ }2 2

0 0
d , d , .

T T
v t xvJ t vxJ tπ π< ∞ < ∞ ∀ ∈Π∫ ∫      (3.6) 

Then we have  

( ) ( ), , ,, , , sup , .t x y v
T TJ t x y v U X Y

π∈Π
≥     

Further let  

( )* .x xv

xv

y z v J vJ
xvJ

ν µ η σρ
π

+ + +
= −               (3.7) 

If *π ∈Π , then *π  is the optimal strategy of Problem 2.3 and  

( ) ( ), , , *, , , , | .t x y v
T TJ t x y v U X Y π π = =   

Proof. Let ( ), , ,J t x y v  be a solution of the HJB equation (3.3) with boundary 
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condition (3.4). For any given admissible strategy π ∈Π  and for any  
( ) [ ], , , 0,t x y v T∈ × × ×   , we must have  

( ) ( ){ }, , , e 0.yJ t x y v J x z yλδ
π λ−+ − − ≤L            (3.8) 

On the other hand, applying Itô’s formula (2.11) to ( ), , ,J t x y v , we have  

( ) ( ) ( )
( )2

d , , , , , , e d

d d 1 d .

y

S S V
t x t v t t

J t x y v J t x y v J x z y t

vxJ B f v B B

λδ
π λ

π σ ρ ρ

− = + − −    

+ + + −

L
 

Integrating it from s to T, and using (3.8), we obtain  

( ) ( )
( ) ( ){ }

( )
( )

2

2

, , , , , ,

, , , e d

d d 1 d

d d 1 d .

T T T s s s

T
ys

T TS S V
t x t v t ts s

T TS S V
t x t v t ts s

J T X Y V J s X Y V

J t x y v J x z y t

vxJ B f v B B

vxJ B f v B B

λδ
π λ

π σ ρ ρ

π σ ρ ρ

−

−

= + − −

+ + + −

≤ + + −

∫

∫ ∫

∫ ∫

L

 

Therefore, by virtue of boundary condition (3.4), we have  

( ) ( ) ( )2, , , , d d 1 d .
T TS S V

s s s T T t x t v t ts s
J s X Y V U X Y vxJ B f v B Bπ σ ρ ρ≥ − − + −∫ ∫  (3.9) 

Using the condition (3.6), it is easy to see that  

d , d and d
T T TS V S

v t v t t x ts s s
f v B f v B vxJ Bπ∫ ∫ ∫  

are square integrable martingale whose expectation vanish. Therefore, by taking 
expectations on both sides of (3.9), we derive  

( ) ( ), , ,, , , , .t x y v
T TJ t x y v U X Y≥     

Because it holds for all π ∈Π , we must get  

( ) ( ), , ,, , , sup , .t x y v
T TJ t x y v U X Y

π∈Π
≥     

On the other hand, if we take *π π=  as defined in (3.7), and if *π ∈Π , then 
all the above inequalities can be replaced by equalities. In other words, we have  

( ) ( ), , , *, , , , | .t x y v
T TJ t x y v U X Y π π = =   

Now the proof is complete.  

3.2. Solution of HJB Equation 

To obtain a closed-form solution of HJB equation (3.3) with boundary condition 
(3.4), we assume that the investor has a utility function of the following form  

( ) ( )11, e ,
1

U x y x y
γλδµ

γ
−

= +
−

              (3.10) 

where 0γ > , 1γ ≠ , and γ  is the investor’s relative risk aversion coefficient. In 
fact, Chang et al. [23] and Elsanousi [22] also adopt the utility function of (3.10) 
to study the optimal investment and consumption problem with delay. 

The maximum in HJB Equation (3.3) is obtained when  
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( ) ( )( ), , , e 0,YJ t x y v J x z yλδ
π λ

π
−∂

+ − − =
∂

L  

furthermore,  

( )* .x vx

xx

y z v J vJ
vxJ

ν µ η σρ
π

+ + +
= −               (3.11) 

We try to seek a function J satisfying the HJB equation (3.3) in the form  

( )
( )

( ) ( ){ }
1

e
, , , exp .

1

x y
J t x y v h T t H T t v

γλδµ
γ γ

γ

−
+

= − + −
−

   (3.12) 

Define  

( ) ( ) ( ){ }e , exp .u x y H t h T t H T t vλδµ γ γ≡ + = − + −  

It is easy to verify that  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

1 1

1
2

, e , ,
1

, , ,
1

.
1

t y x

v xx xv

vv

uJ h H v H t J H t u J H t u

J HH t u J H t u J HH t u

uJ H H t

γ
λδ γ γ

γ γ γ

γ

γ γ µ
γ
γ

γ γ
γ

γ
γ

−
− −

− − − −

−

′ ′= − − = =
−

= = − =
−

=
−

  

  



 (3.13) 

Plugging them into (3.11), we can derive  

 
( )* .

y z v vH u
vx

ν µ η γσρ
π

γ
+ + +

=               (3.14) 

Substituting (3.13)-(3.14) into (3.3) yields  

( ) ( ) ( )

( ) ( )

( )

( )

1

1

2 2
1

1
2 2 2

1

e e
1

1
2

1 .
2 1

y z v vH u
h vH u x y z v r u

vx

uu x z y v H

y z v vH u
u

v
y z v vH u

u vxH
vx

u vH

γ γ

γ
γ λδ λδ

γ

γ

γ

ν µ η γσργ
ν µ η

γ γ

µ λ γκ θ
γ

ν µ η γσρ
γ

ν µ η γσρ
γσρ

γ

σ γ
γ

− −

−
− −

− −

−

−

+ + + 
′ ′+ = + + + 

−  

+ − − + −
−

+ + +
+

+ + +
+

+
−

(3.15) 

Let Q y vν η= + . From (3.15) we have  

( ) ( )( ) ( )

( ) ( )

( )

1 1

2
1 1

2 2 2
1 1

e
1

1
1 2

1 ,
2 1

Q z Q vH z
h vH u u rxu x y u

v

Q vH z
zu v Hu u

v
vH u Q z vH Hu

γ γ γ λδ γ

γ γ γ

γ γ

µ γσρ µγ
µ λ

γ γ

γσρ µγ
µ κ θ

γ γ
γ σ

µ γσρ ρσ
γ

− − − −

− − −

− −

+ + +
′ ′+ = + + −

−

+ +
− + − −

−

+ + + +
−

 (3.16) 

or equivalently,  
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( ) ( ) ( )

( )

( ) ( )

1 1 1

2 2 2
1 1

2
1

2 2
1

1 1
1
2 1

1e e
2

1 .
2

Q Q vH
h vH u u v Hu

V
vH u Q vH Hu

Q vH
r x y u u

v

zQ z zH u zu
v v

γ γ γ

γ γ

λδ λδ γ γ

γ γ

γσργ γ
κ θ

γ γ γ

γ σ
γσρ ρσ

γ

γσρ
µ λµ

γ

µ µ
µρσ µ

γ γ

− − −

− −

− −

− −

+
′ ′+ = + −

− −

+ + +
−

+ + + − − 

 
+ + + − 
 

 (3.17) 

Since (3.12) has a solution that does not depend on z, we have the following 
condition  

2 2
11 0.

2
zQ z zH u zu
v v

γ γµ µ
µρσ µ

γ γ
− − 

+ + − = 
 

          (3.18) 

By (3.18), (3.17) becomes  

( ) ( ) ( )

( )

( ) ( )

1 1 1

2 2 2
1 1

2
1

1 1
1
2 1

1 e e .
2

Q Q vH
h vH u u v Hu

v
vH u Q vH Hu

Q vH
u r x y u

v

γ γ γ

γ γ

γ λδ λδ γ

γσργ γ
κ θ

γ γ γ
γ σ

γσρ ρσ
γ

γσρ
µ λµ

γ

− − −

− −

− −

+
′ ′+ = + −

− −

+ + +
−

+  − + + − 

 

Equation (3.17) has a solution depending only on t and u if  

e , 0.rλδλ µ λ− = + <                  (3.19) 

Plugging Q and (3.19) into (3.17), we have  

( )

( )( ) ( )

2 2

2 2 2 2 2
2

1 1 e
2

11 11 .
2 2

y yh vH yH H r
v

H H v

λδγ ν νη γ
νρσ κθ µ

γ γ γ γ

γ ηρσ γ
σ γ ρ ρ κ η

γ γ

   − −′ ′+ = + + + + +   
  

 −  −
+ − + + − +     

(3.20) 

Equation (3.20) is equivalent to the following ordinary differential equations  

( )

( )( ) ( )

2 2

2 2 2 2 2
2

0
2

1 e

11 11
2 2

y y yH
v

h H r

H H H

λδ

ν νη
νρσ

γ γ
γ

κθ µ
γ

γ ηρσ γ
σ γ ρ ρ κ η

γ γ


 + + =

 − ′ = + +

 −  − ′ = − + + − +   

   (3.21) 

From boundary condition (3.4), we have  

( ) ( )0, 0.H T h T= =                    (3.22) 

Solving equations (3.21) with boundary condition (3.22), we derive the fol- 
lowing Theorem. 

Theorem 3.2. (Optimal strategy of Problem 2.3) Given wealth tX  and 
CRRA utility (3.10), the solution to HJB Equation (3.3) is given by  
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( ) ( ) ( ) ( ){ }11, , , e exp ,
1t t t t t tJ t X Y V X Y h T t H T t V

γλδµ γ γ
γ

−
= + − + −

−
  (3.23) 

where ( )h ⋅  and ( )H ⋅  are time-dependent coefficients that are independent of 
the state variables. That is, for any 0 Tτ≤ ≤ ,  

( ) ( )
( ) ( )( )

3

3 1 3 3

exp 1
,

2 exp 1
k

H
k k k k

τ
τ ϑ

τ
−

=
+ + −

             (3.24) 

( )
( )( )

( ) ( )( ) ( )( )3 1 3
2

3 1 3 3

2 exp 22 1ln exp ,
2 exp 1

k k k
h r

k k k k
τκθ γ

τ µ λδ τ
γσ τ

 + −
 = + +
 + + − 

 (3.25) 

where  

( )( )2 2 2 2 2
1 2 3 1 22

1 1, , 1 , .k k k k kγ γ
ϑ η κ ηρσ σ γ ρ ρ ϑ

γγ
− −

= = − = − + = −  (3.26) 

The optimal investment proportion in the risky asset of Problem 2.3 is given 
by  

( )( )( )*
e

.t t t t t t
t

t t

Y Z V V H T t X Y

V X

λδν µ η γσρ µ
π

γ

+ + + − +
=       (3.27) 

Remark 3.3. It is interesting that our results are similar to the results of Liu 
and Pan [28]. Liu and Pan study optimal investment strategies given an investor 
access not only to bond and stock markets but also to the derivatives market and 
the price process of the risk asset is associated with stochastic volatility and jump. 
Here are some comparisons between them. 

i) In our results, the proportion in the risky asset depends on wealth tX , 
delay variables tY  and tZ , and stochastic volatility tV  at time t. However, in 
Liu and Pan [28] the optimal strategy is a deterministic function and does not 
depend on wealth tX  and stochastic volatility tV . Moreover, our results are 
consistent with the results of Liu and Pan [28], when the delay variables are not 
considered in our model (i.e. 0ν µ= = ). The details are given in Lemma 3.4. 

ii) Let the delay δ  approach 0 then 0tY → , in this case the delay variable 

tY  vanishes. Assuming that (3.19) holds and rλ = − , then 0µ = . At this time, 
the dynamics of wealth (2.7) degenerates as  

( )d d d ,S
t t t t t t tX X V r t V Zπ η π = + +   

which is the case without delay. The corresponding problem without delay and 
its optimal strategy are given in Lemma 3.4. 

iii) The value function ( ), , ,t t tJ t X Y V  of (3.23) depends only on delay vari- 
able tY  and does not depend on delay variable tZ .  

3.3. A Special Case 

Now we consider a special case of our model. Suppose that the dynamics of risky 
asset does not depend on historic performance, then our model degenerates into 
a CIR SV model without delay. The results of our model will be reduced to the 
following special case. 
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Proposition 3.4. (Optimal strategy without delay) Consider the following 
problem without delay:  

( )
1

max
1t

T
T

XU X
γ

π γ

−

∈Π

 
=     − 

   

( ). . d d d ,S
t t t t t t ts t X X V r t V Bπ η π = + +            (3.28) 

( ) ( )2d d d 1 d .S V
t t t t tV V t V B Bκ θ σ ρ ρ= − + + −        (3.29) 

The value function is given by  

( ) ( ), , max | ,
t

T t tJ t x v U X X x V v
π ∈Π

= = =             (3.30) 

and HJB equation is given by  

( ) ( ) 2 2 21 1max 0
2 2t x v xx vx vvJ x v r J v J x vJ vxJ vJπη κ θ π πσρ σ

 
+ + + − + + + = 

 
 (3.31) 

with boundary condition ( )
1

, ,
1
xJ T x v

γ

γ

−

=
−

. 

Then, for given wealth tX , the solution to HJB equation is given by  

( ) ( ) ( ){ }11, , exp
1t t t tJ t X V X h T t H T t Vγ γ γ

γ
−= − + −

−
       (3.32) 

where ( )h ⋅  and ( )H ⋅  are time-dependent coefficients that are independent of 
the state variables. That is, for any 0 Tτ≤ ≤ ,  

( ) ( )
( ) ( )( )

3

3 1 3 3

exp 1
,

2 exp 1
k

H
k k k k

τ
τ ϑ

τ
−

=
+ + −

           (3.33) 

( )
( )( )

( ) ( )( )
3 1 3

2
3 1 3 3

2 exp 22 1ln ,
2 exp 1

k k k
h r

k k k k
τκθ γ

τ τ
γσ τ

 + −
 = +
 + + − 

      (3.34) 

where  

( )( )2 2 2 2 2
1 2 3 1 22

1 1, , 1 , .k k k k kγ γ
ϑ η κ ηρσ σ γ ρ ρ ϑ

γγ
− −

= = − = − + = −  (3.35) 

The optimal investment proportion in the risky asset is given by  

( )* .t
H T tη γσρ

π
γ

+ −
=                     (3.36) 

Proof. Let 0µ ν= =  in Theorem 4.5, we can easily obtain the results of this 
lemma.  

Remark 3.5. Our results without considering delay (i.e. 0ν µ= = ) is similar 
to the results of Liu and Pan [28]. Their results are consistent with our results 
without considering delay, when there is only stock and not derivatives consi- 
dering in Liu and Pan’s model. In some sense, we extend the results of Liu and 
Pan [28].  

4. Numerical Experiment 

In this section, we investigate the effect of delay variables, stochastic volatility 
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and VaR constraint on the optimal strategies and the optimal value functions, 
and provide some numerical examples to demonstrate the effect. We set the 
initial wealth level in million dollars between 0 and 10. The VaR horizon period 
is chosen to be 1 trading day, nearly 1/360 calendar year, while the terminal year 
is set to be 10 calendar years. In the following numerical illustrations, unless 
otherwise stated, the basic parameters are given by  

0.05, 0.01, 2, 0.9, 0.1, 0.2, 1r α η ρ σ κ δ= = = = − = = = . 

4.1. Analysis of Optimal Strategy  

In general, the dynamic changes of wealth tX  must depend on both delay 
variables tY  and tZ  at the same time in a similar manner, i.e., 0νµ ≥ . 

(1) From (3.27), for given 0X >  and 0V > , we have  

*
0, 0,

e 0, 0, 0
0, 0, 0,

X
Y VX

λδ
ν µ

π ν µ
ν µ

γ
ν µ

= = =
∂ + = > > >
∂ < < <

 

*
0, 0,
0, 0,
0, 0,

Z VX

µ
π µ

µ
γ

µ

= =
∂ = > >
∂ < <

 

According to the above results, we know that i) if 0ν µ= = , then  
* *

0
Y Z
π π∂ ∂

= =
∂ ∂

, which is the case without delay, the optimal investment strategy 

*π  dose not depend on Y and Z; ii) if 0ν <  and 0µ < , then 
*

0
Y
π∂

>
∂

 and  

*

0
Z
π∂

>
∂

, which mean that the delay factors take a positive effect on the optimal 

investment strategy; iii) if 0ν <  and 0µ < , then 
*

0
Y
π∂

<
∂

 and 
*

0
Z
π∂

<
∂

, 

which mean that the delay factors take a passive effect on the optimal investment 
strategy. 

In Figure 1, we draw the optimal investment strategy *π  with t under the 
different delay. Let 0ν µ= =  (or 0, 0Y Z= = ) denote the case without delay, 
i.e., the curves denoted by “ 0Y = ” in two Figures. In Figure 1(a), we set 

0.01, 0.01, 2Zν µ= = = , and 2Y =  or 20Y =  respectively. Here, 0.01 0ν = >  
and 0.01 0µ = >  mean that delay variables Y and Z take a positive effect on 
optimal investment strategy, that is, the curves are arranged by 20Y = , 2Y =  
and 0Y =  from top to bottom. In other words, the higher positive historic 
performance of the portfolio promote the higher proportion of an investor’s 
wealth invested on stocks. From another point of view, the result implies that a 
higher historic stock price encourages investor to invest more money to the 
stock. Conversely, in Figure 1(b), let 0.01, 0.01, 2Zν µ= − = − = , and 2Y =  or 

20Y =  respectively. And 0.01 0ν = <  and 0.01 0µ = <  mean that delay 
variables Y and Z take a negative effect on optimal investment strategy, that is, 
the curves are arranged by 0Y = , 2Y =  and 20Y =  from top to bottom.  
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(a)                                                          (b) 

Figure 1. Optimal strategies with time t under different delay. 
 
Figure 1(b) shows that the higher historic performance of the portfolio gives the 
investors a chance to harvest their gain by cut down the proportion invested on 
stocks, which implies that a higher historic stock price cause investor to invest 
less money on the stock so as to avoid to chase the high price. This seems to be 
consistent with the facts. 

(2) From (3.27), for given 0Y >  and 0Z > , we have  

( )( )

( )

*

2

*

e
0,

e
0.

Y Z X

V XV
Y Z V H T

X V

λδ

λδ

ν µ µπ
γ

ν µ η γσρ τ µπ
γ

+ +∂
= − <

∂

+ + + −∂
= − <

∂

 

So, the optimal investment strategy *π  decrease w.r.t. stochastic volatility V 
and wealth X, respectively. 

Figure 2 plot the optimal investment strategy *π  with stochastic volatility V 
under the different delay. Let 100X = , 10γ = . 0ν µ= =  or 0, 0Y Z= =  
means the case without delay, i.e., the curve denoted by “ 0Y = ” in two Figures. 
Figure 2 shows that the optimal investment strategy *π  decreases with increas- 
ing stochastic volatility V. That is to say, the higher stochastic volatility take a 
passive effect on the investment enthusiasm. Moreover, in Figure 2(a), we set 

0.01, 0.01, 2Zν µ= = = , and 2Y =  or 20Y =  respectively. Here,  
0.01 0ν = >  and 0.01 0µ = >  mean that delay variables Y and Z take a posi- 

tive effect on optimal strategy, that is, the curves are arranged by 20Y = , 2Y =  
and 0Y =  from top to bottom. Conversely, in Figure 2(b), let  

0.01, 0.01, 2Zν µ= − = − = , and 2Y =  or 20Y =  respectively. 0.01 0ν = <  
and 0.01 0µ = <  mean that delay variables Y and Z take a negative effect on 
optimal investment strategy, that is, the curves are arranged by 0Y = , 2Y =  
and 20Y =  from top to bottom. That is to say, Figure 1 and Figure 2 have the 
same result about the effect of delay variables on the optimal investment 
strategy. 

In Figure 3, we demonstrates the optimal investment strategy *π  w.r.t.  
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(a)                                                          (b) 

Figure 2. Optimal strategies with stochastic volatility V under different delay. 
 

  
(a)                                                          (b) 

Figure 3. Optimal strategies under the different stochastic volatility. 
 
different wealth X under the different volatility V. Let 0.1V = , 0.15V = , and 

0.2V =  respectively, and with delay variables 2, 2, 0.01, 0.1Y Z µ ν= = = = . 
The curves are arranged by 0.1V = , 0.15V = , and 0.2V =  from top to 
bottom. The two figure show the larger is stochastic volatility V and the smaller 
is the proportion of the investor’s wealth invested on stocks. This fits with the 
fact that market instability has negative impact on investors. Furthermore, in 
Figure 3(a) the curves show that the optimal investment strategy *π  decreases 
with the accumulation of wealth X. This suggests that an investor has an increas- 
ing preference to risk aversion with the increase of wealth, thereby, an investor 
cut down the stockholding. 

4.2. Analysis of Optimal Value Function  

In this subsection, we analyze the effect of delay variable Y and stochastic 
volatility V on the value function. According to (3.23), the value function de- 
pends on , , ,t X Y V  and we have  

( ) ( ) ( ){ }e exp 0,XJ X Y h T t H T t V
γλδµ γ γ

−
= + − + − >  
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( )
( ) ( ) ( ){ }

1
e

exp 0,
1V

X Y
J H T t h T t H T t V

γλδµ
γ γ γ

γ

−
+

= − − + − >
−

 

( ) ( )e e 0 0 ,YJ X Y
γλδ λδµ µ µ

−
= + > >  

Let 100X = , 0.01ν = , 0.01µ = , 2Z = , 2Y =  or 200Y = , and  
0ν µ= =  (or 0, 0Y Z= = ) denotes without delay in Figure 5 and Figure 6 

(i.e., the curve denoted by “ 0Y = ”). 
Figure 4 plot the optimal value function ( ), , ,J t X Y V  with t when the risk 

aversion coefficient 0.3γ =  and 3γ = . They shows that the value functions are 
almost the same with different delay variables. 

Figure 5 plot the optimal value function ( ), , ,J t X Y V  with wealth X when 
the risk aversion coefficient 0.3γ =  and 3γ = . They shows that the optimal 
value functions are almost the same with different delay variables. Figure 6 plot 
the optimal value function ( ), , ,J t X Y V  w.r.t. stochastic volatility V when the 
risk aversion coefficient 0.3γ =  and 3γ = . However, it is interesting enough 
that the higher stochastic volatility seemed to induce the higher value of the 
value functions. That is, the curves are arranged by 0.1V = , 0.15V = , and 

0.2V =  from top to bottom. The two figures show that the optimal value func- 
tions increase with the increasing of stochastic volatility V. 

 

    
(a)                                                        (b) 

Figure 4. Optimal value function w.r.t time t under the different delay. 
 

    
(a)                                                       (b) 

Figure 5. Optimal value function w.r.t. wealth X under the different delay. 
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(a)                                                          (b) 

Figure 6. Optimal value function under different stochastic volatility V. 

5. Conclusions and Prospect 

This paper considers portfolio optimization problem with delay under CIR sto- 
chastic volatility model. Adopting the stochastic dynamic programming approach, 
we derive the optimal portfolio strategy in closed-form for a CRRA type utility 
function, and verification theorem is showed. 

The results show that the historic performance of portfolio has obvious effect 
on the optimal strategy. Specifically, the higher positive history performance 
seems to induce the higher investment proportion on risky asset. On the con- 
trary, the higher negative historic performance of the portfolio leads to the lower 
proportion on risky asset. And the historic performance of portfolio has similar 
effect on value function. As a result, it is meaningful to put delay variables into 
the portfolio optimization problem. 

There are several topics which deserve to be studied in the future. First, as 
illustrated in this paper, the portfolio optimization problem with a single risky 
and single risk-free asset obtains an explicit solution via the dynamic program- 
ming principle and the verification theorem. However, it is anticipated that 
explicit solutions of the similar type for the model with multiple risky assets will 
not be available. 
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